Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.688
Filtrar
1.
J Agric Food Chem ; 71(11): 4696-4705, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36881830

RESUMO

The present work aims to evaluate the roles of methyl jasmonate (MeJA) in the formation of volatile organic compounds (VOC) from grape tomatoes during ripening. Fruits were treated with MeJA, ethylene, 1-MCP (1-methylcyclopropene), and MeJA+1-MCP, with analyses of the VOC and levels of the gene transcripts for the enzymes lipoxygenase (LOX), alcohol dehydrogenase (ADH), and hydroperoxide lyase (HPL). An intimate relationship between MeJA and ethylene in aroma formation was detected, mainly among the VOC from the carotenoid pathway. Expression of the fatty acid transcripts, LOXC, ADH, and HPL pathway genes, was reduced by 1-MCP, even when associated with MeJA. In ripe tomato, MeJA increased most of the volatile C6 compounds, except 1-hexanol. The MeJA+1-MCP treatment followed most of the increases in volatile C6 compounds that were increased by MeJA alone, which evidenced some ethylene-independent mechanism in the production of the volatile C6 compounds. In ripe tomato, MeJA and MeJA+1-MCP increased the levels of 6-methyl-5-hepten-2-one, which is derived from lycopene, evidencing an ethylene-independent biosynthetic process.


Assuntos
Solanum lycopersicum , Vitis , Compostos Orgânicos Voláteis , Frutas/metabolismo , Solanum lycopersicum/genética , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Etilenos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Commun Biol ; 6(1): 270, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922584

RESUMO

Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.


Assuntos
Acetatos , Hiperoxalúria , Fatores Inibidores da Migração de Macrófagos , MicroRNAs , Animais , Ratos , Acetatos/farmacologia , Hiperoxalúria/complicações , Hiperoxalúria/tratamento farmacológico , Hiperoxalúria/genética , Oxirredutases Intramoleculares/metabolismo , Rim/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxalatos/efeitos adversos
3.
Nutrients ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839338

RESUMO

Cedryl acetate (CA), also called acetyl cedrene, is approved by the FDA as a flavoring or adjuvant to be added to foods. In this study, we aimed to investigate the preventive benefits of CA on obesity and obesity-related metabolic syndrome caused by a high-fat diet (HFD). Three groups of C57BL/6J mice (ten-week-old) were fed Chow, an HFD, or an HFD with CA supplementation (100 mg/kg) for 19 weeks. We observed that CA supplementation significantly reduced weight gain induced by an HFD, decreased the weight of the visceral fat pads, and prevented adipocyte hypertrophy in mice. Moreover, mice in the CA group showed significant improvements in hepatic lipid accumulation, glucose intolerance, insulin resistance, and gluconeogenesis compared with the mice in the HFD group. Since 16S rRNA analysis revealed that the gut microbiota in the CA and HFD groups were of similar compositions at the phylum and family levels, CA may have limited effects on gut microbiota in HFD-fed mice. The beneficial effects on the metabolic parameters of CA were reflected by CA's regulation of metabolism-related gene expression in the liver (including Pepck, G6Pase, and Fbp1) and the epididymal white adipose tissues (including PPARγ, C/EBPα, FABP4, FAS, Cytc, PGC-1α, PRDM16, Cidea, and COX4) of the mice. In summary, a potent preventive effect of CA on HFD-induced obesity and related metabolic syndrome was highlighted by our results, and CA could be a promising dietary component for obesity intervention.


Assuntos
Acetatos , Adiposidade , Síndrome Metabólica , Animais , Camundongos , Acetatos/farmacologia , Dieta Hiperlipídica , Suplementos Nutricionais , Glucose/metabolismo , Homeostase , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , RNA Ribossômico 16S/metabolismo
4.
Nat Commun ; 14(1): 642, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746963

RESUMO

Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.


