Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.192
Filtrar
1.
Chemosphere ; 286(Pt 3): 131852, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34416594

RESUMO

Two representative DNA adducts from acrylamide exposure, N7-(2-carbamoyl-2-hydroxyethyl) guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl) adenine (N3-GA-Ade), are important long-term exposure biomarkers for evaluating genotoxicity of acrylamide. Catechins as natural antioxidants present in tea possess multiple health benefits, and may also have the potential to protect against acrylamide-induced DNA damage. The current study developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of N7-GA-Gua and N3-GA-Ade in tissues and urine. The validated UHPLC-MS/MS method showed high sensitivity, with limit of detection and limit of quantification ranging 0.2-0.8 and 0.5-1.5 ng/mL, respectively, and achieved qualified precision (RSD<14.0%) and spiking recovery (87.2%-110.0%) with elution within 6 min, which was suitable for the analysis of the two DNA adducts in different matrices. The levels of N7-GA-Gua and N3-GA-Ade ranged 0.9-11.9 and 0.6-3.5 µg/g creatinine in human urine samples, respectively. To investigate the interventional effects of catechins on the two DNA adducts from acrylamide exposure, rats were supplemented with three types of catechins (tea polyphenols, epigallocatechin gallate, and epicatechin) 30 min before administration with acrylamide. Our results showed that catechins effectively inhibited the formation of DNA adducts from acrylamide exposure in both urine and tissues of rats. Among three catechins, epicatechin performed the best inhibitory effect. The current study provided evidence for the chemo-preventive effect of catechins, indicating that dietary supplement of catechins may contribute to health protection against exposure to acrylamide.


Assuntos
Catequina , Adutos de DNA , Acrilamida/toxicidade , Animais , Biomarcadores , Catequina/farmacologia , Ratos , Espectrometria de Massas em Tandem
2.
Food Chem ; 371: 131154, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598120

RESUMO

The influence of acidity regulators and buffers on the formation of acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) in French fries and the underlying mechanism were evaluated. Prior to frying, the potato strips were dipped in the corresponding acidity regulator solutions or buffers for 30 min at room temperature. The results showed that acids inhibited AA formation, but increased 5-HMF levels. The AA level decreased and 5-HMF level increased with decreasing pH of potato strips. Interestingly, increasing concentration of acid radical ions resulted in AA increase and 5-HMF decrease, which was opposite to the acidification effect of citric acid and acetic acid. Both pH and acid radical ion were important factors for AA and 5-HMF formation. Moreover, acidity regulators might impact AA formation by acting on the generation of methylglyoxal (MGO) and glyoxal (GO) and impact 5-HMF formation by acting on the generation of 3-deoxyglucosone (3-DG).


Assuntos
Acrilamida , Solanum tuberosum , Furaldeído/análogos & derivados , Temperatura Alta , Concentração de Íons de Hidrogênio , Íons
3.
Food Chem ; 367: 130657, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388631

RESUMO

Non-centrifugal cane sugar (NCS) is the second most important Colombian agribusiness in social importance. However, the sugar cane industry is facing some challenges caused by the controversial nutritional and safety attributes of NCS. Some Colombian NCS producers employ natural mucilages as clarifiers; but the uncontrolled application of these components has caused a risk of extinction in the mucilage source plants. Other producers employ acrylamide as a clarifier. Health consequences have generated concerns from the consumers and demanded control from the food authorities. Efforts are being made to develop a standard manufacturing methodology to increase NCS productivity and improve its quality, hygiene, and storability. The application of better clarifiers, which provide the best clarifying activity and minimize the toxicity while conserving NCS's natural attributes, is one of the outstanding challenges as well. This study is a proposal which looks for sustainable, natural, nontoxic, and economical clarifiers for the Colombian NCS producers.


Assuntos
Saccharum , Açúcares , Acrilamida , Polissacarídeos
4.
Food Chem ; 368: 130731, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34404003

RESUMO

Rapadura is an artisanal candy obtained from concentrated sugarcane juice. In this study, a differentiation between South American rapadura producers has been tried using a Kurtosis-based projection pursuit analysis (kPPA) concerning essential minerals, acrylamide, moisture contents, pH, and color. These parameters revealed significant inter- and intra-country differences. Based on the employed measurements, a multivariate exploration with kPPA extracted information from rapadura even though it is a very artisanal product and was effective in separating classes, especially Brazilian and Ecuadorian rapadura, where principal component analysis failed. Moreover, ellipse confidence regions showed significant differences between non-organic and organic rapadura from Colombia and Peru in granulated form. From a chemometric point of view, the application of kPPA can be used in cases when other metrics (as based on the variance) fail and can be useful in the exploratory analysis of complex multivariate chemical data.


