Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.138
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 868-883, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621894

RESUMO

Scorpio is a valuable Chinese animal medicine commonly used in clinical practice in China. It is the main drug in the treatment of liver wind internal movement caused by various reasons throughout the history of traditional Chinese medicine(TCM), with the effects of relieving wind and spasm, dredging collaterals, relieving pain, and eliminating toxin and mass. Scorpio is poisonous and often used as medicine after processing. There are records of its processing as early as the Song Dynasty. Afterward, there were more than 15 processing methods, including frying with vinegar, neat processing, and stir-frying. After processing, the fishy smell could be removed to correct the taste, and the toxicity could be reduced, which was beneficial to clinical application. At present, the main reported components in Scorpio are protein polypeptides, alkaloids, and lipids, with many pharmacological effects, such as anti-cancer, anti-coagulation, anti-thrombosis, anti-atherosclerosis, and anti-bacteria. In this study, the historical evolution of processing, chemical constituents, and pharmacological action of Scorpio were discussed in order to provide references for the related research on Scorpio.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Animais , Evolução Química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Alcaloides/farmacologia
2.
Huan Jing Ke Xue ; 45(5): 2748-2756, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629538

RESUMO

It is a new approach to identify legal or illegal use of morphine through information on municipal wastewater. However, the sources of morphine in wastewater are complex, and distinguishing the contribution of different sources has become a key issue. A total of 262 influent samples from 61 representative wastewater treatment plants in a typical city were collected from October 2022 to March 2023. The concentrations of morphine, codeine, thebaine, papaverine, noscapine, and monoacetylmorphine were analyzed in wastewater and poppy straws. Combined with the proportion of alkaloids in poppy straws, the source analysis of alkaloids in wastewater was analyzed using the ratio method and positive matrix factorization model (PMF). Only five alkaloids were detected in wastewater, and monoacetylmorphine, a metabolite of heroin, was not detected. The concentrations of morphine and codeine were significantly higher than those of noscapine, papaverine, and thebaine. By constructing the ratios of codeine/(morphine + codeine) and noscapine/(noscapine + codeine), the source of poppy straw could be qualitatively distinguished. The PMF results showed that three sources of morphine for medical use, poppy straw, and codeine contributed 44.9%, 43.7%, and 9.4%, respectively. The different sources varied in these months due to the COVID-19 and influenza A outbreaks, in which the use of drugs containing poppy straws and codeine was the main source, whereas the use of morphine analgesics remained relatively stable. Inventory analysis further demonstrated the reliability of the source contributions from the PMF model, and morphine was not abused in this city.


Assuntos
Alcaloides , Noscapina , Papaver , Morfina/análise , Águas Residuárias , Papaverina/análise , Tebaína/análise , Noscapina/análise , Reprodutibilidade dos Testes , Codeína/análise , Derivados da Morfina/análise , Alcaloides/análise
3.
J Agric Food Chem ; 72(15): 8423-8433, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565327

RESUMO

Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.


Assuntos
Alcaloides , Benzodioxóis , Inseticidas , Piperidinas , Alcamidas Poli-Insaturadas , Trealase , Animais , Larva , Spodoptera , Trealase/genética , Inseticidas/farmacologia
4.
Neuromolecular Med ; 26(1): 13, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619671

RESUMO

Normal tension glaucoma (NTG) is a progressive neurodegenerative disease in glaucoma families. Typical glaucoma develops because of increased intraocular pressure (IOP), whereas NTG develops despite normal IOP. As a subtype of open-angle glaucoma, NTG is characterized by retinal ganglion cell (RGC) degeneration, gradual loss of axons, and injury to the optic nerve. The relationship between glutamate excitotoxicity and oxidative stress has elicited great interest in NTG studies. We recently reported that suppressing collapsin response mediator protein 2 (CRMP2) phosphorylation in S522A CRMP2 mutant (CRMP2 KIKI) mice inhibited RGC death in NTG mouse models. This study evaluated the impact of the natural compounds huperzine A (HupA) and naringenin (NAR), which have therapeutic effects against glutamate excitotoxicity and oxidative stress, on inhibiting CMRP2 phosphorylation in mice intravitreally injected with N-methyl-D-aspartate (NMDA) and GLAST mutant mice. Results of the study demonstrated that HupA and NAR significantly reduced RGC degeneration and thinning of the inner retinal layer, and inhibited the elevated CRMP2 phosphorylation. These treatments protected against glutamate excitotoxicity and suppressed oxidative stress, which could provide insight into developing new effective therapeutic strategies for NTG.


