Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.957
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891787

RESUMO

Antimicrobial resistance is a menace to public health on a global scale. In this regard, nanomaterials exhibiting antimicrobial properties represent a promising solution. Both metal and metal oxide nanomaterials are suitable candidates, even though their mechanisms of action vary. Multiple antimicrobial mechanisms can occur simultaneously or independently; this includes either direct contact with the pathogens, nanomaterial uptake, oxidative stress, ion release, or any of their combinations. However, due to their specific properties and more particularly fast settling, existing methods to study the antimicrobial properties of nanoparticles have not been specifically adapted in some cases. The development of methodologies that can assess the antimicrobial properties of metallic nanomaterials accurately is necessary. A cost-effective methodology with a straightforward set-up that enables the easy and quick assessment of the antimicrobial properties of metal nanoparticles with high accuracy has been developed. The methodology is also capable of confirming whether the killing mechanism involves ionic diffusion. Finally, Aloe Vera gel showed good properties for use as a medium for the development of antimicrobial ointment.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Nanocompostos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Preparações de Plantas/farmacologia , Preparações de Plantas/química , Aloe/química
2.
Sci Rep ; 14(1): 14085, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890467

RESUMO

This study evaluated Aloe vera extract as a green inhibitor to prevent corrosion in seawater environments. A. vera extract was produced by maceration with methanol-water at room temperature. Electrochemical techniques were used to evaluate the corrosion inhibitor effectiveness of the A. vera extract. The morphology of the corrosion products was analyzed by FE-SEM equipped with EDS and AFM. FT-IR and LCMS characterized the functional and structural groups in this extract. The electrochemical measurements show that A. vera extract could effectively reduce the corrosion of API 5L steel in seawater environments. Inhibition efficiency (IE) increases with increasing concentration. Optimal corrosion inhibition efficiency of around 83.75% (PDP) and 88.60% (EIS) was obtained by adding 300 mg L-1 of extract at 310 K. Furthermore, the higher the concentration of A. vera extract, the greater the activation energy (Ea), with the highest activation energy being 48.24 kJ mol-1 for the concentration of 300 mg L-1. Conversely, increasing the temperature and exposure duration reduces the corrosion inhibition efficiency (IE) values; the best exposure period was 30 min with 88.34% IE by a concentration of 300 mg L-1 at 300 K. This corrosion inhibition is achieved by the adsorption process of A. vera bioactive on metal surfaces with a mixed inhibitor through a physisorption-chemisorption mechanism. This finding was confirmed by the smoother surface morphology of the steel treated with A. vera extract than without. This unveiling investigation found that A. vera extract has the potential to be an environmentally friendly corrosion inhibitor in the seawater environment.


Assuntos
Aloe , Extratos Vegetais , Água do Mar , Aço , Corrosão , Água do Mar/química , Aço/química , Aloe/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
IET Nanobiotechnol ; 2024: 6024411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863973

RESUMO

Global concerns due to the negative impacts of untreatable wounds, as well as the growing population of these patients, emphasize the critical need for advancements in the wound healing materials and techniques. Nanotechnology offers encouraging avenues for improving wound healing process. In this context, nanoparticles (NPs) and certain natural materials, including chitosan (CS) and aloe vera (AV), have demonstrated the potential to promote healing effects. The objective of this investigation is to assess the effect of novel fabricated nanocomposite gel containing CS, AV, and zinc oxide NPs (ZnO NPs) on the wound healing process. The ZnO NPs were synthesized and characterized by X-ray diffraction and electron microscopy. Then, CS/AV gel with different ratios was prepared and loaded with ZnO NPs. The obtained formulations were characterized in vitro based on an antimicrobial study, and the best formulations were used for the animal study to assess their wound healing effects in 21 days. The ZnO NPs were produced with an average 33 nm particle size and exhibited rod shape morphology. Prepared gels were homogenous with good spreadability, and CS/AV/ZnO NPs formulations showed higher antimicrobial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The wound healing findings showed significant wound area reduction in the CS/AV/ZnO NPs group compared to negative control at day 21. Histopathological assessment revealed the advantageous impact of this formulation across various stages of the wound healing process, including collagen deposition (CS/AV/ZnO NPs (2 : 1), 76.6 ± 3.3 compared to negative control, 46.2 ± 3.7) and epitheliogenesis (CS/AV/ZnO NPs (2 : 1), 3 ± 0.9 compared to negative control, 0.8 ± 0.8). CS/AV gel-loaded ZnO NPs showed significant effectiveness in wound healing and would be suggested as a promising formulation in the wound healing process. Further assessments are warranted to ensure the robustness of our findings.


