Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.067
Filtrar
1.
J Hazard Mater ; 416: 125840, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492796

RESUMO

Large amounts of sulfanilamide antibiotics (SAs) have been excreted into the manure. In this study, the anaerobic biodegradation of four kinds of SAs including sulfaquinoxaline (SQX), sulfamethoxazole (SMX), sulfamethoxine (SMD) and sulfathiazole (STZ) was investigated. The degradation rates of SQX and STZ decreased with the increase of the concentrations of other organics, but those of SMX and SMD were less affected. The average degradation rates of SAs were in the order of SMX >SMD ≈QX >STZ, with the best degradation rate constants of 0.30125, 0.14752, 0.16696, and 0.06577 /d, respectively. STZ had the greatest effect on the population richness of microbes, whereas SQX had the largest impact on the population diversity. The degradation rates of SAs were positively correlated with the abundances of Proteobacteria and Bacteroidetes, and negatively correlated with the abundance of Firmicutes. The common degradation pathways of SAs were S-N cleavage and substitution. The specific functional groups of SQX, SMX and SMD, including quinoxaline, isoxazole and pyrimidine rings, could be opened, but the thiazole ring of STZ was difficult to be decomposed. After the rings of the specific functional groups were opened, they would be further substituted or decomposed to be products with small molecules.


Assuntos
Antibacterianos , Sulfametoxazol , Anaerobiose , Cinética , Sulfanilamida
2.
J Hazard Mater ; 416: 125865, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492813

RESUMO

Anaerobic biological treatment technologies are one of the major hotspots of antibiotic resistance genes (ARGs). Previous studies have applied the electrochemical process to improve biogas production, however, it was challenged that high voltages might promote membrane permeability and reactive oxygen species overproduction to promote ARGs proliferation. Herein, the biogas production and ARGs proliferation in an anaerobic electrochemical membrane bioreactor (AnEMBR) were investigated at the gradient voltages of 0-0.9 V. Results show the reactor performances (average CH4 production and current generation) were distinctly improved with the increase of applied voltage, and reached the optimum at 0.9 V. However, long-term application (>30 day) of 0.9 V deteriorated the reactor performances. Meanwhile, the relative abundances of most target ARGs in the supernatant and effluent of AnEMBR at 0.9 V increased by 0.68-1.55 and 0.42-1.26 logs compared to those before applying voltage, respectively. After disconnecting the circuit, these ARGs abundances all decreased to the original level. Significant correlations between intlI and ARGs (e.g., tetA, tetQ, sulI, and sulII) were observed, indicating horizontal gene transfer may contribute to the increased ARGs. Moreover, the shift of microbial communities caused by the applied voltage enriched potential ARGs-hosts (e.g., Tolumonas), contributing to the proliferation of ARGs.


Assuntos
Antibacterianos , Biocombustíveis , Anaerobiose , Antibacterianos/farmacologia , Reatores Biológicos , Proliferação de Células , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
3.
BMC Genomics ; 22(1): 648, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493209

RESUMO

BACKGROUND: Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. RESULTS: In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. CONCLUSIONS: Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms.


Assuntos
Bacillus cereus , Proteoma , Anaerobiose , Oxirredução , Proteoma/metabolismo , Proteômica , Compostos de Sulfidrila
4.
Chemosphere ; 283: 131309, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467946

RESUMO

Omics longitudinal studies are effective experimental designs to inform on the stability and dynamics of microbial communities in response to perturbations, but time-course analytical frameworks are required to fully exploit the temporal information acquired in this context. In this study we investigate the influence of ammonia on the stability of anaerobic digestion (AD) microbiome with a new statistical framework. Ammonia can severely reduce AD performance. Understanding how it affects microbial communities development and the degradation progress is a key operational issue to propose more stable processes. Thirty batch digesters were set-up with different levels of ammonia. Microbial community structure and metabolomic profiles were monitored with 16 S-metabarcoding and GCMS (gas-chromatography-mass-spectrometry). Digesters were first grouped according to similar degradation performances. Within each group, time profiles of OTUs and metabolites were modelled, then clustered into similar time trajectories, evidencing for example a syntrophic interaction between Syntrophomonas and Methanoculleus that was maintained up to 387 mg FAN/L. Metabolites resulting from organic matter fermentation, such as dehydroabietic or phytanic acid, decreased with increasing ammonia levels. Our analytical framework enabled to fully account for time variability and integrate this parameter in data analysis.


Assuntos
Amônia , Microbiota , Anaerobiose , Reatores Biológicos , Metano
5.
Chemosphere ; 283: 131246, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470734

RESUMO

Tolypothrix, a self-flocculating, fast growing, CO2 and nitrogen-fixing cyanobacterium, can be cultivated in nutrient-poor ash dam waters of coal-fired power stations, converting CO2 emissions into organic biomass. Therefore, the biomass of Tolypothrix sp. is a promising source for bio-fertiliser production, providing micro- and macronutrients. Energy requirements for production could potentially be offset via anaerobic digestion (AD) of the produced biomass, which may further improve the efficiency of the resulting biofertilizer. The aim of this study was to evaluate the effectiveness of pre-treatment conditions and subsequent methane (CH4) production of Tolypothrix under out-door cultivation conditions. Pre-treatments on biogas and methane production for Tolypothrix sp. biomass investigated were: (1) thermal at 95 °C for 10 h, (2) hydrothermal by autoclave at 121 °C at 1013.25 hPa for 20 min, using a standard moisture-heat procedure, (3) microwave at an output power of 900 W and an exposure time of 3 min, (4) sonication at an output power of 10 W for 3.5 h at 10 min intervals with 20 s breaks and (5) freeze-thaw cycles at -80 °C for 24 h followed by thawing at room temperature. Thermal, hydrothermal and sonication pre-treatments supported high solubilization of organic compounds up to 24.40 g L-1. However, higher specific CH4 production of 0.012 and 0.01 L CH4 g-1 volatile solidsadded. was achieved for thermal and sonic pre-treatments, respectively. High N- and low C-content of the Tolypothrix biomass affected CH4 recovery, while pre-treatment accelerated production of volatile acids (15.90 g L-1) and ammonia-N-accumulation (1.41 g L-1), leading to poor CH4 yields. Calculated theoretical CH4 yields based on the elemental composition of the biomass were ~55% higher than actual yields. This highlights the complexity of interactions during AD which are not adequately represented by elemental composition.


Assuntos
Cianobactérias , Metano , Anaerobiose , Biocombustíveis , Biomassa
6.
J Hazard Mater ; 416: 126081, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492899

RESUMO

An anaerobic biofilm reactor was used to pretreat a typical municipal solid waste landfill leachate. It was challenging to remove Fe, Pb, and Ni to meet the discharge-to-sewer standards at a hydraulic retention time (HRT) typically used in previous studies. This work further systematically studied the factors that limited the metal removal. The HRT limited metal removal because the required metal sulfides precipitation time was more than 3.5 times of the HRT. Sulfide availability only slightly limited the metal removal since adding sulfate above the stoichiometric requirement improved the metal removal by only 5-11%. Via experiments combined with modeling, it was found that metal bisulfide was the dominant complex that limited Fe removal, but humic acids-metal complex was the dominant complex that limited the removal of Pb and Ni. When the total dissolved sulfide concentration is <18 mg/L, humic substances are more limiting the removal of the three metals than bisulfide. On the other hand, when the total dissolved sulfide concentration is >250 mg/L, bisulfide is more limiting than humic substances.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Anaerobiose , Substâncias Húmicas , Metais Pesados/análise , Resíduos Sólidos , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 416: 126136, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492925

RESUMO

Zero valent iron (ZVI) coupled with bioreactors is arising as a promising technology for antibiotic resistance genes (ARGs) mitigation, whereas the succession and behaviors of microbes caused by ZVI in relieving ARGs propagation remain unclear. Herein, the effects of ZVI on microbial quorum sensing (QS), quorum quenching (QQ) system and community dynamics were examined in anaerobic bioreactor fed with oxytetracycline (tet), to illustrate the roles of evolutive microbial communication and community composition in ARGs attenuation. With the addition of 5 g/L ZVI, the total absolute abundance of tet ARGs was retarded by approximate 95% and 72% in sludge and effluent after 25 days operation. The abundance of mobile genetic elements and the heredity of antibiotic resistant bacteria revealed the declined horizontal and vertical transfer of ARGs, which directly led to the reduced ARGs propagation. Potential mechanisms are that the positive effects of ZVI on QQ activity via the functional bacteria enrichment inhibited QS system and thus ARGs transfer. Partial least--squares path modeling further demonstrated that ARGs abundance was strongly limited by the dynamics of bacterial composition and thereby less frequent microbial communication. These results provide new insights into the mechanisms of antibiotic resistome remission in anaerobic bioreactor modified by ZVI.


