Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.762
Filtrar
1.
Physiol Plant ; 176(4): e14434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981863

RESUMO

Anthocyanin is a type of plant secondary metabolite beneficial to human health. The anthocyanin content of vegetable and fruit crops signifies their nutritional quality. However, the molecular mechanism of anthocyanin accumulation, especially tissue-specific accumulation, in Caitai, as well as in other Brassica rapa varieties, remains elusive. In the present study, taking advantage of three kinds of Caitai cultivars with diverse colour traits between leaves and stems, we conducted a comparative transcriptome analysis and identified the molecular pathway of anthocyanin biosynthesis in Caitai leaves and stems, respectively. Our further investigations demonstrate that bHLH42, which is robustly induced by MeJA, closely correlates with tissue-specific accumulation of anthocyanins in Caitai; bHLH42 upregulates the expression of flavonoid/anthocyanin biosynthetic pathway genes to activate anthocyanin biosynthesis pathway, importantly, overexpression of bHLH42 significantly improves the anthocyanin content of Caitai. Our analysis convincingly suggests that bHLH42 induced by jasmonic acid signalling plays a crucial role in tissue-specific accumulation of anthocyanins in Caitai.


Assuntos
Acetatos , Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ciclopentanos , Flavonoides , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Antocianinas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Flavonoides/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Reguladores de Crescimento de Plantas/metabolismo
2.
Methods Mol Biol ; 2827: 109-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985266

RESUMO

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Assuntos
Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
3.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005007

RESUMO

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Assuntos
Distribuição Contracorrente , Ginkgo biloba , Extratos Vegetais , Folhas de Planta , Solventes , Ginkgo biloba/química , Solventes/química , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Água/química , Metanol/química , Acetatos/química , Extrato de Ginkgo
4.
Planta ; 260(2): 47, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970694

RESUMO

MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.


Assuntos
Basidiomycota , Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Filogenia , Doenças das Plantas , Proteínas de Plantas , Populus , Fatores de Transcrição , Populus/genética , Populus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Basidiomycota/fisiologia , Resistência à Doença/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Estudo de Associação Genômica Ampla , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Arabidopsis/genética , Arabidopsis/microbiologia
5.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012392

RESUMO

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Assuntos
Fermentação , Glicerol , Metano , RNA Ribossômico 16S , Esgotos , Glicerol/metabolismo , Esgotos/microbiologia , Anaerobiose , RNA Ribossômico 16S/genética , Metano/metabolismo , Filogenia , Sulfatos/metabolismo , Propionatos/metabolismo , Biocombustíveis , Acetatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
6.
Sci Rep ; 14(1): 16779, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039094

RESUMO

Boswellia carterii (BC) resins plants have a long historical background as a treatment for inflammation, as indicated by information originating from multiple countries. Twenty-seven diterpenoids have been identified in ethyl acetate and total methanol BC, comprising seventeen boscartins of the cembrane-type diterpenoids and ten boscartols of the prenylaromadendrane-type diterpenoids. Moreover, twenty-one known triterpenoids have also been found, encompassing nine tirucallane-type, six ursane-type, four oleanane-type, and two lupane-type. The cembrane-type diterpenoids hold a significant position in pharmaceutical chemistry and related industries due to their captivating biological characteristics and promising pharmacological potentials. Extraction of BC, creation and assessment of nano sponges loaded with either B. carterii plant extract or DEX, are the subjects of our current investigation. With the use of ultrasound-assisted synthesis, nano sponges were produced. The entrapment efficiency (EE%) of medications in nano sponges was examined using spectrophotometry. Nano sponges were characterized using a number of methods. Within nano sponges, the EE% of medicines varied between 98.52 ± 0.07 and 99.64 ± 1.40%. The nano sponges' particle sizes varied from 105.9 ± 15.9 to 166.8 ± 26.3 nm. Drugs released from nano sponges using the Korsmeyer-Peppas concept. In respiratory distressed rats, the effects of BC plant extract, DEX salt and their nano formulations (D1, D5, P1 and P1), were tested. Treatment significantly reduced ICAM-1, LTB4, and ILß 4 levels and improved histopathologic profiles, when compared to the positive control group. Boswellia extract and its nano sponge formulation P1 showed promising therapeutic effects. The effect of P1 may be due to synergism between both the extract and the formulation. This effect was achieved by blocking both ICAM-1 and LTB4 pathways, therefore counteracting the effects of talc powder.