Assuntos
Vírus da Influenza A , Microbiota , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Acetatos/farmacologia , Antivirais
5.
Brain Res ; 1805: 148270, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773926

RESUMO

Prednisone acetate (PA) has many adverse side effects despite the fact that oral administration of PA is widely administrated in the clinic. However, it is unknown whether PA can cause hippocampal long-term potentiation (LTP) impairment. Therefore, in our study, PA (5 mg/kg·d) through intragastric administration (gavage) was applied to establish a model of impaired hippocampal LTP in C57BL/6 mice, and the method was evaluated by comparing with another method to establish LTP impairment through subcutaneous injection of corticosterone (CORT, 50 mg/kg·d). First, our results showed PA caused a more significant decrease in population spike (PS, %) after high-frequency stimulation (HFS) than CORT, demonstrating PA induced impairment of hippocampal LTP more successfully than CORT. Second, PA caused poorer performance of memory than CORT. Third, PA caused more serious lesions and loss of the granule cell in the dentate gyrus than CORT. Finally, PA caused lower levels of glutamic acid (Glu), N-methyl-d-aspartate receptors (NMDARs) and gamma-aminobutyric acid (GABA) than CORT. All in all, PA (5 mg/kg·d) through intragastric administration (gavage) induced LTP impairment in the hippocampus more successfully than CORT. The neuronal lesions in the dentate gyrus and the consequent decrease of Glu and NMDARs (especially NMDAR2A) may be the cause of LTP impairment.


Assuntos
Hipocampo , Potenciação de Longa Duração , Camundongos , Animais , Prednisona/farmacologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Acetatos/farmacologia , Estimulação Elétrica
6.
J Ethnopharmacol ; 306: 116176, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36682600

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua A. Juss (Meliaceae) is used in Brazilian folk medicine to alleviate fatigue and emotional stress and improve memory. Previous studies from our laboratory reported that an ethyl-acetate fraction (EAF) of T. catigua that was given before cerebral ischemia in vivo prevented memory loss and reduced oxidative stress and neuroinflammation. Despite the value of these findings of a neuroprotective effect of T. catigua, treatment that was given immediately before or immediately after ischemia limits its clinical relevance. Thus, unknown is whether T. catigua possesses a specific time window of efficacy (TWE) when administered postischemia. AIM OF THE STUDY: Given continuity to previous studies, we investigated whether an EAF of T. catigua maintains its neuroprotective properties if treatment begins at different time windows of efficacy after ischemia. We also evaluated, for the first time, whether T. catigua possesses neuroplasticity/neurotrophic properties. MATERIAL AND METHODS: Rats were subjected to transient global brain ischemia (TGCI) and then given a single dose of the EAF (400 mg/kg) or vehicle (1 ml/kg) orally 1, 4, or 6 h postischemia. The levels of protein PCG, GSH, and GSSG, and activity of SOD and CAT were assayed as markers of oxidative stress on the day after ischemia. In another experiment, naive rats underwent spatial learning training in a radial maze task and then subjected to TGCI. Delayed treatment with the EAF began 4 or 6 h later and continued for 7 days. Retrograde memory performance was assessed 10, 17, and 24 days postischemia. Afterward, brains were examined for neurodegeneration and neuronal dendritic morphology in the hippocampus and cerebral cortex. Another group received the EAF at 4 h of reperfusion, and 4 days later their brains were examined for GFAP and Iba-1 immunoreactivity. Lastly, ischemic rats received the EAF 4 h after ischemia and neural plasticity-related proteins, BDNF, SYN, PSD 95, and NeuN were measured in the hippocampus 7 and 14 days after ischemia. RESULTS: A single EAF administration 1, 4, or 6 h postischemia alleviated oxidative stress that was caused by ischemia, expressed as a reduction of the amount of the PCG and GSSG, normalization of the GSH/GSSG ratio, and the restoration of SOD activity. Ischemia caused the persistent loss of memory (i.e., amnesia), an outcome that was consistently ameliorated by treatment with the EAF that was initiated 4 or 6 h postischemia. The 4 h delay in EAF treatment positively impacted dendritic morphology in neurons that survived ischemia. TGCI reduced BDNF, SYN, PSD-95, and NeuN protein levels in the hippocampus and cerebral cortex. The EAF normalized SYN and PSD-95 protein levels. Ischemia-induced neurodegeneration and glial cell activation were not prevented by EAF treatment. CONCLUSION: The present study corroborates prior data that demonstrated the neuroprotective potential of T. catigua and extends these data by showing that the delayed administration of EAF postischemia effectively prevented memory impairment and decreased oxidative stress, dendritic deterioration, and synaptic protein loss within a TWE that ranged from 1 to 6 h. This specific TWE in preclinical research may have clinical relevance by suggesting the possible utility of this plant for the development of neuroprotective strategies in the setting of ischemic brain diseases. Another innovative finding of the present study was the possible neurotrophic/neuroplastic properties of T. catigua.