Assuntos
Acrilamida , Saccharum , Brasil , Minerais , Análise de Componente Principal
5.
Food Chem ; 368: 130816, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34416489

RESUMO

Acrylamide (AA), a potential carcinogen, is commonly formed in foods rich in carbohydrates at high heat. It is known that AA-induced mitochondrial dysfunction is responsible for its toxicity. Previously we found AA exposure increased miR-27a-5p expression in livers of SD rats. Here, the regulation mechanism of miR-27a-5p in mitochondrial dysfunction was investigated in rat liver cell lines (IAR20) and SD rats. The results showed that the overexpressed miR-27a-5p contributes to modulating mitochondrial dysfunction and Btf3 is identified as its target gene. The knockdown of Btf3 increases the cleaved PARP1 level and the phosphorylation of ATM and p53, which results in mitochondria-dependent apoptosis. Therefore, the miR-27a-5p-Btf3-ATM-p53 axis might play a vital role in the promotion of AA-induced cell apoptosis through disrupting mitochondrial structure and function. This would provide a potential target for the assessment and intervention of AA toxicity.


Assuntos
MicroRNAs , Acrilamida/toxicidade , Animais , Apoptose , MicroRNAs/genética , Mitocôndrias/genética , Ratos , Ratos Sprague-Dawley
6.
Food Chem ; 370: 131271, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788952

RESUMO

5-Hydroxymethylfurfural (HMF) and acrylamide (AA) are neoformed food contaminants. In this study, the simultaneous inhibition of HMF and AA by histidine (His) were investigated. In the asparagine (Asn)/glucose (Glc) model system, the inhibition ratios of HMF and AA were in the range of 28-58% and 0-71% when 20 mmol/L His was added. In cookies, His also exhibited excellent inhibition effects on both HMF and AA. At the His concentration of 2% (w/w), the inhibition ratios of HMF and AA reached 90% and 65%. Additionally, the sensory quality of cookies was not affected significantly. Qualitative results suggested that His inhibited the formation of AA by the competitive reaction between His and Asn for Glc, as well as directly eliminated the formed HMF and AA via the carbonyl-amine reaction and the Michael addition, respectively. This study revealed that His could be applied for the inhibition of HMF and AA in heated food.


Assuntos
Acrilamida , Histidina , Asparagina , Furaldeído/análogos & derivados
7.
J Agric Food Chem ; 69(46): 13762-13771, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34751566

RESUMO

Acrylamide (AA) is widely present in heat-processed carbohydrate-rich food, cigarette smoke, and the environment. Prolonged exposure to AA may cause central nervous system damage. However, few epidemiologic studies assessed the association between hemoglobin adduct levels of AA or its metabolite glycidamide (GA) and depressive symptoms. We included 3595 US adults (≥18 years) from the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Data for hemoglobin adduct levels from AA and GA (HbAA and HbGA) were used as a measure of internal dose. Depressive symptom data were from mental health questionnaires and measured by nine-item Patient Health Questionnaire (PHQ-9) scores. Results of logistic regression models showed a positive association between HbAA in quartile 4 and depressive symptoms with ORs and 95% CI of 2.47 (1.29, 4.77) [ORcontinuous HbAA and 95% CI: 1.006 (1.000, 1.013)], but an inverse association was detected in quartiles 2 and 3 of HbGA/HbAA [0.62 (0.38, 0.99) and 0.54 (0.32, 0.92), respectively]. Especially, an association between HbAA and depressive symptoms was strengthened in smokers, in age 18-39 and 40-59 years and BMI 25-30 kg/m2 groups. Further explorations are needed to study the found associations between HbAA, HbGA, and depressive symptoms.