Assuntos
Boswellia , Extratos Vegetais , Terpenos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Boswellia/química , Ratos , Terpenos/química , Terpenos/farmacologia , Acetatos/química , Ciclodextrinas/química , Masculino , Nanopartículas/química
7.
Food Microbiol ; 123: 104585, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038891

RESUMO

In recent years, the boom of the craft beer industry refocused the biotech interest from ethanol production to diversification of beer aroma profiles. This study analyses the fermentative phenotype of a collection of non-conventional yeasts and examines their role in creating new flavours, particularly through co-fermentation with industrial Saccharomyces cerevisiae. High-throughput solid and liquid media fitness screening compared the ability of eight Saccharomyces and four non-Saccharomyces yeast strains to grow in wort. We determined the volatile profile of these yeast strains and found that Hanseniaspora vineae displayed a particularly high production of the desirable aroma compounds ethyl acetate and 2-phenethyl acetate. Given that H. vineae on its own can't ferment maltose and maltotriose, we carried out mixed wort co-fermentations with a S. cerevisiae brewing strain at different ratios. The two yeast strains were able to co-exist throughout the experiment, regardless of their initial inoculum, and the increase in the production of the esters observed in the H. vineae monoculture was maintained, alongside with a high ethanol production. Moreover, different inoculum ratios yielded different aroma profiles: the 50/50 S. cerevisiae/H. vineae ratio produced a more balanced profile, while the 10/90 ratio generated stronger floral aromas. Our findings show the potential of using different yeasts and different inoculum combinations to tailor the final aroma, thus offering new possibilities for a broader range of beer flavours and styles.


Assuntos
Cerveja , Fermentação , Hanseniaspora , Odorantes , Saccharomyces cerevisiae , Cerveja/microbiologia , Cerveja/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Hanseniaspora/metabolismo , Hanseniaspora/crescimento & desenvolvimento , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Etanol/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Acetatos/metabolismo , Técnicas de Cocultura , Álcool Feniletílico/análogos & derivados
8.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999970

RESUMO

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Assuntos
Acetatos , Ciclopentanos , Etilenos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Taraxacum , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Taraxacum/genética , Taraxacum/metabolismo , Taraxacum/efeitos dos fármacos , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Genoma de Planta , Estudo de Associação Genômica Ampla
9.
J Infect ; 89(2): 106220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960103

RESUMO

OBJECTIVES: Efficacy and safety of letermovir as prophylaxis for clinically significant cytomegalovirus infections (csCVMi) was evaluated in randomised controlled trials while most of the real-world studies are single-centre experiences. METHODS: We performed a retrospective, multi-centre case-control study at six German university hospitals to evaluate clinical experiences in patients receiving CMV prophylaxis with letermovir (n = 200) compared to controls without CMV prophylaxis (n = 200) during a 48-week follow-up period after allogeneic hematopoietic cell transplantation (aHCT). RESULTS: The incidence of csCMVi after aHCT was significantly reduced in the letermovir (34%, n = 68) compared to the control group (56%, n = 112; p < 0.001). Letermovir as CMV prophylaxis (OR 0.362) was found to be the only independent variable associated with the prevention of csCMVi. Patients receiving letermovir showed significantly better survival compared to the control group (HR = 1.735, 95% CI: 1.111-2.712; p = 0.014). Of all csCMVi, 46% (n = 31) occurred after discontinuation of letermovir prophylaxis. Severe neutropenia (<500 neutrophils/µL) on the day of the stem cell infusion was the only independent variable for an increased risk of csCMVi after the end of letermovir prophylaxis. CONCLUSIONS: Our study highlights the preventive effects of letermovir on csCMVi after aHCT. A substantial proportion of patients developed a csCMVi after discontinuation of letermovir. In particular, patients with severe neutropenia require specific attention after drug discontinuation.