Assuntos
Isquemia Encefálica , Meliaceae , Fármacos Neuroprotetores , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Extratos Vegetais/farmacologia , Isquemia Encefálica/tratamento farmacológico , Estresse Oxidativo , Infarto Cerebral/tratamento farmacológico , Hipocampo , Transtornos da Memória/tratamento farmacológico , Acetatos/farmacologia , Superóxido Dismutase/metabolismo , Plasticidade Neuronal , Fármacos Neuroprotetores/farmacologia
7.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614212

RESUMO

Short-chain fatty acids as well as their bacterial producers are of increasing interest in inflammatory bowel diseases. Although less studied compared to butyrate, acetate might also be of interest as it may be less toxic to epithelial cells, stimulate butyrate-producing bacteria by cross-feeding, and have anti-inflammatory and barrier-protective properties. Moreover, one of the causative factors of the probiotic potency of Saccharomyces cerevisae var. boulardii is thought to be its high acetate production. Therefore, the objective was to preclinically assess the effects of high acetate concentrations on inflammation and barrier integrity in organoid-based monolayer cultures from ulcerative colitis patients. Confluent organoid-derived colonic epithelial monolayers (n = 10) were exposed to basolateral inflammatory stimulation or control medium. After 24 h, high acetate or control medium was administered apically for an additional 48 h. Changes in TEER were measured after 48 h. Expression levels of barrier genes and inflammatory markers were determined by qPCR. Pro-inflammatory proteins in the supernatant were quantified using the MSD platform. Increased epithelial resistance was observed with high acetate administration in both inflamed and non-inflamed conditions, together with decreased expression levels of IL8 and TNFα and CLDN1. Upon high acetate administration to inflamed monolayers, upregulation of HIF1α, MUC2, and MKI67, and a decrease of the majority of pro-inflammatory cytokines was observed. In our patient-derived human epithelial cell culture model, a protective effect of high acetate administration on epithelial resistance, barrier gene expression, and inflammatory protein production was observed. These findings open up new possibilities for acetate-mediated management of barrier defects and inflammation in IBD.


Assuntos
Colite Ulcerativa , Colite , Humanos , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Butiratos/farmacologia , Acetatos/farmacologia , Acetatos/metabolismo , Organoides/metabolismo , Colite/metabolismo
8.
Bioresour Technol ; 371: 128589, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36627086

RESUMO

Anaerobic fermentation is a promising method for waste activated sludge (WAS) treatment, but ineffective solubilization and hydrolysis limit its application. The current study examined the function of sodium sulfite (SDS) in potassium permanganate (PP)-conditioned WAS fermentation for short-chain fatty acids (SCFAs) biosynthesis. The presence of SDS in the PP system (PP/SDS) reduced the positive effects of PP on total SCFAs yield (2755 versus 3471 mg COD/L), while effectively increasing the proportion of acetate (from 41 to 81 %). Not only did SDS decrease the promoting effects of PP on WAS solubilization and hydrolysis efficiency by 5-42 %, it also shifted microbial metabolic pathways to favor acetate production. In addition, the amino acid metabolism with acetate as end product was enhanced. Moreover, PP/SDS inhibited methanogenesis, resulting in an accumulation of acetate in high quantities. Thus, the current study a provided insight and direction for effective WAS treatment with acetate-enriched SCFAs production.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Esgotos/química , Anaerobiose , Acetatos/farmacologia , Sulfitos/farmacologia , Concentração de Íons de Hidrogênio
9.
Exp Appl Acarol ; 89(1): 45-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635606