Assuntos
Acrilamida , Depressão , Adulto , Depressão/epidemiologia , Compostos de Epóxi , Hemoglobinas , Humanos , Inquéritos Nutricionais , Inquéritos e Questionários
8.
Sensors (Basel) ; 21(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34770608

RESUMO

Highly stable, small-sized and evenly distributed solid mercury nanoparticles capped with ibuprofen (Ibu-HgNPs) were prepared via reduction with hydrazine and capped with ibuprofen as a stabilizing agent. Characterization of Ibu-HgNPs was carried out by UV-Vis spectrophotometry and transmission electron microscopy (TEM). The prepared Ibu-HgNPs were immobilized onto a glassy carbon electrode (GCE) and used for the first time as the sensing element for voltammetric determination of low concentrations of acrylamide (AA) in aqueous solutions. Various parameters such as the type of supporting electrolyte, voltammetric mode, frequency, deposition time, stirring rate and initial potential were optimized to obtain the highest peak current of AA. The sensor delivered the best results in combination with the square wave voltammetry (SWV) mode, with good repeatability (relative standard deviation (RSD) of 25 repetitions was 1.4% for 1000 ppb AA). The study further revealed that Ibu-HgNPs are strongly adhered to GCE and hence do not contaminate the environment even after several runs. The newly developed AA sensor provides linear calibration dependence in the range of 100-1300 ppb with an R2 value of 0.996 and limit of detection (LOD) of 8.5 ppb. Negligible interference was confirmed from several organic compounds, cations and anions. The developed sensor was successfully applied for AA determination in various types of environmental real water samples to prove its practical usefulness and applicability.


Assuntos
Mercúrio , Nanopartículas , Acrilamida , Técnicas Eletroquímicas , Eletrodos , Ibuprofeno
9.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625024

RESUMO

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Assuntos
Glândulas Seminais , Transcriptoma , Acrilamida/toxicidade , Animais , Citocinas , Feminino , Masculino , Camundongos , Reprodução/genética
10.
Chem Biol Interact ; 349: 109682, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610338

RESUMO

Although the toxicity of acrylamide (ACR) has been extensively investigated in different experimental models, its perturbations to multiple nodes of the cellular signaling network have not been systematically associated. In this study, changes at different omics layers in ACR exposed Saccharomyces cerevisiae cells were monitored using a multi-omics strategy. The results of the analysis highlighted the impairment of oxidative-reductive balance, energy metabolism, lipid metabolism, nucleotide metabolism, and ribosome function in yeast cells. Response to acute ACR damage, glutathione synthesis was upregulated, the process of protein degradation was accelerated, and the autophagy flux was initiated. Meanwhile, yeast upregulates gene expression levels of enzymes in carbohydrate metabolism and speeds up the oxidation process of fatty acids to compensate for energy depletion. Importantly, the multi-omics strategy captures features that have rarely been addressed in previous studies on the toxicology of ACR, including blocked de novo nucleotide synthesis, decreased levels of metabolic enzyme cofactors thiamine and D-biotin, increased intracellular concentrations of neurotoxic N-methyl d-aspartic acid and l-glutamic acid, and release of death mediators ceramide. The ACR perturbation network constructed in this work and the discovery of new damage features provide a theoretical basis for subsequent point-to-point toxicological studies.


Assuntos
Acrilamida/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Oxirredução
11.
J Agric Food Chem ; 69(43): 12837-12852, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694121

RESUMO

Acrylamide (AA) is a heat-induced toxicant, which can cause severe damage to health. In the present study, SD rats were used to investigate the potential therapeutic effects of allicin dietary supplementation in the rats with AA-induced intestinal injury. The elevated expression of occludin, claudin-1, zonula occludens-1 (ZO-1), mucin 2, and mucin 3 indicated that oral allicin alleviated the intestinal epithelial barrier breakage induced by AA, compared with the AA-treated group. In the gut microbiota, Bacteroides, Escherichia_Shigella, Dubosiella, and Alloprevotella related to the synthesis of short-chain fatty acids (SCFAs) were negatively affected by AA, while allicin regulated cascade response of the microbiota-SCFAs signaling to reverse the reduction of acetic acid and propionic acid by AA treatment. Allicin also dramatically down-regulated the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), NF-κB signaling pathway proteins, and proinflammatory cytokines by promoting the production of SCFAs in AA-treated rats. Allicin relieved the intestinal barrier injury and inflammation caused by AA as evidenced by the regulation cascade response of the microbiota-SCFAs-TLR4/MyD88/NF-κB signaling pathway. In conclusion, allicin is highly effective in the treatment and prevention of AA-induced intestinal injury.