Assuntos
Acetatos , Antivirais , Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Quinazolinas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Infecções por Citomegalovirus/prevenção & controle , Feminino , Pessoa de Meia-Idade , Quinazolinas/uso terapêutico , Estudos Retrospectivos , Antivirais/uso terapêutico , Adulto , Acetatos/uso terapêutico , Acetatos/administração & dosagem , Estudos de Casos e Controles , Idoso , Transplante Homólogo/efeitos adversos , Adulto Jovem , Citomegalovirus , Adolescente , Alemanha/epidemiologia , Incidência
10.
J Parasitol ; 110(4): 295-299, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39034040

RESUMO

Some helminth test methods for sanitation samples include a phase extraction step to reduce lipid content and final pellet size before microscopy. Hydrophilic and lipophilic solutions are used to create 2 phases, with a plug of organic material or debris in between, whilst eggs are supposedly compacted at the bottom of the test tube. We tested 10% formalin, acetoacetic buffer, and acid alcohol as the hydrophilic solutions, and ethyl acetate and diethyl ether as the lipophilic solvents for egg recoverability from water, primary sludge, and fatty sludge. Normally, the supernatant and debris plug are discarded and the sedimented pellet of eggs is microscopically examined. We, however, also collected the entire supernatant plus debris plug to determine where eggs were possibly lost. We found that eggs were lost when samples were extracted with 10% formalin + ethyl acetate, 10% formalin + diethyl ether, acetoacetic buffer + ethyl acetate, and acetoacetic buffer + diethyl ether combinations (<50% egg recovery). Acid alcohol + ethyl acetate resulted in 93.2, 89.8, and 57.3% egg recovery in the pellet of water, primary sludge, and fatty sludge, respectively; however, the size of the final pellet was not reduced, defeating the purpose of the extraction step. We thus recommend that this step be excluded.


Assuntos
Ascaris suum , Esgotos , Animais , Esgotos/parasitologia , Esgotos/química , Ascaris suum/isolamento & purificação , Óvulo , Formaldeído/farmacologia , Suínos , Contagem de Ovos de Parasitas/veterinária , Acetatos/química , Solventes/química
11.
Clin Pharmacokinet ; 63(7): 945-964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012618

RESUMO

Letermovir is a newly developed antiviral agent used for the prophylaxis of human cytomegalovirus infections in patients undergoing allogeneic hematopoietic cell transplantation. This novel anti-cytomegalovirus drug, used for the prophylaxis of cytomegalovirus reactivation until approximately 200 days after transplantation, effectively reduces the risk of clinically significant cytomegalovirus infection. No human counterpart exists for the terminase complex; letermovir is virus specific and lacks some toxicities previously observed with other anti-cytomegalovirus drugs, such as cytopenia and nephrotoxicity. The absolute bioavailability of letermovir in healthy individuals is estimated to be 94% based on a population-pharmacokinetic analysis. In contrast, oral administration of letermovir to patients undergoing hematopoietic cell transplantation results in lower exposure than that in healthy individuals. Renal or hepatic impairment does not influence the intrinsic clearance of letermovir. Co-administration of letermovir may alter the plasma concentrations of other drugs, including itself, as it acts as a substrate and inhibitor/inducer of several drug-metabolizing enzymes and transporters. In particular, attention should be paid to the drug-drug interactions between letermovir and calcineurin inhibitors or azole antifungal agents, which are commonly used in patients undergoing hematopoietic cell transplantation. This article reviews and summarizes the clinical pharmacokinetics and pharmacodynamics of letermovir, focusing on patients undergoing hematopoietic cell transplantation, healthy individuals, and specific patient subsets.


Assuntos
Acetatos , Antivirais , Infecções por Citomegalovirus , Interações Medicamentosas , Transplante de Células-Tronco Hematopoéticas , Quinazolinas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Antivirais/farmacocinética , Antivirais/administração & dosagem , Quinazolinas/farmacocinética , Quinazolinas/administração & dosagem , Acetatos/farmacocinética , Infecções por Citomegalovirus/prevenção & controle , Transplante Homólogo
12.
Environ Sci Technol ; 58(28): 12509-12519, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963393

RESUMO

Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.