Assuntos
Aloe , Antibacterianos , Quitosana , Cicatrização , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Aloe/química , Antibacterianos/química , Antibacterianos/farmacologia , Ratos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Ratos Wistar
4.
Food Chem Toxicol ; 189: 114726, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759713

RESUMO

Despite its popularity along with many proposed therapeutic applications, the safety profile of Aloe vera gel beverages remains unsettled. The putative toxicology concern has focused on the hydroxyanthraquinone derivatives (HADs) found in the latex portion of the Aloe leaf. Despite harvesting and processing designed to eliminate or significantly reduce these compounds, certain HADs, such as aloin, may be present and have been associated with carcinogenicity in non-decolorized whole leaf extract containing approximately 6400 ppm aloin A and 71 ppm aloin-emodin. Sprague Dawley rats had free access to drinking water or a commercially and widely available Aloe vera gel beverage (Forever Living Products) prepared from the inner leaves of Aloe barbadensis Miller containing 3.43 ppm total aloin for 90 days. Under the conditions of the study and based on the toxicological endpoints evaluated, there were no adverse test substance-related findings, including altered thyroid hormones. No histologic differences or histopathological changes were detected in the multiple tissues and organs examined. The Ki-67 proliferation assay demonstrated no increased cell proliferation in the liver, lungs, kidneys, or urinary bladder, which might have been attributed to the dietary administration of the Aloe vera gel beverage via drinking water for 90 days. These data lend increasing confidence regarding the safety of appropriately processed Aloe vera gel beverages, such as the beverage tested in this study.


Assuntos
Aloe , Folhas de Planta , Ratos Sprague-Dawley , Animais , Folhas de Planta/química , Aloe/química , Masculino , Ratos , Feminino , Administração Oral , Extratos Vegetais/toxicidade , Bebidas , Peso Corporal/efeitos dos fármacos , Emodina/análogos & derivados , Preparações de Plantas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38791734

RESUMO

The consumption of unsafe water in rural areas is a real public health problem in developing countries. This situation mainly affects children under five years of age and causes several deaths and many cases of malnutrition every year. The objective of this study was to evaluate and optimize the capacity of four local plant extracts in the potabilization of unsafe water. Thus, Moringa oleifera and Boscia senegalensis seeds, or Aloe vera and Opuntia ficus-indica mucilages were prepared in a solution and applied during a jar test as biocoagulants and bioflocculants on three raw water samples of 82.3 NTU, 549.8 NTU and 796.9 NTU. After treatment results showed that 0.9 g/L of Moringa biocoagulant or 1 g/L of Boscia biocoagulant applied with 0.4 mL of Aloe vera bioflocculant or 0.6 mL of Opuntia ficus-indica bioflocculant reduced the turbidity of each water sample to values less than 5 NTU after only 15 min of decanting. Moreover, the sanitary quality of the water treated by these different extracts showed a perfect conformity of the physicochemical and microbiological parameters with the standards of acceptability in drinking water decreed by the World Health Organization. Thus, the application of these local plant extracts has made it possible to considerably improve the quality of unsafe water in record time. Their popularization could be an alternative in the fight against malnutrition related to the consumption of unsafe water, especially in rural areas.