RESUMO

Exogenous application of methyl jasmonate (MeJA) could activate plant defense response against the two-spotted spider mite (TSSM), Tetranychus urticae Koch, in different plants. However, whether MeJA can also serve as an elicitor in cassava (Manihot esculenta Crantz) remains unknown. In this study, induced defense responses were investigated in TSSM-resistant cassava variety C1115 and TSSM-susceptible cassava variety KU50 when applied with MeJA. The performance of TSSM feeding on cassava plants that were pre-treated with various concentrations of MeJA was first evaluated. Subsequently, the activities of antioxidative enzymes (superoxide dismutase and catalase), detoxification enzymes (glutathione S-transferase, cytochrome P450 and carboxylesterase) and digestive enzymes (protease, amylase and invertase) in TSSM were analyzed at days 1, 2, 4 and 8 post-feeding. The results showed that MeJA treatment can induce cassava defense responses to TSSM in terms of reducing egg production and adult longevity as well as slowing development and prolonging the egg stage. Noticeably, C1115 exhibited stronger inhibition of TSSM development and reproduction than KU50. In addition, the activities of all the tested enzymes were induced in both C1115 and KU50, the most in C1115. We conclude that exogenous methyl jasmonate can induce cassava defense responses and enhance resistance to TSSM.


Assuntos
Manihot , Tetranychidae , Animais , Manihot/fisiologia , Tetranychidae/fisiologia , Antioxidantes , Acetatos/farmacologia , Verduras
10.
Reprod Toxicol ; 115: 102-110, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535557

RESUMO

Withania frutescens was used previously in traditherapy against poisoning, gastric ulceration, and dysentery treatments. Because no previous studies reporting on its therapeutic effects on male reproductive system and fertility disorders, this study aims to examine its effect on lead induced testicular damages as well as sperm count and hormonal status in rats. The present study is performed to determine their phytochemical compositions using GC-MS analysis, their antioxidant and anti-inflammatory activities in-vitro using spectrophotometry and then to estimate testosterone levels, sperm count, histopathological features, as well as spermatogenesis (TDI) and spermiogenesis (SPI) indices. The experiment is conducted for three months using four groups (Group A: control rats; Group B: exposed rats to lead-acetate; Group C: exposed rats to lead-acetate and 200 mg/kg of W. frutescens extract; Group D: treated rats with 200 mg/kg of W. frutescens extract). The obtained results show a total of 10 identified components from GC-MS analysis. Whereas a total phenolic content of 63.23 ± 3.82 GAE/g of extract, 25.16 ± 1.21 µg/mL of anti-free radical activity, and reducing power of 163.19 ± 6.01 µg/mL. A high anti-inflammatory activity is determined by hemolysis inhibition (IC50 =12.71 ± 1.06 µg/mL) and protein denaturation inhibition (IC50 =6.8 ± 1.23 µg/mL). Besides, lead exposure causes histological alterations in testis and decreases serum testosterone level, sperm count, and TDI and SPI indices. W. frutescens treated and co-treated animals showed no toxic effects throughout the experiment. However, it is found to improve testosterone level, increase sperm count, attenuate the testicular histopathological effect of lead, and increase TDI and SPI. These findings . these findings suggest that W. frutescens is a better source of bioactive compounds, which play an effective role against lead testicular damages. Furthermore, this natural extract can be utilized potentially in pharmaceutical and medicinal applications.


Assuntos
Testículo , Withania , Masculino , Animais , Ratos , Contagem de Espermatozoides , Sementes , Espermatozoides , Antioxidantes/farmacologia , Testosterona , Extratos Vegetais/toxicidade , Acetatos/farmacologia , Estresse Oxidativo
11.
J Biochem Mol Toxicol ; 37(3): e23275, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36550699