Assuntos
Biofilmes , Biocombustíveis , Reatores Biológicos , RNA Ribossômico 16S , Dióxido de Carbono/metabolismo , Acetatos/metabolismo
13.
Clin Nucl Med ; 49(8): e392-e393, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967509

RESUMO

ABSTRACT: Metastatic insulinomas can cause recurrent hypoglycemia requiring continuous IV glucose infusion. Various medical and chemotherapeutic treatment options are used to reduce the patient's risk of death due to hypoglycemia. Treatment-resistant hepatic metastatic insulinomas may benefit clinically from 90Y transarterial radioembolization therapy. In this case, we present a case of liver metastatic insulinoma that achieved clinical improvement after 2 cycles of 90Y microspheres transarterial radioembolization, and the presence of active metastases was demonstrated with 68Ga-NODAGA-exendin-4 PET/CT imaging.


Assuntos
Embolização Terapêutica , Exenatida , Radioisótopos de Gálio , Hipoglicemia , Insulinoma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Ítrio , Humanos , Insulinoma/diagnóstico por imagem , Radioisótopos de Ítrio/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Acetatos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Masculino , Metástase Neoplásica , Pessoa de Meia-Idade
14.
Environ Sci Pollut Res Int ; 31(33): 45734-45746, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38972947

RESUMO

2,4-Dinitrophenol (2,4-DNP) is recognized as an emerging contaminant due to its high toxicity and poor biodegradability, posing a threat to animals, plants, and human health. The efficient removal of 2,4-DNP remains a challenging issue in phytoremediation research, particularly because of its toxic effects on plants. To address this, a hydroponic simulation experiment was conducted to investigate the impact of adding exogenous methyl jasmonate (MeJA) on the tolerance and purification capabilities of Salix matsudana Koidz (S. matsudana) seedlings exposed to 2,4-DNP. The results indicated that the addition of exogenous MeJA mitigated the damage caused by 2,4-DNP to S. matsudana seedlings by enhancing the activity of antioxidant enzymes, reducing excess reactive oxygen species (ROS), lowering membrane lipid peroxidation, and minimizing membrane damage. Notably, the most effective alleviation was observed with the addition of 50 mg·L-1 MeJA. Furthermore, exogenous MeJA helped maintain the biomass indices of S. matsudana seedlings under 2,4-DNP stress and increased the removal efficiency of 2,4-DNP by these seedlings. Specifically, the addition of 50 mg·L-1 MeJA resulted in a removal percentage of 79.57%, which was 11.88% higher than that achieved with 2,4-DNP treatment. In conclusion, exogenous MeJA can improve the plant resistance and enhance 2,4-DNP phytoremediation.


Assuntos
Biodegradação Ambiental , Ciclopentanos , Oxilipinas , Salix , Águas Residuárias , Salix/efeitos dos fármacos , Águas Residuárias/química , 2,4-Dinitrofenol , Acetatos , Espécies Reativas de Oxigênio/metabolismo
15.
Math Biosci Eng ; 21(5): 5972-5995, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38872566

RESUMO

We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.


Assuntos
Acetatos , Simulação por Computador , Geobacter , Modelos Biológicos , Oxirredução , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Acetatos/metabolismo , Algoritmos
16.
Appl Microbiol Biotechnol ; 108(1): 372, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874789

RESUMO

Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO2. Acetate production from CO2 in microbial electrosynthesis (MES) has been widely studied, while more valuable compounds such as butyrate are currently attracting attention. In this study, methanol was used as a co-substrate with CO2 to enhance butyrate production in MES. Feeding with CO2 and methanol resulted in the highest butyrate production rates and titres of 0.36 ± 0.01 g L-1 d-1 and 8.6 ± 0.2 g L-1, respectively, outperforming reactors with only CO2 feeding (0.20 ± 0.03 g L-1 d-1 and 5.2 ± 0.1 g L-1, respectively). Methanol acted as electron donor and as carbon source, both of which contributed ca. 50% of the carbon in the products. Eubacterium was the dominant genus with 52.6 ± 2.5% relative abundance. Thus, we demonstrate attractive route for the use of the C1 substrates, CO2 and methanol, to produce mainly butyrate. KEY POINTS: • Butyrate was the main product from methanol and CO2 in MES • Methanol acted as both carbon and electron source in MES • Eubacterium dominating microbial culture was enriched in MES.