Assuntos
Aloe , Países em Desenvolvimento , Desnutrição , Extratos Vegetais , Purificação da Água , Extratos Vegetais/química , Humanos , Aloe/química , Purificação da Água/métodos , Moringa oleifera/química , Abastecimento de Água , Opuntia/química , Água Potável/química , Moringa/química
6.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732168

RESUMO

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Assuntos
Testes de Sensibilidade Microbiana , Timol , Timol/farmacologia , Timol/química , Iodo/química , Iodo/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Aloe/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Composição de Medicamentos/métodos
7.
PLoS One ; 19(5): e0304156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776324

RESUMO

Saliva substitutes with enhanced dentin remineralization properties were expected to help manage caries progression in patients with xerostomia. This in vitro study examined the rheological properties and remineralization action of experimental saliva substitutes containing propolis extract and aloe vera extract on demineralized dentin. Four experimental saliva substitutes were formulated with varying concentrations of propolis extract (P) and aloe vera extract (A) were prepared. A commercial saliva substitute (Biotene Oral Rinse) was used as a commercial comparison. The rheological properties and viscosity of these materials were measured using a strain-controlled rheometer (n = 3). The remineralizing actions of saliva substitutes on demineralized dentin after 2 weeks were determined using ATR-FTIR and SEM-EDX (n = 8). The results were expressed as a percentage increase in the mineral-to-matrix ratio. Biotene demonstrated a significantly higher viscosity (13.5 mPa·s) than experimental saliva substitutes (p<0.05). The addition of extracts increased the viscosity of the saliva substitutes from 4.7 mPa·s to 5.2 mPa·s. All formulations showed minimal shear thinning behavior, which was the viscoelastic properties of natural saliva. The formulation containing 5 wt% of propolis exhibited the highest increase in the median mineral-to-matrix ratio (25.48%). The SEM-EDX analysis revealed substantial mineral precipitation in demineralized dentin, especially in formulations with 5 wt% or 2.5 wt% of propolis. The effect of the aloe vera extract was minimal. The addition of propolis and aloe vera extracts increased the viscosity of saliva substitutes. the addition of propolis for 2.5 or 5 wt% to saliva substitutes increased mineral apatite precipitation and tubule occlusion. To conclude, the saliva substitute containing propolis extract demonstrated superior remineralizing actions compared with those containing only aloe vera extract.


Assuntos
Aloe , Dentina , Extratos Vegetais , Própole , Reologia , Saliva Artificial , Própole/química , Própole/farmacologia , Aloe/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saliva Artificial/química , Dentina/química , Dentina/efeitos dos fármacos , Humanos , Viscosidade , Remineralização Dentária/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Biol Macromol ; 270(Pt 1): 132306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740152

RESUMO

Combining natural polysaccharides with synthetic materials improves their functional properties which are essential for designing sustained-release drug delivery systems. In this context, the Aloe vera leaf mucilage/hydrogel (ALH) was reacted with acrylic acid (AA) to synthesize a copolymerized hydrogel, i.e., ALH-grafted-Polyacrylic acid (ALH-g-PAA) through free radical copolymerization. Concentrations of the crosslinker N,N'-methylene-bis-acrylamide (MBA), and the initiator potassium persulfate (KPS) were optimized to study their effects on ALH-g-PAA swelling. The FTIR and solid-state NMR (CP/MAS 13C NMR) spectra witnessed the formation of ALH-g-PAA. Scanning electron microscopy (SEM) analysis revealed superporous nature of ALH-g-PAA. The gel fraction (%) of ALH-g-PAA was directly related to the concentrations of AA and MBA whereas the sol fraction was inversely related to the concentrations of AA and MBA. The porosity (%) of ALH-g-PAA directly depends on the concentration of AA and MBA. The ALH-g-PAA swelled admirably at pH 7.4 and insignificantly at pH 1.2. The ALH-g-PAA offered on/off switching properties at pH 7.4/1.2. The metoprolol tartrate was loaded on different formulations of ALH-g-PAA. The ALH-g-PAA showed pH, time, and swelling-dependent release of metoprolol tartrate (MT) for 24 h following the first-order kinetic and Korsmeyer-Peppas model. Haemocompatibility studies ascertained the non-thrombogenic and non-hemolytic behavior of ALH-g-PAA.