RESUMO

Exposure to lead (Pb) is associated with serious health problems including hepatorenal toxicity. Apigenin is a natural-sourced flavonoid with promising antioxidant and anti-inflammatory effects. In this research, we investigated the potential protective role of apigenin against lead acetate (PbAc)-induced hepatorenal damage. Thus, this experiment studied the exposure of male Wistar Albino rats to apigenin and/or PbAc and their effects in comparison to the control rats. Apigenin administration decreased the levels of Pb and prevented the histopathological deformations in liver and kidney tissues following PbAc exposure. This was confirmed by the normalized levels of liver and kidney function markers. Additionally, apigenin inhibited significantly oxidative reactions through upregulating Nrf2 and HO-1, and activating their downstreamed antioxidants accompanied by a marked depletion of pro-oxidants. Moreover, apigenin decreased the elevated pro-inflammatory cytokines and inhibited cell loss in liver and kidney tissues in response to PbAc intoxication in both tissues. The obtained results demonstrated that apigenin could be used to attenuate the molecular, biochemical, and histological alterations associated with Pb exposure due to its potent antioxidant, anti-inflammatory, and antiapoptotic effects.


Assuntos
Antioxidantes , Estresse Oxidativo , Animais , Ratos , Masculino , Antioxidantes/farmacologia , Chumbo/toxicidade , Apigenina/farmacologia , Ratos Wistar , Fígado/metabolismo , Anti-Inflamatórios/farmacologia , Acetatos/farmacologia
12.
Pathol Res Pract ; 241: 154272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525850

RESUMO

Quinones are naturally or synthetically occurring secondary metabolites that have various bio-dynamics, highlighting their antitumor potential. This has been explored through their selective cytotoxicity, and studies in medicinal chemistry about the relation between biological activity versus chemical structure may lead to the solution of the toxicity problems associated with quinones. In this context, the antitumor effect of a synthetic naphthoquinone, named Ethyl 2-(1,4-Dioxo-1,4-Dihydronaphthalen-2-Ylamino) Acetate, was tested using mice transplanted with Ehrlich ascitic tumor as an experimental model. The acute toxicity test was performed using 30 mice that received the aminoquinone at doses of 100, 200, 300, and 600 mg/kg. After evaluation of the clinical findings in the spontaneous activity tests, the LD50 calculation for the test substance showed low levels of toxicity at doses lower than 244.11 ± 23.29 mg/kg. Thus, three experimental groups were established, where animals transplanted with tumor cells received NaCl vehicle solution (control, n = 6), and the others were treated with 71.7 mg/kg of Methotrexate (n = 6) or 20 mg/kg of Aminoquinone (n = 6). All administrations were intraperitoneal, in a single dose. Three days after the implantation of the tumor cells the animals were weighed daily and evaluated for tumor biometry and development. The treatments occurred five days after the implantation of the tumor cells and were extended for 7 more days. At the end of the 12-day experimental period, all animals were euthanized for biochemical and histopathological analyses of the tumors and vital organs. The spontaneous activity test showed that the amount of responses associated with the nervous system tends to increase with the increase in dosage, highlighting the excitatory effect on the central nervous system in almost all dosages employed, followed by depressant activities on this system. There was a significant tumor reduction, both in animals treated with methotrexate (71.7 %) and in those treated with aminoquinone (91.6 %) in the control group. There was no significant difference in tumor volume between the animals treated with aminoquinone or methotrexate. The histopathological analysis revealed that in both treatments there were fewer mitoses in the tumor mass compared to the control group. However, there was apparent toxicity to the liver, heart, and left kidney in the treatment with methotrexate compared to aminoquinone. The significant capacity for tumor reduction presented by aminoquinone allows pointing it as a promising alternative for the development of a more efficient drug to control tumor development, being necessary for the development of new studies to deepen the knowledge about its mechanisms of action.