Assuntos
Alcaloides , Glaucoma de Ângulo Aberto , Glaucoma , Glaucoma de Baixa Tensão , Doenças Neurodegenerativas , Sesquiterpenos , Animais , Camundongos , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Ácido Glutâmico/toxicidade , Fosforilação , Células Ganglionares da Retina , Semaforina-3A
5.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
6.
Se Pu ; 42(4): 311-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566420

RESUMO

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Dióxido de Enxofre/análise , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Íons , Medicina Tradicional Chinesa
7.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
8.
BMC Complement Med Ther ; 24(1): 139, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575897

RESUMO

BACKGROUND: Catharanthus roseus, a Madagascar native flowering plant, is known for its glossy leaves and vibrant flowers, and its medicinal significance due to its alkaloid compounds. As a source of vinblastine and vincristine used in chemotherapy, Catharanthus roseus is also employed in traditional medicine with its flower and stalks in dried form. Its toxicity can lead to various adverse effects. We report a case of Catharanthus roseus juice toxicity presenting as acute cholangitis, emphasizing the importance of healthcare providers obtaining detailed herbal supplement histories. CASE PRESENTATION: A 65-year-old woman presented with abdominal pain, fever, anorexia, and lower limb numbness. Initial diagnosis of acute cholangitis was considered, but imaging excluded common bile duct stones. Further investigation revealed a history of ingesting Catharanthus roseus juice for neck pain. Laboratory findings showed leukocytosis, elevated liver enzymes, and hyperbilirubinemia. The patient developed gastric ulcers, possibly due to alkaloids in Catharanthus roseus. No bacterial growth was noted in blood cultures. The patient recovered after discontinuing the herbal extract. CONCLUSIONS: Catharanthus roseus toxicity can manifest as fever, hepatotoxicity with cholestatic jaundice, and gastric ulcers, mimicking acute cholangitis. Awareness of herbal supplement use and potential toxicities is crucial for healthcare providers to ensure prompt diagnosis and appropriate management. This case emphasizes the need for public awareness regarding the possible toxicity of therapeutic herbs and the importance of comprehensive patient histories in healthcare settings.


Assuntos
Alcaloides , Catharanthus , Colangite , Úlcera Gástrica , Humanos , Idoso , Folhas de Planta
9.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582586

RESUMO

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Assuntos
Alcaloides , Aspergillus fumigatus , Neopreno , Tabaco , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides/farmacologia
10.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
11.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611869

RESUMO

The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b']diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Carbolinas , Indóis , Indolizinas , Poríferos , Compostos de Amônio Quaternário , Animais , Camundongos , Alcaloides/farmacologia , Bandagens
12.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611934

RESUMO

Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiperazine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have garnered significant attention in the fields of biology and pharmacology. The investigation into the pharmacological potential of this class of alkaloids has unveiled promising applications in drug discovery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strategies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based on the formation mechanism of the spiro-C atom.


Assuntos
Alcaloides , Fermentação , Aspergillus fumigatus , Descoberta de Drogas
13.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605285

RESUMO

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Assuntos
Alcaloides , Plantas Medicinais , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinais/metabolismo , Cromatografia Líquida/métodos , Lignina/metabolismo , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Alcaloides/metabolismo , Amido/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
14.
PLoS One ; 19(4): e0298201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626042

RESUMO

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Assuntos
Alcaloides , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/química
15.
PLoS One ; 19(4): e0301660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626146

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS: We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real­time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS: The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION: In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.


Assuntos
Alcaloides , Colite Ulcerativa , Colite , Rauwolfia , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Lipopolissacarídeos/farmacologia , Colite/metabolismo , Polissacarídeos/metabolismo , Alcaloides/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
16.
Sci Rep ; 14(1): 6000, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472367

RESUMO

Oriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.


Assuntos
Alcaloides , Benzilisoquinolinas , Nanopartículas Metálicas , Nanopartículas , Papaver , Papaver/genética , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Morfina/metabolismo , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Expressão Gênica
17.
J Integr Plant Biol ; 66(3): 510-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441295

RESUMO

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Alcaloides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo
18.
J Am Chem Soc ; 146(11): 7616-7627, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446772

RESUMO

Natural products and their analogues are significant sources of therapeutic lead compounds. However, synthetic strategies for generating large collections of these molecules remain a significant challenge. The most difficult step in their synthesis is the design of a common intermediate that can be easily transformed into natural products belonging to different families. This study demonstrates the evolution of synthetic tactics designed to assemble the functionalized piperidines present in indole alkaloids from a common intermediate. More importantly, we also report a previously unknown Ir- and Er-catalyzed dehydrogenative spirocyclization reaction that enables direct access to spirocyclic oxindole alkaloids. As a practical application, the asymmetric total syntheses of 29 natural alkaloids belonging to different families were accomplished by following a uniform synthetic route. The proposed methodology extends the capability of the iridium-catalyzed dehydrogenative coupling reaction to the realm of indole-alkaloid synthesis and provides new opportunities for the efficient preparation of natural product-like molecules.


Assuntos
Alcaloides , Produtos Biológicos , Humanos , Estereoisomerismo , Alcaloides Indólicos , Oxindóis
19.
STAR Protoc ; 5(1): 102924, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430518

RESUMO

In addition to proteins, microRNAs, and lipids, plant-derived exosome-like nanovesicles (ENVs) are also enriched with host plant bioactives. Both curcumin and piperine are water insoluble, lack bioavailability, and are extracted by non-ecofriendly solvents. Herein, we present an eco-friendly protocol for co-isolating both curcumin and piperine in the form of hybrid ENVs. We describe steps for sample pre-processing, combined homogenization of plant materials, filtration, and differential centrifugation. We then detail procedures for polyethylene glycol-based fusion and precipitation of hybrid ENVs. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.


Assuntos
Alcaloides , Curcuma , Curcumina , Piperidinas , Alcamidas Poli-Insaturadas , Polietilenoglicóis , Benzodioxóis
20.
Colloids Surf B Biointerfaces ; 236: 113827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430830

RESUMO

In this study, cross-linked carboxymethyl cellulose/chitosan submicron particles were employed to facilitate the stabilization of Pickering emulsion. The polymer particles were prepared using the polyelectrolyte self-assembly method in conjunction with isocyanide based multicomponent reactions and the characteristics were obtained using: nuclear magnetic resonance, Fourier-transform infrared spectroscopy and dynamic light scattering. Atomic force microscopy revealed the heterogeneous structure of the resulting submicron particles with domains of 20-30 nm in size. The average diameter was found to be in the range of 229-378 nm and they were found to be suitable for the fabrication of oil/water Pickering emulsion when proceeded via the homogenization method followed by sonication. The results obtained revealed that carboxymethyl cellulose/chitosan particles significantly stabilized the droplets at the oil/water interface. Even at low particle concentrations of 0.3 g/L (which is close to that of low molecular weight surfactants) stable Pickering emulsions have been obtained. Additionally, the resulting emulsions showed a high level of stability with regard to changes in pH, temperature and ionic strength. The natural alkaloid piperine was used as a model compound to load the resulting particles, which possessed encapsulation efficiency of 90.6±0.4%. Furthermore, the in vitro release profile of piperine from the Pickering emulsion revealed a much-controlled release in both acidic and neutral media as compared to the unformulated piperine. Additional findings in this work revealed important information on the application of carboxymethyl cellulose/chitosan submicron particles as Pickering stabilizers for creation of new delivery systems.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Quitosana/química , Emulsões/química , Celulose/química , Carboximetilcelulose Sódica , Polímeros , Emulsificantes , Tamanho da Partícula , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...