Assuntos
Aloe , Hidrogéis , Mananas , Aloe/química , Concentração de Íons de Hidrogênio , Mananas/química , Hidrogéis/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Polímeros/química , Porosidade , Resinas Acrílicas/química , Acrilatos
9.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611819

RESUMO

Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused on a novel combination based on Aloe barbadensis leaf extract and trimethylglycine for targeted AQP3 regulation in skin keratinocytes and deep skin moisturization. Firstly, a dose-finding cytotoxicity assay of the selected substances was performed with a 2,5-diphenyl-2H-tetrazolium bromide (MTT) indicator on HaCaT cells. The substances' ability to increase the amount of AQP3 in keratinocytes was evaluated in a keratinocyte cell culture by means of ELISA. Additionally, the deep skin hydration effect was confirmed in clinical research with healthy volunteers. According to the results, the maximum tolerated doses providing viability at 70% (MTDs) values for Aloe barbadensis leaf extract and trimethylglycine were 24.50% and 39.00%, respectively. Following the research and development, a complex based on Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio exhibited a good cytotoxicity profile, with an MTDs value of 37.90%. Furthermore, it was shown that the combination had a clear synergetic effect and significantly increased AQP3 by up to 380% compared to the negative control and glyceryl glucoside (p < 0.001). It was clinically confirmed that the developed shower gel containing Aloe barbadensis leaf extract and trimethylglycine safely improved skin hydration after one use and over 28 days. Thus, this novel plant-based combination has promising potential for AQP3 regulation in the skin epidermis and a role in the development of dermatological drugs for the treatment of skin xerosis and atopic-related conditions.


Assuntos
Aloe , Humanos , Aquaporina 3 , Pele , Queratinócitos , Betaína , Extratos Vegetais/farmacologia
10.
Dent Med Probl ; 61(2): 181-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652926

RESUMO

BACKGROUND: Chemical plaque control with mouthwashes as an adjunct to mechanical plaque control with a toothbrush and dental floss has been considered an effective method for controlling gingivitis. The anti-inflammatory effects of chemical plaque control benefit the oral tissues by reducing inflammation and bleeding. OBJECTIVES: The aim of the present study was to evaluate and compare the clinical efficacy of probiotic, Aloe vera, povidine-iodine, and chlorhexidine (CHX) mouthwashes in treating gingivitis patients by assessing changes in their clinical parameters. MATERIAL AND METHODS: This prospective study was conducted on 40 patients from our outpatient department, divided into 4 groups of 10 patients each: probiotic mouthwash group (group 1); herbal (Aloe vera) mouthwash group (group 2); povidone-iodine mouthwash group (group 3); and CHX mouthwash group (group 4). All participants were provided with the same type of manual toothbrush, the Pepsodent® toothpaste and a respective mouthwash for twice-daily use until the end of a 28-day observation period. Clinical parameters, such as the marginal plaque index (MPI) and bleeding on interdental brushing (BOIB), were recorded at baseline, and on the 14th and 28th day of the study period. RESULTS: All groups showed a significant decrease in the MPI and BOIB scores. The results were similar in patients who used a probiotic mouthwash and those who used a CHX mouthwash. A comparable change in the mean scores was observed among the herbal and povidone-iodine groups from baseline to day 28. CONCLUSIONS: In the treatment of chronic gingivitis patients,a probiotic mouthwash was nearly as effective as CHX in reducing the plaque and bleeding scores. It showed better results in all clinical parameters than herbal and povidone-iodine mouthwashes. Using a mouthwash along with routine tooth brushing can help in treating gingivitis and slow the progression of the periodontal disease.


Assuntos
Aloe , Clorexidina , Gengivite , Antissépticos Bucais , Povidona-Iodo , Probióticos , Humanos , Gengivite/tratamento farmacológico , Gengivite/terapia , Gengivite/prevenção & controle , Antissépticos Bucais/uso terapêutico , Probióticos/uso terapêutico , Clorexidina/uso terapêutico , Clorexidina/administração & dosagem , Feminino , Adulto , Masculino , Estudos Prospectivos , Povidona-Iodo/administração & dosagem , Povidona-Iodo/uso terapêutico , Pessoa de Meia-Idade , Adulto Jovem , Índice Periodontal , Resultado do Tratamento , Anti-Infecciosos Locais/uso terapêutico , Anti-Infecciosos Locais/administração & dosagem , Índice de Placa Dentária , Fitoterapia , Preparações de Plantas/uso terapêutico , Preparações de Plantas/administração & dosagem
11.
Int J Biol Macromol ; 267(Pt 2): 131363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583847

RESUMO

Recently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain. Copolymers were characterized by FESEM, SEM, EDS, AFM, 13C NMR, FTIR, XRD, and TGA-DTG analysis. Hydrogel exhibited a fluid absorption capacity of 4.52 ± 0.12 g per gram of polymeric dressing in simulated wound conditions. The hydrogels displayed a sustained release of drugs, demonstrating a non-Fickian diffusion mechanism. Polymer dressings revealed antibacterial, mucoadhesive, antioxidant, biocompatible and non-cytotoxic properties. Additionally, HWD displayed permeability to O2 and water vapour, yet was impermeable to microbial penetration. Overall, the findings of physiological, biochemical and drug delivery properties demonstrated the suitability of materials for wound dressing applications.


Assuntos
Aloe , Antibacterianos , Bandagens , Hidrogéis , Gomas Vegetais , Sterculia , Cicatrização , Aloe/química , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Sterculia/química , Hidrogéis/química , Hidrogéis/farmacologia , Gomas Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Animais , Polímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Liberação Controlada de Fármacos
12.
Int J Biol Macromol ; 267(Pt 2): 131541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614183

RESUMO

Developing high-performance hydrogels with anti-freeze, and antimicrobial properties is crucial for the practical application of flexible sensors. In this study, we prepared silver nanoparticles (AgNPs) with aloe polysaccharide (AP) as a reducing agent. Then, the AP/AgNPs were added to a system of polyvinyl alcohol and borax crosslinked in water/glycerol to obtain a multifunctional conductive hydrogel. The incorporated AgNPs improved the conductivity (0.39 S/m) and mechanical properties (elongation at break: 732.9 %, fracture strength: 1267.6 kPa) of the hydrogel. In addition, resultant hydrogel exhibited potential for sensing strain, temperature, and humidity. When used as a strain sensor, the hydrogel system exhibited low detection limit (0.1 %), and fast response (0.08 s). The resistance of the hydrogel decreased with an increase in the absorbed moisture content, enabling humidity detection (25-95 %) to monitor breathing status. As a temperature sensor, the hydrogel supported a wide detection range (-50 to +90 °C) and sensitivity (-30-0 °C, temperature coefficient of resistance (TCR) = -5.64 %/°C) to detect changes in the ambient temperature. This study proposes a simple method for manufacturing multifunctional hydrogel sensors, which broadens their application prospects in wearable sensing and electronic products.


Assuntos
Aloe , Hidrogéis , Nanopartículas Metálicas , Nanocompostos , Polissacarídeos , Prata , Prata/química , Nanopartículas Metálicas/química , Aloe/química , Polissacarídeos/química , Nanocompostos/química , Hidrogéis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Temperatura , Umidade , Boratos
13.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593896

RESUMO

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Assuntos
Aloe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos , Galactanos/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Aloe/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Substitutos da Gordura/química , Candida albicans/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
14.
Int J Biol Macromol ; 268(Pt 1): 131601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626833

RESUMO

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.


Assuntos
Aloe , Mananas , Pectinas , Aloe/química , Mananas/química , Pectinas/química , Água/química , Parede Celular/química , Parede Celular/efeitos dos fármacos , Salinidade , Polissacarídeos/química , Polissacarídeos/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Acetilação , Estresse Fisiológico/efeitos dos fármacos
15.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1641-1660, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621949

RESUMO

This study explored the existence forms(original constituents and metabolites) of Tiantian Capsules, Aloe, and Tiantian Capsules without Aloe in rats for the first time, aiming to clarify the contribution of Aloe to the existence form of Tiantian Capsules. Rats were administrated with corresponding drugs by gavage once a day for seven consecutive days. All urine and feces samples were collected during the seven days of administration, and blood samples were collected 0.5, 1, and 1.5 h after the last administration. UHPLC-Q-TOF-MS was employed to detect and identify the original constituents and metabolites in the samples. A total of 34, 28, and 2 original constituents and 64, 94, and 0 metabolites were identified in the samples of rats administrated with Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe, respectively. The main metabolic reactions were methylation, hydrogenation, hydroxylation, dehydroxylation, glucuronidation, and sulfation. This study clarified for the first time the existence forms and partial metabolic pathways of Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe in rats, laying a foundation for revealing their effective forms. The findings are of great significance to the research on the functioning mechanism and quality control of Aloe and Tiantian Capsules.


Assuntos
Aloe , Medicamentos de Ervas Chinesas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/metabolismo , Administração Oral , Fezes , Cápsulas
16.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633182

RESUMO

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Assuntos
Lesão Pulmonar Aguda , Aloe , Quitosana , Nanopartículas , Doenças dos Roedores , Ratos , Animais , Quitosana/química , Quitosana/farmacologia , NF-kappa B/farmacologia , Staphylococcus aureus , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Nanopartículas/química , Transdução de Sinais , Antibacterianos/farmacologia , Lesão Pulmonar Aguda/veterinária , Inflamação/veterinária , RNA Mensageiro/farmacologia
17.
Breastfeed Med ; 19(6): 445-450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529934

RESUMO

Background: To investigate the efficacy of aloe gel in reducing pain and promoting wound healing in postpartum women with nipple trauma. Method: There were 80 postpartum women who took part in this study having developed nipple trauma during breastfeeding in the obstetrics department of a tertiary grade A hospital in Suzhou from January to December 2021. Postpartum women with nipple trauma whose hospital bed numbers ranged between 15 and 33 were included in the test group, whereas those whose hospital bed numbers ranged between 35 and 53 were included in the control group. Both groups received health education and breastfeeding guidance. The control group applied lanolin cream to their nipple trauma, whereas the test group used aloe gel. We used a nipple trauma severity assessment table to determine the severity of nipple trauma in lactating women and a Visual Analogue Scale (VAS) to determine the level of nipple pain and referred to the Traditional Chinese Medicine Standard for Diagnosis and Therapeutic Efficacy for Diseases and Syndromes to determine the healing time of their wounds. Results: The test group scored 3.70 ± 1.24 and 1.65 ± 0.74 points on the VAS on the first and third days following the intervention, whereas the control group scored 4.30 ± 0.94 and 2.23 ± 1.07 points, respectively. It took 3.75 ± 1.08 days and 4.45 ± 1.15 days for the nipple pain to completely disappear in the test group and the control group, respectively. The healing period for nipple trauma was 5.28 ± 1.26 days for the test group and 6.03 ± 1.61 days for the control group. All of the aforementioned distinctions were statistically significant (p < 0.05). Conclusions: Aloe gel can significantly alleviate the pain associated with nipple trauma in lactating women, accelerate wound healing, and reduce the duration of nipple trauma.


Assuntos
Aloe , Aleitamento Materno , Géis , Lactação , Mamilos , Cicatrização , Humanos , Mamilos/lesões , Feminino , Adulto , Lactação/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Lanolina , Medição da Dor , Período Pós-Parto , Dor/tratamento farmacológico , Dor/etiologia
18.
Chem Biodivers ; 21(5): e202400245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436134

RESUMO

Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.


Assuntos
Aloe , Anti-Inflamatórios , Diabetes Mellitus Experimental , Hipoglicemiantes , Extratos Vegetais , Folhas de Planta , Estreptozocina , alfa-Amilases , Animais , Aloe/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Masculino , Dieta Hiperlipídica , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Relação Dose-Resposta a Droga , Ratos Sprague-Dawley
19.
Ulus Travma Acil Cerrahi Derg ; 30(3): 147-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506382

RESUMO

BACKGROUND: This study assessed the histopathological and oxidative effects of topical Aloe Vera (AV) on penile fractures (PF) formed experimentally in a rat model. METHODS: Forty Wistar albino rats (220-250 g) were used. The PF model was created experimentally with a number 15 lancet. Then, the rats were randomly and equally divided into five groups. In the first group (C), no incision was formed. In the second group (P), an incision was formed. In the third group (PR), the incision line was closed primarily. In the fourth group (PA), AV was locally applied onto the incision without suturing for three days. In the last group (PRA), AV was applied to the primary repair region for three days. All groups were compared to each other according to histopathological and biochemical data. RESULTS: Hyperemia-bleeding was observed to be suppressed in the PRA group compared to the other groups (p<0.001). Inflammation was observed only in Groups PR and PRA (p<0.001). Significant fibrosis was observed in the PA and PRA groups compared to the other groups (p<0.001). Superoxide Dismutase (SOD) and Glutathione (GSH) values increased in favor of Group PRA (p=0.009 and p=0.035, respectively). Total Oxidative Status (TOS) and Malondialdehyde (MDA) values decreased in favor of Group PA (p=0.036 and p=0.026, respectively). Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-1 beta (IL-1ß) levels decreased mostly in the PRA group, but these changes did not reach statistical significance (p>0.05). CONCLUSION: Topical AV application reduces tissue inflammation and oxidative stress but appears to increase the development of fibrosis after PF.


Assuntos
Aloe , Doenças do Pênis , Humanos , Masculino , Ratos , Animais , Ratos Wistar , Aloe/metabolismo , Estresse Oxidativo , Glutationa , Inflamação , Fibrose , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Malondialdeído/farmacologia
20.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542933

RESUMO

The efficacy of 23 bacterial isolates obtained from surface-sterilized stems and leaves of three medicinal plants (Aloe barbadensis Miller, Artemisia afra, and Moringa oleifera) was investigated in an endeavour to prevent the growth of Mycobacterium bovis using the cross-streak method. Endophytes were isolated by incubating sterile plant materials on nutrient agar at 30 °C for 5 days. Two isolates showing activity were subsequently utilized to produce the extracts. Whole-genome sequencing (WGC) was used to identify the isolates. Secondary metabolites produced after 7 days of growth in nutrient broth were harvested through extraction with ethyl acetate. The extracts were chemically profiled using gas chromatography-high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). NCBI BLAST search results revealed that the isolated endophytes belonged to the Pseudomonas and Enterobacter genera, based on WGC. Two endophytes, Aloe I4 and Aloe I3-I5 from Aloe barbadensis, exhibited potency based on the cross-streak method. The metabolite profiling of the selected endophytes identified 34 metabolites from Aloe I4, including ergotamine, octadecane, L-proline and 143 other metabolites including quinoline and valeramide, which inhibit microbial quorum sensing. These findings suggest that bacterial endophytes from medicinal plants, particularly Aloe barbadensis, hold promise as sources of antimycobacterial agents for human health applications.


Assuntos
Aloe , Plantas Medicinais , Humanos , Aloe/química , Endófitos , África do Sul , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...