Assuntos
Microbiota , Fator 88 de Diferenciação Mieloide , Acrilamida/toxicidade , Animais , Dissulfetos , Ácidos Graxos Voláteis , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Ácidos Sulfínicos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Chem Biol Interact ; 350: 109701, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656557

RESUMO

Acrylamide (AA) is classified as a probable human carcinogen and is ubiquitous in foods processed at high temperatures. The carcinogenicity of AA has been attributed to its active metabolite, glycidamide (GA). Both AA and GA can spontaneously or enzymatically conjugate with glutathione (GSH) to form their corresponding GSH conjugates. Profiling AA-glutathione conjugate (AA-GSH) and GA-glutathione conjugates (2 isomers: GA2-GSH and GA3-GSH) in serum would better illustrate AA detoxification compared with urinary metabolite analysis. However, the lack of AA-, GA2, and GA3-GSH study remains a critical data gap. Our study aimed to investigate the toxicokinetics of AA-, GA2-and GA3-GSH in Sprague Dawley rats treated with 0.1 mg/kg, 1.0 mg/kg, or 5.0 mg/kg AA. Blood samples were collected for LC-MS/MS analysis of the GSH conjugate products. Within 24 h of treatment, we observed rapid formation, elimination, and linear kinetics of AA-, GA2-and GA3-GSH. The ∑GA-GSH AUC/AA-GSH AUC ratios were 0.14-0.29, similar to ∑GA/AA AUC in serum but different from ∑GA/AA-derived urinary mercapturic acids in rodents. Our analysis of AA- and GA-GSHs values represents direct detoxification of AA and GA in vivo. This study advances our understanding of sex and inter-species differences in AA detoxification and may refine the existing kinetic models for a more relevant risk extrapolation.


Assuntos
Acrilamida/toxicidade , Glutationa/análogos & derivados , Acrilamida/química , Acrilamida/metabolismo , Animais , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Compostos de Epóxi/toxicidade , Feminino , Glutationa/metabolismo , Glutationa/toxicidade , Humanos , Masculino , Redes e Vias Metabólicas , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Toxicocinética
13.
J Hazard Mater ; 416: 125714, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492774

RESUMO

In the present work, the removal of fast sulphon black (FSB) dye from water was executed by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel (Ch-cl-poly(IA-co-AAm)-ZrW NCH). The Ch-cl-poly(IA-co-AAm)-ZrW NCH was fabricated proficiently by microwave-induced sol-gel/copolymrization method. The zirconium tungstate (ZrW) photocatalyst was prepared by co-precipitation method using sodium tungstate and zirconium oxychloride in ratio (2:1). The polymeric hydrogel part has been used to support the ZrW, and it acted as an adsorbent for adsorptive removal of FSB dye. The band gap for nanocomposite hydrogel was found about 4.18 eV by using Tauc equation. The Ch-cl-poly(IA-co-AAm)-ZrW NCH was characterized by various techniques as FTIR (Fourier-transform infrared spectroscopy), X-ray diffraction (XRD), transmittance electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The adsorptional-photocatalytic remediation experiment of FSB dye was optimized for reaction parameters as FSB dye and Ch-cl-poly(IA-co-AAm)-ZrW NCH concentration, and pH. The maximum percentage removal for FSB dye was observed at 92.66% in 120 min under adsorptional-photocatalysis condition.


Assuntos
Quitina , Nanocompostos , Acrilamida , Concentração de Íons de Hidrogênio , Nanogéis , Espectroscopia de Infravermelho com Transformada de Fourier , Succinatos , Compostos de Tungstênio , Zircônio
14.
J Agric Food Chem ; 69(40): 12012-12020, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586797