Assuntos
Carcinoma de Ehrlich , Metotrexato , Camundongos , Animais , Metotrexato/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Coração , Fígado/patologia , Acetatos/farmacologia , Acetatos/uso terapêutico
13.
Plant Physiol Biochem ; 194: 664-673, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563572

RESUMO

In this study, the effects of methyl jasmonate (MeJA) and sodium chloride (NaCl) treatments on the resveratrol biosynthesis and physiology of peanuts during germination were investigated. The results showed that MeJA (150 µM) and NaCl (150 mM) treatments significantly promoted resveratrol biosynthesis in germinated peanuts. MeJA and NaCl treatments promoted resveratrol accumulation by regulating the activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) and their gene expression levels in cotyledons and non-cotyledons. In addition, both MeJA and NaCl treatments inhibited peanut sprout growth, as evidenced by shorter sprout length, increased malondialdehyde content, and accumulation of reactive oxygen species in cotyledons and non-cotyledons. Both treatments' germinated peanuts responded to the environmental stimuli by raising the activities of antioxidant enzymes and controlling the levels of their gene' expression. Meanwhile, MeJA and NaCl treatments promoted Ca2+ aggregation in the root tips. Therefore, it can be deduced that Ca2+ may help improve the plant's resistance to adversity. In conclusion, treatment with MeJA (150 µM) or NaCl (150 mM) during germination is an effective way to enrich the resveratrol content of peanuts. Germinated peanuts enhance adaptation to the external environment by promoting resveratrol biosynthesis and enhancing antioxidant systems.


Assuntos
Antioxidantes , Arachis , Resveratrol/farmacologia , Antioxidantes/metabolismo , Arachis/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
14.
Pharmacol Res ; 186: 106536, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36332810

RESUMO

Adrenergic ß2-agonists represent a mainstay in asthma management. Their chronic use has been associated with decreased bronchoprotection and rebound hyperresponsiveness. Here we investigate on the possible therapeutic advantage of a pharmacological association of ß2-agonists with montelukast, a highly selective leukotriene receptor antagonist, in modulating bronchial reactivity and controlling asthma features. The study has been conducted in vitro and in vivo and also takes advantage of the synthesis of a salt that gave us the possibility to simultaneously administer in vivo formoterol and montelukast (MFS). In vitro studies demonstrate that montelukast (1) preserves ß2-agonist response in isolated bronchi by preventing homologous ß2-adrenoceptor desensitization; (2) reduces desensitization by modulating ß2-receptor translocation in bronchial epithelial cells. In vivo studies demonstrate that sensitized mice receiving formoterol or montelukast display a significant reduction in airway hyperresponsiveness, but the ß2-agonist relaxing response is still impaired. Allergen challenge causes ß2 heterologous desensitization that is further increased by treatment in vivo with formoterol. Conversely MFS not only inhibits airway hyperresponsiveness but it rescues the ß2-agonist response. Histological analysis confirms the functional data, demonstrating an enhanced therapeutic efficiency of MSF in controlling also pulmonary metaplasia and lung inflammation. MFS is efficacious also when sensitized mice received the drug by local administration. In conclusion, the data obtained evidenced a therapeutic advantage in the association of ß2-agonists with montelukast in the control of asthma-like features and a better rescue bronchodilation response to ß2-agonists.


Assuntos
Agonistas Adrenérgicos beta , Asma , Camundongos , Animais , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Agonistas Adrenérgicos beta/uso terapêutico , Asma/tratamento farmacológico , Acetatos/farmacologia , Acetatos/uso terapêutico
15.
J Neuroinflammation ; 19(1): 265, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309753

RESUMO

Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.


Assuntos
Encefalopatias , Nascimento Prematuro , Quinolinas , Recém-Nascido , Humanos , Feminino , Masculino , Animais , Camundongos , Substância Cinzenta , Nascimento Prematuro/tratamento farmacológico , Acetatos/uso terapêutico , Acetatos/farmacologia , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico
16.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232340