Assuntos
Butiratos , Dióxido de Carbono , Metanol , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Butiratos/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Acetatos/metabolismo
17.
Sci Rep ; 14(1): 13729, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877134

RESUMO

The aim of this study was to investigate the fertility of "Huajin 6" and the effect of exogenous methyl jasmonate on its fertility. In this study, "Huajin 6", "Huajin 6" treated with methyl jasmonate and "Damaohua" were used as the research objects, the stamen phenotypes and the shape of pollen grains were observed, pollen viability and stigma receptivity were measured. The results showed that the pistil structure and function were normal, and although the stamen anthers did not dehisce, they were still capable of producing pollen with a certain amount of vigor. Methyl jasmonate could promote the opening of the flowers of "Huajin 6" and improve the development of pollen grains to a certain extent, but it could not promote anthers dehiscence of "Huajin 6". This study can provide theoretical guidance for the cultivation of new honeysuckle varieties using "Huajin 6".


Assuntos
Ciclopentanos , Fertilidade , Flores , Oxilipinas , Pólen , Oxilipinas/farmacologia , Fertilidade/efeitos dos fármacos , Ciclopentanos/farmacologia , Acetatos/farmacologia , Lonicera/fisiologia , Lonicera/efeitos dos fármacos , Polinização
18.
J Transl Med ; 22(1): 570, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879538

RESUMO

BACKGROUND: Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS: A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS: IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1ß). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION: Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.


Assuntos
Acetatos , Microbioma Gastrointestinal , Lesão Pulmonar , Infecções por Orthomyxoviridae , Junções Íntimas , Animais , Junções Íntimas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Acetatos/metabolismo , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Vírus da Influenza A , Transplante de Microbiota Fecal , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Células Epiteliais/metabolismo , Disbiose , Ácidos Graxos Voláteis/metabolismo
19.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892337

RESUMO

Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinellia , Reguladores de Crescimento de Plantas , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Pinellia/genética , Pinellia/metabolismo , Perfilação da Expressão Gênica , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
20.
Environ Sci Technol ; 58(26): 11760-11770, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900969

RESUMO

Oxygenated volatile organic compounds (OVOCs), emitted in large quantities by the chemical industry, are a major contributor to the formation of ozone and subsequent particulate matter. For the efficient catalytic oxidation of OVOCs, the challenges of molecular activation and intermediate inhibition remain. The construction of bifunctional active sites with specific structures offers a promising way to overcome these problems. Here, the Pd@Layered-CoOx/MFI bifunctional catalyst with core-shell active sites was rationally fabricated though a two-step ligand pyrolysis method, which exhibits a superb oxidation efficiency toward ethyl acetate (EA). Over this, 13.4% of EA (1000 ppm) can be oxidized at just 140 °C with a reaction rate of 13.85 mmol·gPd-1·s-1, around 176.7 times higher than that of the conventional Pd-CoOx/MFI catalyst. The electronic coupling of the Pd-Co pair promotes the electron back-donation from Pd nanoparticles to the layered CoOx shell and facilitates the formation of Pd2+ species, which greatly enhances the adsorption and activation of the electron-rich C═O bond of the EA molecules. In addition, the synergy of these core-shell Pd@Layered-CoOx sites accelerates the activation and transformation of *O species, which inhibit the formation of acetaldehyde and ethanol byproducts, ensuring the rapid total oxidation of EA molecules via the Mars-van Krevelen mechanism. This work established a solid foundation for exploring robust bifunctional catalysts for deep OVOC purification.


Assuntos
Oxirredução , Catálise , Paládio/química , Compostos Orgânicos Voláteis/química , Acetatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA