Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.372
Filtrar
1.
Food Chem ; 366: 130579, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284187

RESUMO

This work evaluated the effect of micro- and nano-starch (MS and NS) on the gel properties of fish myofibrillar protein (MP). Both MS and NS could enhance MP gel performance in terms of breaking force, elasticity and water holding capacity (p < 0.05), with more significant effect from NS than MS. The difference between NS and MS in enhancement effect on MP gel is due to nano-size effect and different microstructures of MP/MS and MP/NS gels, with NS rather than MS contributing to the continuity of MP network. Synchrotron FTIR micro-spectroscopic images further verified that NS with large specific surface had good compatibility with MP, while MS was embedded in MP matrix with evident phase separation. Additionally, ß-sheet still dominated the secondary structure of all gels, although adding both MS and NS could change molecular interactions, such as weakening ionic bonds and hydrogen bonds, and strengthening hydrophobic interactions.


Assuntos
Carpas , Amido , Animais , Géis , Interações Hidrofóbicas e Hidrofílicas , Proteínas Musculares , Reologia , Água
2.
Food Chem ; 366: 130543, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284193

RESUMO

Differences in Mixolab measurements of dough processing were examined using, as a base, flour from pure breeding, isogenic, wheat lines carrying either the high molecular weight glutenin subunits 5 + 10 or 2 + 12. Before dough pasting, subunits 5 + 10 tend to form a stable gluten network relying mainly on disulfide bonds and hydrogen bonds, but 2 + 12 flour was prone to generating fragile protein aggregates dominated by disulfide bonds and hydrophobicity. During dough pasting, a broader protein network rich in un-extractable polymeric proteins, disulfide bonds and ß-sheets was formed in the dough with subunits 5 + 10, thus resulting in an extensive and compact protein-starch complex which was characterized by high thermal stability and low starch gelatinization, while in the dough of the 2 + 12 line, a porous protein-starch gel with fragmented protein aggregates was controlled by the combination of disulfide bonds, hydrophobicity and hydrogen bonds that facilitated the formation of antiparallel ß-sheets.


Assuntos
Farinha , Triticum , Pão , Glutens , Melhoramento Vegetal , Amido
3.
Food Chem ; 366: 130614, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304137

RESUMO

Understanding how starch constituent in frozen dough affected bread quality would be valuable for contributing to the frozen products with better quality. To elucidate the underlying mechanism, starch was fractionated from multiple freezing-thawing (F/T) treated dough and reconstituted with gluten. Results showed that F/T treatment destructed the molecular and supramolecular structures of starch, which were more severe as the F/T cycle increasing. These structural disorganizations made water molecules easier to permeate into the interior of starch granules and form hydrogen bonds with starch molecular chains, which elevated the peak, breakdown, setback and final viscosity of starch paste. In addition, F/T treatment resulted in decreased specific volume (from 1.54 to 0.90 × 103 m3/Kg) and increased hardness (from 42.98 to 52.31 N) for steamed bread. We propose the strengthened water absorption ability and accelerated intra- and inter-molecular rearrangement of starch molecules and weak stability of "starch-gluten matrices" would allow interpreting deteriorated bread quality.


Assuntos
Pão , Amido , Pão/análise , Farinha/análise , Congelamento , Glutens , Vapor
4.
Food Chem ; 366: 130609, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311231

RESUMO

Several grains such as wheat, rice, corn, oat, barley and rye are cultivated throughout the world. They are converted to variety of food products using a multitude of processing technologies to quench the growing organoleptic demands and consumers' preferences. Among them, corn, ranking third in wide consumption, is cost-effective and has long-term storability. Herein, ready-to-eat corn flours with variable starch digestion have been developed by processing at high temperature with shear using a twin screw continuous processor. The influence of processing temperature (121, 145 and 160°C) and moisture (25, 30 and 35%) has been studied. Results suggest both processing temperature and moisture modulate the rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) amounts of the flours. The presence or absence of oil in the flour further controls the starch digestion. The outcome is deemed to be helpful to design and develop healthy and palatable functional food products in addition to furthering the current market share for corn and other grains.


Assuntos
Farinha , Oryza , Digestão , Amido , Zea mays
5.
Food Chem ; 367: 130694, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359007

RESUMO

The current study focusses on investigating the impact of pulsating microwave (MW) treatment to develop an efficient wheat parboiling method through comparative assessment with conventional parboiling. Three independent variables i.e., MW power level, effective treatment time, and pulsating mode on-off combination were tried for the process optimization. Higher moisture gain was observed during pulsating MW treatment, irrespective of the power level. The optimised gelatinization was obtained at 900 W power level and 9 min treatment time with on-off combination of 30 s -120 s considering specific energy absorption, water quality and degree of gelatinization. The microwave parboiled sample showed no major difference in molecular rearrangement, surface morphology and starch deformation as compared to the conventionally parboiled (CP) samples analysed using XRD, SEM, and FTIR study, whereas slight variation in protein conformations were noticed. This technological and structural study revealed that the proposed method can effectively replace the CP method.


Assuntos
Oryza , Triticum , Culinária , Temperatura Alta , Micro-Ondas , Amido
6.
Food Chem ; 367: 130762, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390912

RESUMO

Inhibitory effects of flavonoids on starch digestibility were well known, but the structural mechanism was not clear. This study was focused on the diverse effect of quercetin and rutin on digestibility of Tartary buckwheat starch. Results showed that quercetin and rutin reduced the starch digestion by altering starch structure in bound forms and inhibiting digestive enzyme activity in free forms simultaneously, and quercetin showed a stronger effect than rutin. Molecular docking and saturation transfer difference-nuclear magnetic resonance (STD-NMR) revealed different binding site of rutin from quercetin was due to its hydroxyl and hydrogen on the glycoside structure. Rutin interacted with enzymes mainly by CH and OH on the glycoside structure which induced steric hindrance and restricted the inhibitory effect of quercetin fraction. The glycoside structure weakened inhibition of rutin on digestive enzymes in free forms rather than influence its anti-digestive effects in bound forms with starch.


Assuntos
Fagopyrum , Rutina , Sítios de Ligação , Digestão , Simulação de Acoplamento Molecular , Quercetina , Amido
7.
Food Chem ; 367: 130580, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371274

RESUMO

In order to determine the mechanisms underlying resistant starch formation, three treatments were used to prepare resistant starch from purple sweet potato. The resistant starch yield, amylose content, chain length distribution, thermal properties, and crystal structure were determined, and the results were compared with those of unmodified starch. Autoclaving, pullulanase, and pullulanase-autoclaving treatments significantly increased the resistant starch yield, amylose content, shorter amylopectin branch content, and gelatinisation temperatures of native purple sweet potato starch. Resistant starch prepared via pullulanase-autoclaving combination treatment exhibited the highest gelatinisation enthalpy value and the greatest degree of overall thermal stability. X-ray diffraction patterns and Fourier-transform infrared spectra analysis demonstrated that all three treatments transformed the starch crystalline structure from C-type to B-type, and no new groups were generated during the modification process; all the processes were only physical modifications.


Assuntos
Ipomoea batatas , Amilopectina , Amilose , Amido Resistente , Amido , Difração de Raios X
8.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34553697

RESUMO

The Waxy locus of rice is a highly polymorphic region embedded with microsatellite repeats in the 5'UTR leader intron 1 region, 23-bp duplication (wx motif) in exon 2, SNPs in exons 4, 6 and 10, p-Sine-r2 element in intron 1 and TnR-1 element in inton 13. Of the 80 polymorphic sites detected on the Wx gene, 24 are located in p-Sine-r2 and TnR-1 elements, revealing a higher substitution rate of bases in these two regions. All the cultivars with chalky endosperm had the 5'-AGTTATA-3' haplotype in intron 1 and 'A' to 'G' substitution at ?497 in exon 4. The AAC of starch from grains of all the accessions showed strong correlation (r=0.967) with GBSS-I activity in the grains. Based on the polymorphic sites of the Waxy locus and the GBSS-I activities, six allelic variants were defined which included wx, Wxop, Wxb, Wxin, Wxa2 and Wxa1, respectively, corresponded to glutinous, very low, low, intermediate, highII and highI amylose classes. Phylogenetic tree developed from alignment matrix of nucleotide sequences of the Waxy locus identified wx, Wxb and Wxin alleles with japonica lineage of Oryza sativa and the Wxop, Wxa2 and Wxa1 with indica lineage.


Assuntos
Alelos , Amilose/metabolismo , Domesticação , Oryza/genética , Amido/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Repetições de Microssatélites/genética , Modelos Moleculares , Motivos de Nucleotídeos/genética , Oryza/enzimologia , Filogenia , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/anatomia & histologia , Sementes/genética , Sintase do Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo
9.
J Agric Food Chem ; 69(39): 11665-11675, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34469152

RESUMO

The use of combinations of aroma compounds is common in many food and cosmetic applications. To investigate the binding behavior between high-amylose maize starch and binary aroma combinations of decanal and thymol, starch-aroma inclusion complexes (ICs) were prepared by a one-step or two-step method with different concentrations and orders of addition. The thymol molecule induced the starch chain to form a larger helical cavity and was more likely to form hydrogen bonds with solvents. The encapsulation efficiency and loading efficiency of starch-thymol ICs were always higher than those of starch-decanal ICs, independent of the aroma concentration and addition order in binary aroma ICs. However, starch-decanal ICs prepared in the presence of thymol encapsulated more decanal than in the absence of thymol. The V6I-type crystals formed by starch-decanal ICs and the V6III-type crystals formed by starch-thymol ICs were both present in binary aroma ICs, resulting in a less-ordered structure and lower thermal transition temperatures. In summary, the complexation between binary aroma compounds and starch exhibited both cooperative and competitive binding behaviors. The synergistic effects between decanal and thymol provide guidance in enhancing the aroma encapsulation in starch carriers.


Assuntos
Amilose , Amido , Aldeídos , Odorantes/análise , Timol
10.
BMC Plant Biol ; 21(1): 434, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556041

RESUMO

BACKGROUND: Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1-30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). RESULTS: Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation-reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. CONCLUSIONS: The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.


Assuntos
Secas , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Amido/metabolismo , Ceras/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , China , Desidratação/metabolismo , Proteômica , Água/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2845-2855, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472302

RESUMO

Production of biofuels such as ethanol from non-grain crops may contribute to alleviating the global energy crisis and reducing the potential threat to food security. Tobacco (Nicotiana tabacum) is a commercial crop with high biomass yield. Breeding of starch-rich tobacco plants may provide alternative raw materials for the production of fuel ethanol. We cloned the small subunit gene NtSSU of ADP-glucose pyrophosphorylase (NtAGPase), which controls starch biosynthesis in tobacco, and constructed a plant expression vector pCAMBIA1303-NtSSU. The NtSSU gene was overexpressed in tobacco upon Agrobacterium-mediated leaf disc transformation. Phenotypic analysis showed that overexpression of NtSSU gene promoted the accumulation of starch in tobacco leaves, and the content of starch in tobacco leaves increased from 17.5% to 41.7%. The growth rate and biomass yield of the transgenic tobacco with NtSSU gene were also significantly increased. The results revealed that overexpression of NtSSU gene could effectively redirect more photosynthesis carbon flux into starch biosynthesis pathway, which led to an increased biomass yield but did not generate negative effects on other agronomic traits. Therefore, NtSSU gene can be used as an excellent target gene in plant breeding to enrich starch accumulation in vegetative organs to develop new germplasm dedicated to fuel ethanol production.


Assuntos
Amido , Tabaco , Biomassa , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tabaco/genética , Tabaco/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445127

RESUMO

The common ice plant (Mesembryanthemum crystallinum L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress removal from three perspectives. In plants under salinity stress (CAM) we found a decline of the quantum efficiencies of PSII (Y(II)) and PSI (Y(I)) by 17% and 15%, respectively, and an increase in nonphotochemical quenching (NPQ) by almost 25% in comparison to untreated control. However, 48 h after salinity stress removal, the PSII and PSI efficiencies, specifically Y(II) and Y(I), elevated nonphotochemical quenching (NPQ) and donor side limitation of PSI (YND), were restored to the level observed in control (C3 plants). Swelling of the thylakoid membranes, as well as changes in starch grain quantity and size, have been found to be components of the salinity stress response in CAM plants. Salinity stress induced an over 3-fold increase in average starch area and over 50% decline of average seed number in comparison to untreated control. However, in plants withdrawn from salinity stress, during the first 24 h of recovery, we observed chloroplast ultrastructures closely resembling those found in intact (control) ice plants. Rapid changes in photosystem functionality and chloroplast ultrastructure were accompanied by the induction of the expression (within 24 h) of structural genes related to the PSI and PSII reaction centres, including PSAA, PSAB, PSBA (D1), PSBD (D2) and cp43. Our findings describe one of the most flexible photosynthetic metabolic pathways among facultative CAM plants and reveal the extent of the plasticity of the photosynthetic metabolism and related structures in the common ice plant.


Assuntos
Metabolismo Ácido das Crassuláceas/genética , Mesembryanthemum/genética , Fotossíntese/genética , Estresse Salino/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Metabolismo Ácido das Crassuláceas/efeitos dos fármacos , Mesembryanthemum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Plastídeos/efeitos dos fármacos , Plastídeos/genética , Salinidade , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Amido/genética , Tilacoides/efeitos dos fármacos , Tilacoides/genética
13.
Am J Bot ; 108(8): 1343-1353, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415569

RESUMO

PREMISE: Plants rely on pools of internal nonstructural carbohydrates (NSCs: soluble sugars plus starch) to support metabolism, growth, and regrowth of tissues damaged from disturbance such as foliage herbivory. However, impacts of foliage herbivory on the quantity and composition of NSC pools in long-lived woody plants are currently unclear. We implemented a controlled defoliation experiment on mature Tamarix spp.-a dominant riparian woody shrub/tree that has evolved with intense herbivory pressure-to test two interrelated hypotheses: (1) Repeated defoliation disproportionately impacts aboveground versus belowground NSC storage. (2) Defoliation disproportionately impacts starch versus soluble sugar storage. METHODS: Hypotheses were tested by transplanting six Tamarix seedlings into each of eight cylinder mesocosms (2 m diameter, 1 m in depth). After 2.5 years, plants in four of the eight mesocosms were mechanically defoliated repeatedly over a single growing season, and all plants were harvested in the following spring. RESULTS: Defoliation had no impact on either above- or belowground soluble sugar pools. However, starch in defoliated plants dropped to 55% and 26% in stems and roots, respectively, relative to control plants, resulting in an over 2-fold higher soluble sugar to starch ratio in defoliated plants. CONCLUSIONS: The results suggest that defoliation occurring over a single growing season does not impact immediate plant functions such as osmoregulation, but depleted starch could limit future fitness, particularly where defoliation occurs over multiple years. These results improve our understanding of how woody plants cope with episodic defoliation caused by foliage herbivory and other disturbances.


Assuntos
Tamaricaceae , Folhas de Planta , Amido , Açúcares , Árvores
14.
Nutrients ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34444683

RESUMO

Pharmacological treatment modalities for non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are scarce, and discoveries are challenged by lack of predictive animal models adequately reflecting severe human disease stages and co-morbidities such as obesity and type 2 diabetes. To mimic human NAFLD/NASH etiology, many preclinical models rely on specific dietary components, though metabolism may differ considerably between species, potentially affecting outcomes and limiting comparability between studies. Consequently, understanding the physiological effects of dietary components is critical for high translational validity. This study investigated the effects of high fat, cholesterol, and carbohydrate sources on NASH development and metabolic outcomes in guinea pigs. Diet groups (n = 8/group) included: low-fat low-starch (LF-LSt), low-fat high-starch (LF-HSt), high-fat (HF) or HF with 4.2%, or 8.4% sugar water supplementation. The results showed that caloric compensation in HF animals supplied with sugar water led to reduced feed intake and a milder NASH phenotype compared to HF. The HF group displayed advanced NASH, weight gain and glucose intolerance compared to LF-LSt animals, but not LF-HSt, indicating an undesirable effect of starch in the control diet. Our findings support the HF guinea pig as a model of advanced NASH and highlights the importance in considering carbohydrate sources in preclinical studies of NAFLD.


Assuntos
Dieta , Intolerância à Glucose/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Biomarcadores/análise , Biomarcadores/sangue , Peso Corporal , Colesterol na Dieta/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ingestão de Líquidos , Ingestão de Alimentos , Ingestão de Energia , Feminino , Cobaias , Fígado/química , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Amido/administração & dosagem
15.
Food Chem ; 365: 130619, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407490

RESUMO

There is an increase in demand for sausages in developing countries, however, accessibility and cost of binders are a challenge. Amaranth and quinoa flours were evaluated for use as alternative binders to corn-starch. Proximate composition, functional and thermal properties of the flours were determined. Water holding capacity (WHC) and cooking losses of the sausages made with the flours as binders were also evaluated. To determine acceptability, sensory evaluation was carried out using a 9-point hedonic scale. Flours showed a significant difference (p < 0.05) on protein, carbohydrates, moisture, ash, and fat content. There were also significantly different on functional properties except emulsion stability and pH. Thermal properties of flours also had a significant difference (p < 0.05). Quinoa and corn-starch sausages were compared and amaranth aroma was disliked. As such, it was concluded that quinoa and amaranth can be used as alternative binders in sausage production.


Assuntos
Chenopodium quinoa , Produtos da Carne , Animais , Bovinos , Culinária , Farinha/análise , Produtos da Carne/análise , Amido
16.
J Food Sci ; 86(9): 4100-4109, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383964

RESUMO

Color is an importantaspect when formulating products, as the consumer will evaluate this aspect in the first instance. There is a growing interest in non-wheat producing regions to replace it with local sources of starches. However, the substitution of wheat flour affects characteristics such as texture, flavor, and color of the intermediate and final products. The objective of this work was to determine if the variation of the baking time allows reducing the color difference that the replacement of flour generates by dehydrated cassava puree (DCP). For that, four replacement levels were evaluated using the CIE-L * a * b * and CIE-L * C * H * methodology. The browning index and total color difference (ΔE) between samples with different replacement levels and between different stages of production were also evaluated. It was proved that the decrease in the baking time allowed the development of a similar coloring between snacks made with DCP and those made without substitution. Also, moisture values of less than 5% (dry basis) were obtained in the snacks. The browning index increased with the proportion of DCP in flour and doughs, but not in baked snacks. The pregelatinization of starches could be a mechanism to improve the quality of products with substitutions of wheat flour. PRACTICAL APPLICATION: Color is a critical attribute of foods in consumer acceptance. The accelerated color development that pregelatinized cassava starch produces in the appearance of baked goods can be useful for food development. A quick color development can mean shorter exposure time to heat, which is important for some products with heat-sensitive components. Also, it is interesting to note that the cassava dehydrated puree is a gluten-free product.


Assuntos
Culinária , Tecnologia de Alimentos , Manihot , Lanches , Farinha , Géis , Manihot/química , Amido
17.
Biomacromolecules ; 22(9): 3769-3779, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34432419

RESUMO

Colorimetric starch film containing anthocyanins is extensively used in eco-friendly intelligent food packaging, but its high water wettability limits its practical application in the food industry. Herein, a super anti-wetting colorimetric starch film was prepared by surface modification with a nano-starch/poly(dimethylsiloxane) (PDMS) composite coating. The water sensitivity, optical properties, mechanical properties, surface morphology, and surface chemical composition of this film were systemically investigated by multiple methods. The obtained film exhibited an extremely high water contact angle (152.46°) and low sliding angle (8.15°) owing to the hierarchical micro-/nanostructure formed by nano-starch aggregates combined with the low-surface-energy PDMS covering. The anti-wettability, optical barrier, and mechanical properties of this film were also significantly improved. The self-cleaning and liquid-food-repelling abilities of this film were comprehensively confirmed. Moreover, this super anti-wetting colorimetric starch film can be applied to monitor the freshness of aquatic products without being disabled by water.


Assuntos
Antocianinas , Amido , Colorimetria , Dimetilpolisiloxanos , Molhabilidade
18.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445676

RESUMO

Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ervilhas/metabolismo , Amido/metabolismo , Ervilhas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/isolamento & purificação
19.
Crit Rev Food Sci Nutr ; 61(15): 2482-2505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34374585

RESUMO

Starch is a versatile and a widely used ingredient, with applications in many industries including adhesive and binding, paper making, corrugating, construction, paints and coatings, chemical, pharmaceutical, textiles, oilfield, food and feed. However, native starches present limited applications, which impairs their industrial use. Consequently, starch is commonly modified to achieve desired properties. Chemical treatments are the most exploited to bring new functionalities to starch. However, those treatments can be harmful to the environment and can also bring risks to the human health, limiting their applications. In this scenario, there is a search for techniques that are both environmentally friendly and efficient, bringing new desired functionalities to starches. Therefore, this review presents an up-to-date overview of the available literature data regarding the use of environmentally friendly treatments for starch modification. Among them, we highlighted an innovative chemical treatment (ozone) and different physical treatments, as the modern pulsed electric field (PEF), the emerging ultrasound (US) technology, and two other treatments based on heating (dry heating treatment - DHT, and heat moisture treatment - HMT). It was observed that these environmentally friendly technologies have potential to be used for starch modification, since they create materials with desirable functionalities with the advantage of being categorized as clean label ingredients.


Assuntos
Calefação , Amido , Eletricidade , Temperatura Alta , Humanos
20.
BMC Genomics ; 22(1): 596, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353280

RESUMO

BACKGROUND: The eating and cooking qualities (ECQs) of rice (Oryza sativa L.) are key characteristics affecting variety adoption and market value. Starch viscosity profiles tested by a rapid visco analyzer (RVA) offer a direct measure of ECQs and represent the changes in viscosity associated with starch gelatinization. RVA profiles of rice are controlled by a complex genetic system and are also affected by the environment. Although Waxy (Wx) is the major gene controlling amylose content (AC) and ECQs, there are still other unknown genetic factors that affect ECQs. RESULTS: Quantitative trait loci (QTLs) for starch paste viscosity in rice were analyzed using chromosome segment substitution lines (CSSLs) developed from the two cultivars 9311 and Nipponbare, which have same Wx-b allele. Thus, the effect of the major locus Wx was eliminated and the other locus associated with the RVA profile could be identified. QTLs for seven parameters of the starch RVA profile were tested over four years in Nanjing, China. A total of 310 QTLs were identified (from 1 to 55 QTLs per trait) and 136 QTLs were identified in more than one year. Among them, 6 QTLs were stalely detected in four years and 26 QTLs were detected in at least three years including 13 pleiotropic loci, controlling 2 to 6 RVA properties simultaneously. These stable QTL hotspots were co-located with several known starch synthesis-related genes (SSRGs). Sequence alignments showed that nucleotide and amino acid sequences of most SSRGs were different between the two parents. Finally, we detected stable QTLs associated with multiple starch viscosity traits near Wx itself, supporting the notion that additional QTLs near Wx control multiple characteristic values of starch viscosity. CONCLUSIONS: By eliminating the contribution from the major locus Wx, multiple QTLs associated with the RVA profile of rice were identified, several of which were stably detected over four years. The complexity of the genetic basis of rice starch viscosity traits might be due to their pleiotropic effects and the multiple QTL hot spots. Minor QTLs controlling starch viscosity traits were identified by using the chromosome segment substitution strategy. Allele polymorphism might be the reason that QTLs controlling RVA profile characteristics were detected in some known SSRG regions.


Assuntos
Oryza , Amido/química , Alelos , Cromossomos , Oryza/genética , Locos de Características Quantitativas , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...