RESUMO

Short-chain fatty acids (SCFAs) are potent immune modulators present in the gingival crevicular fluid. It is therefore likely that SCFAs exert a role in periodontal health and disease. To better understand how SCFAs can module inflammation, we screened acetic acid, propionic acid, and butyric acid for their potential ability to lower the inflammatory response of macrophages, gingival fibroblasts, and oral epithelial cells in vitro. To this end, RAW 264.7 and primary macrophages were exposed to LPSs from Porphyromonas gingivalis (P. gingivalis) with and without the SCFAs. Moreover, gingival fibroblasts and HSC2 oral epithelial cells were exposed to IL1ß and TNFα with and without the SCFAs. We report here that butyrate was effective in reducing the lipopolysaccharide (LPS)-induced expression of IL6 and chemokine (C-X-C motif) ligand 2 (CXCL2) in the RAW 264.7 and primary macrophages. Butyrate also reduced the IL1ß and TNFα-induced expression of IL8, chemokine (C-X-C motif) ligand 1 (CXCL1), and CXCL2 in gingival fibroblasts. Likewise, butyrate lowered the induced expression of CXCL1 and CXCL2, but not IL8, in HSC2 cells. Butyrate further caused a reduction of p65 nuclear translocation in RAW 264.7 macrophages, gingival fibroblasts, and HSC2 cells. Propionate and acetate partially lowered the inflammatory response in vitro but did not reach the level of significance. These findings suggest that not only macrophages, but also gingival fibroblasts and oral epithelial cells are susceptive to the anti-inflammatory activity of butyrate.


Assuntos
Propionatos , Fator de Necrose Tumoral alfa , Acetatos/farmacologia , Anti-Inflamatórios/farmacologia , Ácido Butírico/farmacologia , Quimiocina CXCL1 , Quimiocina CXCL2 , Ácidos Graxos Voláteis/metabolismo , Interleucina-6 , Lipopolissacarídeos/farmacologia , Propionatos/farmacologia
17.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232995

RESUMO

Acetate is widely used as a dialysate buffer to avoid the precipitation of bicarbonate salts. However, even at low concentrations that wouldn't surpass the metabolic capacity of the Krebs tricarboxylic acid (TCA) cycle, other metabolic routes are activated, leading to undesirable clinical consequences by poorly understood mechanisms. This study aims to add information that could biologically explain the clinical improvements found in patients using citrate dialysate. A unicentric, cross-over, prospective targeted metabolomics study was designed to analyze the differences between two dialysates, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Fifteen metabolites were studied to investigate changes induced in the TCA cycle, glycolysis, anaerobic metabolism, ketone bodies, and triglyceride and aminoacidic metabolism. Twenty-one patients completed the study. Citrate increased during the dialysis sessions when CD was used, without surpassing normal values. Other differences found in the next TCA cycle steps showed an increased substrate accumulation when using AD. While lactate decreased, pyruvate remained stable, and ketogenesis was boosted during dialysis. Acetylcarnitine and myo-inositol were reduced during dialysis, while glycerol remained constant. Lastly, glutamate and glutarate decreased due to the inhibition of amino acidic degradation. This study raises new hypotheses that need further investigation to understand better the biochemical processes that dialysis and the different dialysate buffers induce in the patient's metabolism.


Assuntos
Ácido Cítrico , Soluções para Diálise , Acetatos/farmacologia , Acetilcarnitina , Bicarbonatos/farmacologia , Citratos/farmacologia , Ciclo do Ácido Cítrico , Soluções para Diálise/efeitos adversos , Glutamatos , Glutaratos , Glicerol , Humanos , Inositol , Corpos Cetônicos , Lactatos , Estudos Prospectivos , Ácido Pirúvico , Diálise Renal/efeitos adversos , Sais , Triglicerídeos
18.
Biotechnol Lett ; 44(11): 1323-1336, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100779

RESUMO

OBJECTIVES: The present study aimed to explore the eliciting effects of increasing concentrations (50, 100, and 200 µM) of methyl jasmonate (MeJA). We cultivated actively proliferating buds of Phoenix dactylifera L. cv. Barhee in a temporary immersion system and we monitored the bioactive compound accumulation after 7 days of culture. METHODS: Total phenolic (TPC) and flavonoid (TFC) contents were determined by high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR), and radical scavenging activity using DPPH and ABTS assays. We also explored the activity of phenylpropanoid pathway enzymes, namely phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL) and polyphenol oxidase (PPO). RESULTS: Our results revealed that MeJA treatment induced oxidative stress, and at the same time increased the activity of related defense enzymes in a dose-dependent manner. Exogenous application of MeJA at 200 µM increased ROS (two fold), hydrogen peroxide (3.7 fold), nitric oxide (14 fold), MDA (6.3 fold), superoxide dismutase (5.9 fold), catalase (4.4 fold) and guaiacol peroxidase (3.87 fold). Furthermore, the results demonstrated that 200 µM MeJA treatment enhanced the activities of PAL (3.65 fold), TAL (4.35 fold), PPO (threefold) and increased TPC (twofold) and TFC (1.75 fold) contents in buds cultures higher than the control. HPLC analysis showed that buds cultures exposed to 200 µM MeJA accumulated maximum amount of catechin (11 fold), 4-hydroxybenzoic acid (1.48 fold), caffeic acid (2.5 fold) and p-coumaric acid (1.76 fold) and demonstrate antioxidant capacity with the lowest DPPH (114.5 µg ml-1) and ABTS (90.2 µg ml-1) IC50 values on day 7 of culture as compared to the control. The MeJA in the culture medium directly reduced cell viability in a dose dependent manner up to 35% with the highest concentration. CONCLUSION: The results of this study has revealed, for the first time, that MeJA offers a promising potential for the production of phenolic compound in Phoenix dactylifera L. buds.


Assuntos
Antioxidantes , Phoeniceae , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Phoeniceae/metabolismo , Estresse Nitrosativo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Acetatos/farmacologia , Fenilalanina Amônia-Liase/metabolismo , Fenóis/metabolismo , Estresse Oxidativo
19.
J Agric Food Chem ; 70(37): 11792-11803, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095120

RESUMO

Odorant-binding protein (OBP) is a potential target for developing insect behavior control agents due to its properties in transporting semiochemicals. In this study, 12 novel jasmonic acid (JA) derivatives were rationally designed and synthesized based on the binding features between Acyrthosiphon pisum OBP3 (ApisOBP3) and compound D1 [(E)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-oxo-2-pentylcyclopentyl)acetate] with a binding affinity (Kd) of 26.79 µM. Most novel JA derivatives displayed better binding affinities than D1 (Kd = 1-26 µM). Among them, compound 6b [(E)-3,7-dimethylocta-2,6-dien-1-yl-2-((Z)-3-((acryloyloxy)imino)-2-pentylcyclopentyl)acetate] is the most promising compound with an excellent Kd of 1.33 µM and a significant repellent activity with repellent rates of 50-60% against A. pisum and Myzus persicae. Both hydrophobic and electrostatic interactions were found to contribute significantly to the binding of 6b to ApisOBP3. This study provides significant guidance for the rational design and efficient identification of novel aphid repellents based on aphid OBPs.


Assuntos
Afídeos , Repelentes de Insetos , Receptores Odorantes , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Afídeos/química , Ciclopentanos , Proteínas de Insetos/metabolismo , Oxilipinas , Feromônios/metabolismo , Receptores Odorantes/metabolismo
20.
Antiviral Res ; 207: 105422, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36170912

RESUMO

Genotypic testing for letermovir (LMV) resistance was performed by Sanger sequencing of cytomegalovirus terminase gene UL56 (codons 202-412) in 1165 diagnostic specimens, disclosing 36 sequence variants among 173 (14.8%) of the specimens, including one or more LMV resistance mutations in 134 specimens. Codon 325 mutations (C325Y/F/W/R) were the most common (108 specimens), followed by those at codon 369 (R369 S/G/T/K, 13 specimens) and V236M (11 specimens). Mutations V231L, N232Y, Q234R, L257F and V363I were detected in 1-3 specimens each. Combinations of codon 325 mutation and those at codons 236 or 369 were found in 6 specimens. Eleven novel sequence variants were phenotyped, validating Q234R, V363I and R369K as conferring 2- to 5-fold increased LMV 50% inhibitory concentrations (EC50). These findings indicate that UL56 codon 325 mutations conferring >3000-fold LMV EC50 are detected much more frequently in clinical practice than those conferring lower grade resistance, and suggest that a single step mutation to absolute LMV resistance is an ongoing concern in its therapeutic use.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Acetatos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Citomegalovirus/genética , Infecções por Citomegalovirus/tratamento farmacológico , Farmacorresistência Viral/genética , Humanos , Mutação , Quinazolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...