RESUMO

Acrylamide has been reported as an important dietary risk factor from carbohydrate-rich processing food. However, systemic biological effects on the serum metabolomics induced by acrylamide have poorly been understood. In the present study, we evaluated the metabolic profiles in a rat serum after exposure to acrylamide using ultrahigh-performance liquid chromatography combined with quadrupole-orbitrap high-resolution mass spectrometry. The serum biochemical parameters of the treated and control groups were also determined using an automatic biochemical analyzer. Compared with the control group, 10 metabolites were significantly upregulated, including citric acid, d-(-)-fructose, gluconic acid, l-ascorbic acid 2-sulfate, 2-hydroxycinnamic acid, valine, l-phenylalanine, prolylleucine, succinic acid, and cholic acid, while 5 metabolites were significantly downregulated, including 3-hydroxybutyric acid, 4-oxoproline, 2,6-xylidine, 4-phenyl-3-buten-2-one, and N-ethyl-N-methylcathinone in the serum of 4-week-old rats exposed to acrylamide in the high-dose group (all P < 0.05). Importantly, acrylamide exposure affected metabolites mainly involved in the citrate cycle, valine, leucine, and isoleucine biosyntheses, phenylalanine, tyrosine and tryptophan biosyntheses, and pyruvate metabolism. These results suggested that exposure to acrylamide in rats exhibited marked systemic metabolic changes and affected the cardiovascular system. This study will provide a theoretical basis for exploring the toxic mechanism and will contribute to the diagnosis and prevention of acrylamide-induced cardiovascular toxicity.


Assuntos
Acrilamida , Sistema Cardiovascular , Acrilamida/toxicidade , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Metaboloma , Metabolômica , Ratos
15.
Carbohydr Polym ; 270: 118356, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364601

RESUMO

A cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bio-adsorbent (CASA) was prepared by grafting copolymerization, and used to adsorb Cr(III) from leather wastewater. The SEM, XRD, FTIR, and XPS results showed that CASA contains many spherical particles and functional groups such as NH2, CO, and HSO3. The adsorption experiments revealed that CASA presented excellent adsorption performance for Cr(III) (274.69 mg/g of max adsorption capacity) from high-salinity wastewater, which was much better than other reported adsorbents with different structures. Meanwhile, adsorption equilibrium could be reached within 10 min due to the introduction of abundant sulfonic acid groups on its surface. In addition, the adsorption process followed the Langmuir adsorption isotherm, and the experimental data conformed to the pseudo-second-order kinetics model. Moreover, the main adsorption mechanisms include chelation, electrostatic interactions, and cation exchange, which provide an important theoretical basis for the removal of toxic inorganic pollutants from leather wastewater.


Assuntos
Acrilamida/química , Celulose/química , Cromo/isolamento & purificação , Ácidos Sulfônicos/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Cátions , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletroquímica de Varredura/métodos , Poli G/química , Polímeros/química , Salinidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Eletricidade Estática , Água/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
16.
J Agric Food Chem ; 69(32): 9419-9433, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34374283

RESUMO

Usage of sprouted grains is an increasing trend in thermally processed foods. Sprouting alters the composition of sugars and amino acids, which are Maillard reaction precursors. Free asparagine, total free amino acids, and sugars were monitored during sprouting and yeast and sourdough fermentations. Acrylamide and 5-hydroxymethylfurfural (HMF) were analyzed in heated samples. The asparagine concentration decreased up to 40% after 24-36 h of sprouting, except for buckwheat, and then increased to the initial concentration after 48 h and several folds after 72 h. The increased amount of reducing sugars after sprouting caused higher acrylamide and HMF formation even if the asparagine concentration was lower. Acrylamide and HMF formation decreased after fermentation of sprouted wholemeal because sugars and asparagine were consumed by yeast. A pH drop of 3 units by sourdough fermentation decreased acrylamide formation but increased HMF formation. Results indicated that sprouted cereal products should be produced under controlled conditions to be used in heated foods.


Assuntos
Fagopyrum , Hordeum , Acrilamida , Asparagina , Avena , Fermentação , Furaldeído/análogos & derivados , Calefação , Temperatura Alta , Reação de Maillard , Secale , Açúcares , Triticum
17.
Environ Health ; 20(1): 98, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461916

RESUMO

BACKGROUND: Acrylamide (AA) is a toxicant to humans, but the association between AA exposure and the risk of non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, our objective is to examine the cross-sectional association between AA exposure and the risk of NAFLD in American adults. METHODS: A total of 3234 individuals who took part in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2016 were enrolled in the study. NAFLD was diagnosed by the U.S. Fatty Liver Index. Multivariable logistic regression models were applied to estimate the association between AA and NAFLD in the whole group and the non-smoking group. RESULTS: We discovered that in the whole group, serum hemoglobin adducts of AA (HbAA) were negatively associated with the prevalence of NAFLD after adjustment for various covariables (P for trend < 0.001). Compared with individuals in the lowest HbAA quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) in the highest HbAA quartiles were 0.61 (0.46-0.81) and 0.57 (0.36-0.88) in the whole group and the non-smoking group, respectively. In contrast, HbGA/HbAA showed a significantly positive correlation with the prevalence of NAFLD in both groups (P for trend < 0.001). In addition, HbGA was not significantly associated with NAFLD in the whole group or the non-smoking group. CONCLUSIONS: HbAA is negatively associated with NAFLD whereas HbGA/HbAA is positively associated with NAFLD in adults in the U.S. Further studies are needed to clarify these relationships.


Assuntos
Acrilamida/metabolismo , Hemoglobinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inquéritos Nutricionais , Prevalência , Estados Unidos/epidemiologia
18.
ACS Appl Mater Interfaces ; 13(33): 39142-39156, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433244

RESUMO

The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.


Assuntos
Acrilamida/química , Materiais Biomiméticos/química , Colágeno/química , Dopamina/química , Osso e Ossos , Cálcio/química , Cálcio/metabolismo , Fosfatos de Cálcio/química , Reagentes para Ligações Cruzadas/química , Cristalização , Durapatita/química , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Polimerização , Medicina Regenerativa , Propriedades de Superfície , Engenharia Tecidual
19.
Bioresour Technol ; 339: 125599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303095

RESUMO

L-asparaginase shows great potential as a food enzyme to reduce acrylamide formation in fried and baked products. But for food applications, enzymes must be stable at high temperatures and have higher catalytic efficiency. These desirable characteristics are conferred by the immobilization of enzymes on a suitable matrix. The present study aimed to immobilize the L-asparaginase enzyme on magnetic nanoparticles to reduce acrylamide content in the food system. Immobilized preparations were characterized using SEM, TEM, FTIR, UV-spectrometry, and XRD diffraction analyses. These nanoparticles enhanced the thermal stability of the enzyme up to four-fold at 70 °C compared to the free enzyme. Kinetic parameters exhibited an increase in Vmax, Km, and catalytic efficiency by ~ 38% than the free counterpart. The immobilized preparations were reusable for up to five cycles. Moreover, their application in the pre-treatment coupled with blanching of potato chips led to a significant reduction (greater than 95%) of acrylamide formation.


Assuntos
Asparaginase , Nanopartículas de Magnetita , Acrilamida , Asparaginase/metabolismo , Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Cinética
20.
Biomed Pharmacother ; 139: 111660, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243628

RESUMO

The current study investigates the biochemical and histopathological effects of taxifolin on acrylamide-induced kidney damage. A 50 mg/kg dose of taxifolin was administered via oral gavage to the taxifolin + acrylamide (TACR) group (n-6) consisting of male albino Wistar rats. The same volume of distilled water used as solvent was orally administered to the acrylamide (ACR) (n-6) and healthy (HG) (n-6) groups. One hour after the administration of taxifolin and distilled water, a 20 mg/kg dose of acrylamide was orally administered to the TACR and ACR groups. This procedure was repeated once a day for 30 days. In the acrylamide group, malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß) levels were found to be high, total glutathione (tGSH) levels were found to be low, and there was severe interstitial haemorrhage; additionally, tubular necrosis, tubular atrophy, leucocyte infiltration, and glomerular structures with expanded Bowman's space were observed. In the taxifolin group, where the increase of MDA, IL-1ß, and TNF-α and the decrease of tGSH associated with acrylamide have been prevented, any histopathological finding other than mild necrosis and atrophic tubules was not found. This suggests that Taxifolin would prevent kidney tissue from acrylamide-induced damage would be effective in treating acrylamide-induced nephrotoxicity, inhibiting the increase of MDA, IL-1ß and TNF-α, and decreasing tGSH associated with acrylamide.


Assuntos
Acrilamida/farmacologia , Inflamação/tratamento farmacológico , Nefropatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Glutationa/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...