Assuntos
Antibacterianos , Percepção de Quorum , Anaerobiose , Antibacterianos/farmacologia , Reatores Biológicos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Ferro , Percepção de Quorum/genética , Esgotos
8.
J Hazard Mater ; 416: 126139, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492928

RESUMO

To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.


Assuntos
Compostos de Amônio , Metano , Anaerobiose , Betaína , Reatores Biológicos , Desnitrificação , Peptídeos e Proteínas de Sinalização Intercelular , Metagenômica , Nitrogênio , Oxirredução , Esgotos
9.
J Hazard Mater ; 416: 126154, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492935

RESUMO

Recent trends in food waste and its management have increasingly started to focus on treating it as a reusable resource. The hazardous impact of food waste such as the release of greenhouse gases, deterioration of water quality and contamination of land areas are a major threat posed by food waste. Under the circular economy principles, food waste can be used as a sustainable supply of high-value energy, fuel, and nutrients through green techniques such as anaerobic digestion, co-digestion, composting, enzymatic treatment, ultrasonic, hydrothermal carbonization. Recent advances made in anaerobic co-digestion are helping in tackling dual or even multiple waste streams at once with better product yields. Integrated approaches that employ pre-processing the food waste to remove obstacles such as volatile fractions, oils and other inhibitory components from the feedstock to enhance their bioconversion to reduce sugars. Research efforts are also progressing in optimizing the operational parameters such as temperature, pressure, pH and residence time to enhance further the output of products such as methane, hydrogen and other platform chemicals such as lactic acid, succinic acid and formic acid. This review brings together some of the recent progress made in the green strategies towards food waste valorization.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Alimentos , Hidrogênio , Metano
10.
J Hazard Mater ; 416: 126206, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492968

RESUMO

Sludge lysate is an unavoidable and refractory liquid produced from the waste activated sludge hydrothermal pyrolysis, which contains plenty of hazardous refractory organic compounds and value-added organic resources. Here, the proof of concept for an integrated strategy that couples technically compatible pretreatment to microbial electrolysis assisted AD (ME-AD) system is investigated for sludge lysate treatment and resource recovery. The pretreatment process shows a positive effectiveness on the ME-AD by reducing the organic load and inhibitory matters, which promote the residual refractory organic compounds (Maillard reaction products and humic acid-like substances) and carbon sources further biodegradation and bio-transformation. Combining membrane separation with ME-AD increased not only both the yield and purity of methane to 268.76 mL CH4/g COD and 98%, respectively, but also the recovery of 70.0~82.4% crude proteins (9.1 ± 0.5 g/L) from sludge lysate. Alternatively, the alkaline precipitation combined with ME-AD enhanced the recovery efficiency of short-chain fatty acids (SCFAs). The visible decreasing in the unpleasant color of the effluents was observed, implying that the degradation of harmful refractory organic was almost eliminated in sludge lysate. This strategy is worthy to be developed in WWTP for sludge lysate treatment with considerable bio-resources recovery and refractory organics removal.


Assuntos
Metano , Esgotos , Anaerobiose , Reatores Biológicos , Eletrólise , Ácidos Graxos Voláteis , Eliminação de Resíduos Líquidos
11.
J Hazard Mater ; 416: 126211, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492971

RESUMO

Ammonia stress changes microbial metabolism of anaerobic digestion and decreases methane yield, where proton pump overactivated by free ammonia suggested to be the centre of the metabolism changes in anaerobic digestion under ammonia stress. The work demonstrated that proton pump inhibitor (PPI) could alleviate the overactivated proton pump and mitigate ammonia inhibition. Its impacts on iron transporter, substrates uptake, and energy conservation were investigated in anaerobic digestion treating food and kitchen waste. The PPI formed a stimuli-responsive drug delivery system driven by pH for the more inhibited microbe (p < 0.01), confirmed by FE-SEM/EDS and high throughput sequencing, implying the PPI was activated at inhibited microbe more than mixed liquor. Consistent microbial population increase observed in syntrophs and methanogens, who utilized the substrates for high yielding pathway and facilitated the energy sharing by direct interspecies electron transfer. These results demonstrated PPI could recovery methane production and could mitigate fatty-acid accumulation under high ammonia stress by delivery and activation in acetoclastic methanogen.


Assuntos
Amônia , Reatores Biológicos , Anaerobiose , Metano , Inibidores da Bomba de Prótons , Esgotos
12.
Chemosphere ; 282: 131136, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470172

RESUMO

Organic fraction of municipal solid waste (OFMSW) is an ideal substrate for biogas production; however, complex chemical structure and being heterogeneous obstruct its biotransformation in anaerobic digestion (AD) process. Thermal pre-treatment of OFMSW has been suggested to enhance the solubilization and improve the anaerobic digestibility of OFMSW. This paper critically and comprehensively reviews the characterization of OFMSW (physical, chemical, bromatological) and enlightens the valuable properties of OFMSW for waste valorization. In following sections, the advantages and limitations of AD of OFMSW are discussed, followed by the application of temperature phased AD, and various thermal pre-treatments, i.e., conventional thermal, microwave, and thermo-chemical for high rate bioenergy transformation. Effects of pre-treatment on COD, proteins, sugars and VS solubilization, and biogas yield are discussed. Formation of recalcitrant during thermal pre-treatment and the effect on anaerobic digestibility are considered. Full scale application, and techno-economic and environmental feasibility of thermal pre-treatment methods are also revealed. This review concluded that thermophilic (55 °C) and temperature phased anaerobic digestion, temperature phased anaerobic digestion, TPAD (55 + 37 °C) processes shows effective and stable performance at low HRTs and high OLRs and achieved higher methane yield than mesophilic digestion. The thermal pre-treatment at a lower temperature (120 °C) improves the net energy yield. However, high-temperature pre-treatment (>150 °C) result in decreased biogas yield and even lower than the non-pre-treated OFMSW, although a high degree of COD solubilization. The OFMSW solubilization in terms of COD, proteins, and sugars cannot accurately reflect thermal/hybrid pre-treatments' potential. Thus, substrate pre-treatment followed by anaerobic digestibility of pretreated substrate together can evaluate the actual effectiveness of thermal pre-treatment of OFMSW.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Anaerobiose , Reatores Biológicos , Metano , Resíduos Sólidos/análise
13.
Sci Total Environ ; 792: 148465, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465052

RESUMO

The principal by-product from the two-phase olive oil production process is olive mill solid waste (OMSW). It is a highly-pollutant by-product, not only because of its characteristics, but also because of the considerable volume of OMSW which is generated, amounting to 2 to 4 million tons per year in Spain. The anaerobic digestion of this by-product is a well-studied process, and results in the generation of biogas, methane and carbon dioxide mainly of high calorific values (20-25 MJ m-3), and an effluent or digestate. The digestate of this by-product has never been characterized. This study presents an informative view on how the composition of OMSW digestate shows promising implications as a soil amendment or fertilizer due to the quality of the biomass from Lolium rigidum, a useful grass specie for the production of forage. Three OMSW digestate alternative applications or treatments were investigated: the digestate and the solid fraction of the digestate for a nutrient-poor soil amendment and the liquid fraction of the digestate as fertilizer. The results confirm that all the OMSW digestate treatments studied presented suitable characteristics for agricultural use, and showed an optimal Carbon/Nitrogen ratio with adequate values for heavy metals which are below the limits established by the Spanish and European legislation in the absence of pathogens. However, fertirrigation was the treatment that provided Lolium rigidum with the best characteristics, improving its shoot biomass, photosynthetic rate and nutritional content.


Assuntos
Lolium , Olea , Anaerobiose , Fertilizantes , Poaceae , Solo , Resíduos Sólidos
14.
Artigo em Inglês | MEDLINE | ID: mdl-34499596

RESUMO

A Gram-stain-negative, coccus-shaped, obligately anaerobic, non-motile and non-spore-forming bacterium, designated strain JN500902T, was isolated from the mud in a fermentation cellar used continuously over 30 years for Chinese strong-flavour baijiu production. Colonies were white, circular, convex and smooth-edged. Growth was observed at 20-40 °C (optimum, 37 °C), at pH 5.0-10 (optimum, pH 7.5), with 0-2 % (w/v) NaCl and with 0-4 % (v/v) ethanol. The Biolog assay demonstrated positive reactions of strain JN500902T in the metabolism of l-fucose and pyruvate. The predominant cellular fatty acids (>10 %) consisted of C16 : 0 and C14 : 0. The major end metabolites of strain JN500902T were acetic acid and ethanol when incubated anaerobically in liquid reinforced clostridial medium. Acetate was the major organic acid end product. The complete genome size of strain JN500902T was 3 420 321 bp with 3327 identified genes. The G+C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain JN500902T with the family Lachnospiraceae, having low sequence similarity (92.8 %) to the nearest type strain, Syntrophococcus sucromutans DSM 3224T and forming a clearly distinct branch. Core genome phylogenetic analysis of the isolate and 134 strains belonging to the family Lachnospiraceae also revealed that strain JN500902T was well-separated from other genera of this family as a monophyletic clade. The average nucleotide identity and amino acid identity values between strain JN500902T and 134 Lachnospiraceae strains were less than 74 and 65 %, respectively. Considering its polyphasic characteristics, strain JN500902T represents a novel genus and species within the family Lachnospiraceae, for which the name Novisyntrophococcus fermenticellae gen. nov., sp. nov. is proposed. The type strain is JN500902T (=CICC 24502T=JCM 33939T).


Assuntos
Clostridiales/classificação , Fermentação , Filogenia , Microbiologia do Solo , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Artigo em Inglês | MEDLINE | ID: mdl-34515629

RESUMO

An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and ß-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2-97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, ß-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).


Assuntos
Quitina , Solo , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fusarium , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
16.
Water Sci Technol ; 84(5): 1136-1145, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34534111

RESUMO

Kitchen waste from hotels and homes is one of the major problems for urban and rural environment and could be one of the best sources of renewable energy by producing biogas through anaerobic digestion. A research work was undertaken to assess the methane potential of kitchen waste at different total solids (TS) content. Kitchen wastes such as spoiled rice, brinjal, potato, papaya, tomato, fish and poultry parts etc., which are easily decomposed, were selected for this study. Batch experiments were set up under ambient temperature. Kitchen waste was added to the batch digester at different TS content (5, 7, 10, 12 and 15%) and sealed for 146 days until the gas production stopped. Substrate characteristics were analyzed before and after the anaerobic digestion. The highest methane yield was 78.12 L/kg VS at 15% TS content followed by 12, 10, 7 and 5%. Different kinetic parameters were determined using a logistic model and the model showed a good fit with the experimental results. After modelling using Minitab®, the optimum TS content for kitchen waste was found to be 14.90%.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Animais , Bangladesh , Reatores Biológicos , Cinética , Metano/análise
17.
J Environ Manage ; 298: 113491, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375922

RESUMO

The highly variable characteristics of waste activated sludge (WAS) hinder the comparison of experimental results on WAS bioconversion between the different studies that use excess sludge from different origin. Sludge grown under laboratory conditions with synthetic wastewater as feed showed high resistance to commonly applied pre-treatment techniques, such as thermal pre-treatment. However, a distinctly higher bioconversion of this sludge was recorded compared to WAS from a full-scale wastewater treatment plant (WWTP). The observed results casted concern on the suitability of the experimental laboratory-based data for practice. The physicochemical and biochemical characteristics of both WAS and lab-grown sludge are dependent on the wastewater characteristics or growth media on which the sludges were grown. The objective of this study was to formulate a growth medium that results into a lab-grown sludge which shows high similarity to the WAS coming from a specific full-scale WWTP in response to a pre-treatment technique. More specifically, in this study we targeted the formation of slowly-biodegradable lab-grown sludge that is similarly responsive to mild thermal pre-treatment with H2O2 addition. By comparing real and synthetic wastewaters, we discussed the various wastewater constituents that may lead to a higher degree of recalcitrance of the produced sludge. We then formulated a growth medium, which was fed to a lab-scale activated sludge reactor and evaluated the nutrient removal capacity, as well as the characteristics of the cultivated sludge before and after pre-treatment. Finally, the growth medium was modified to provoke a change in both the bioconversion and in the response to mild thermal pre-treatment. The growth medium proposed in this study resulted in a slowly-biodegradable sludge (195 ± 3.7 NLCH4/kgVSadded) that after thermal pre-treatment resulted in an increase in methane production of 9 %, which was similar to the WAS coming from the full-scale WWTP. It was concluded that not only the bioconversion but also the response to mild thermal pre-treatment of lab-grown sludge was determined by the composition of the growth media.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Peróxido de Hidrogênio , Metano , Águas Residuárias
18.
J Environ Manage ; 298: 113469, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399372

RESUMO

This study examined the effect of electrokinetic pretreatment on petroleum sludge (PS) released from the wastewater treatment plants of petrochemical industries for enhanced biodegradation and contaminant removal. The application of electric field on PS through direct current is optimized with the combined variation of applied voltage (40-80 V), exposure duration (20-120 min) and distance between graphite electrodes (8-16 cm) using central composite design-response surface methodology (CCD-RSM). The optimization study revealed significant interaction among the response variables to obtain an optimum condition (60 V, 83.5 min, 11.6 spacing) for maximization of solubilization in terms of soluble chemical oxygen demand (230% increment against untreated) and volatile fatty acids (172% increment against untreated) concentrations for accelerated hydrolysis of complex PS. BMP batch assays were performed at different inoculum and sludge ratios (0.3, 0.4, 0.5 and 0.7) based on volatile solids content after pretreatment at the optimized condition which resulted in accumulated methane ranging from 5.16 to 6.61 L/gVSadded (untreated - 3.9 L/gVSadded). The mixing ratio of 0.4 showed the maximum methane enhancement of 69.2% compared to untreated. The maximum removal of organic content (62.8%), oil and grease (71.74%), and total petroleum hydrocarbon (52.9%) were also observed for the mixing ratio of 0.4. The FTIR study showed the efficacy in hydrocarbon dissociation and decomposition after pretreatment of PS. The net energy gain (3508 kJ) and phytotoxicity reduction of batch digestate after the anaerobic digestion suggest the economic feasibility and decontamination efficiency of the electrokinetic pretreatment technique respectively. Further research could be performed to evaluate the viability of this pretreatment for enhanced methane recovery at field-scale levels to relate to these lab-scale postulations.


Assuntos
Petróleo , Esgotos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Metano
19.
Antonie Van Leeuwenhoek ; 114(10): 1541-1549, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34401954

RESUMO

An obligate anaerobic bacterial BAD-10 T was isolated from anaerobic acetochlor-degrading sludge. The strain was Gram-stain negative, curved rod-shaped, non-motile and non-spore-forming. Growth was observed in PYT medium at pH 6.0-9.0 (optimum, pH 7.5), at 25-47 °C (37 °C) and with 0-1.0% NaCl (w/v, 0%). Strain BAD-10 T could degrade acetochlor. The major fermentation products from peptone-yeast (PY) medium were acetate and butyrate. The predominant cellular fatty acids were iso-C15:0 FAME, anteiso-C15:0 FAME and C16:0 FAME. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain BAD-10 T showed closest affiliation to Proteiniclasticum ruminis D3RC-2 T, with a sequence similarity of 97.6%. Genome sequencing revealed a genome size of 2,983,986 bp, a G + C content of 51.4 mol% and protein-coding genes of 3,102. The average nucleotide identity and in silico DNA-DNA hybridization values between strain BAD-10 T and Proteiniclasticum ruminis D3RC-2 T were 71.0% and 20.4%, respectively, which were below the standard thresholds for species differentiation. On the basis of phenotypic, physiological and phylogenetic evidence, strain BAD-10 T represents a novel species in the genus Proteiniclasticum, for which the name Proteiniclasticum sediminis sp. nov. is proposed. Strain BAD-10 T (= CCTCC AB 2021091 T = KCTC 25288 T) is the type strain of the proposed novel species.


Assuntos
Ácidos Graxos , Esgotos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiaceae , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Antonie Van Leeuwenhoek ; 114(10): 1609-1617, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34410564

RESUMO

An obligate anaerobic bacterial strain (BAD-6T) capable of degrading acetochlor and butachlor was isolated from an anaerobic acetochlor-degrading reactor. Cells were Gram-stain positive, straight to gently curved rods with flagella. The major fermentation products in peptone-yeast broth were acetate and butyrate. The optimum temperature and pH for growth was 30 °C and 7.2-7.5, respectively. The major cellular fatty acids (> 10%) were C14:0 FAME, C16:0 FAME and cyc-9,10-C19:0 DMA. Genome sequencing revealed a genome size of 4.80 Mb, a G + C content of 43.6 mol% and 4741 protein-coding genes. The most closely related described species on the basis of 16S rRNA gene sequences was Anaerovorax odorimutans NorPutT in the order Clostridiales of the class Clostridia with sequence similarity of 94.9%. The nucleotide identity (ANI) value and digital DNA-DNA hybridization (dDDH) between the genomes of strain BAD-6T and Ana. odorimutans NorPutT were 70.9% and 15.9%, respectively. Based on the distinct differences in phylogenetic and phenotypic characteristics between strain BAD-6T and related species, Sinanaerobacter chloroacetimidivorans gen. nov., sp. nov. is proposed to accommodate the strain. Strain BAD-6T is the type strain (= CCTCC AB 2021092T = KCTC 25290T).


Assuntos
Ácidos Graxos , Esgotos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...