Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.310
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 192, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305902

RESUMO

Micro-aeration was shown to improve anaerobic digestion (AD) processes, although oxygen is known to inhibit obligate anaerobes, such as syntrophic communities of bacteria and methanogens. The effect of micro-aeration on the activity and microbial interaction in syntrophic communities, as well as on the potential establishment of synergetic relationships with facultative anaerobic bacteria (FAB) or aerobic bacteria (AB), was investigated. Anaerobic sludge was incubated with ethanol and increasing oxygen concentrations (0-5% in the headspace). Assays with acetate or H2/CO2 (direct substrates for methanogens) were also performed. When compared with the controls (0% O2), oxygen significantly decreased substrate consumption and initial methane production rate (MPR) from acetate or H2/CO2. At 0.5% O2, MPR from these substrates was inhibited 30-40%, and close to 100% at 5% O2. With ethanol, significant inhibition (>36%) was only observed for oxygen concentrations higher than 2.5%. Oxygen was consumed in the assays, pointing to the stimulation of AB/FAB by ethanol, which helped to protect the syntrophic consortia under micro-aerobic conditions. This highlights the importance of AB/FAB in maintaining functional and resilient syntrophic communities, which is relevant for real AD systems (in which vestigial O2 amounts are frequently present), as well as for AD systems using micro-aeration as a process strategy. KEY POINTS: •Micro-aeration impacts syntrophic communities of bacteria and methanogens. •Oxygen stimulates AB/FAB, maintaining functional and resilient consortia. •Micro-aeration studies are critical for systems using micro-aeration as a process strategy.


Assuntos
Euryarchaeota , Esgotos , Anaerobiose , Esgotos/microbiologia , Reatores Biológicos , Dióxido de Carbono , Metano , Bactérias , Acetatos , Oxigênio , Etanol
2.
World J Microbiol Biotechnol ; 40(4): 109, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411737

RESUMO

Biomass from agriculture, forestry, and urban wastes is a potential renewable organic resource for energy generation. Many investigations have demonstrated that anaerobic fungi and methanogens could be co-cultured to degrade lignocellulose for methane generation. Thus, this study aimed to evaluate the effect of natural anaerobic fungi-methanogens co-culture on the methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane. Hu sheep rumen digesta was used to develop a natural anaerobic fungi-methanogen co-culture. The substrates were rice straw (RS), rich husk (RH), corn stover (CS), corn cobs (CC), and sugarcane baggage (SB). Production of total gas and methane, metabolization rate of reducing sugar, glucose, and xylose, digestibility of hemicellulose and cellulose, activity of carboxymethylcellulase and xylanase, and concentrations of total acid and acetate were highest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) in SB and RH. The pH, lactate and ethanol were lowest (P < 0.05) in CC, moderate (P < 0.05) in RS and CS, and lowest (P < 0.05) SB and RH. Formate was lowest (P < 0.05) in CC, RS and CS, moderate (P < 0.05) in SB, and lowest (P < 0.05) in RH. Therefore, this study indicated that the potential of methane production and lignocellulosic degradation by natural anaerobic fungi-methanogens co-culture were highest in CC, moderate in RS and CS, and lowest in SB and RH.


Assuntos
Euryarchaeota , Lignina , Oryza , Saccharum , Animais , Ovinos , Zea mays , Anaerobiose , Técnicas de Cocultura , Fungos
3.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299813

RESUMO

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Assuntos
Cervos , Rúmen , Humanos , Animais , Anaerobiose , Rúmen/microbiologia , Herbivoria , Fungos/genética , Ruminantes
4.
Water Environ Res ; 96(2): e10985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305068

RESUMO

To improve the treatment performance of anaerobic ammonium oxidation (ANAMMOX) processes at low temperatures, the immobilized cold-acclimation ANAMMOX granules (R3) were prepared and their low-temperature nitrogen removal ability as well as the cold adaptation mechanism were analyzed. The results indicated that the total inorganic nitrogen (TIN) removal efficiency of R3 was significantly higher than that of R2 (cold-acclimation granules without immobilization) and R1 (common granules), especially at 11 ± 2 and 7 ± 2°C (68% and 54%). These were attributed to the remarkable biomass retention capacity of R3, high up to 4.3-4.9 mg/gVSS even at 5-18°C. Besides, higher protein (PN) content of tightly bound extracellular polymeric substances (TB-EPS) also facilitated microbial aggregation in R3. Meanwhile, R3 granules retained higher ANAMMOX activity and heme c content at 5-25°C. The original dominant ANAMMOX genus (Candidatus Kuenenia) in R3 kept higher abundance (49%-57%) at 23 ± 2 and 16 ± 2°C, whereas Candidatus Brocadia became the dominant ANAMMOX genus (25%-32%) in R3 at 11 ± 2 and 7 ± 2°C. Notably, different ANAMMOX genera in R3 may adapt to cold environment by regulating the expression of cold-stress proteins (CspA, CspB, PpiD, and UspA). PRACTITIONER POINTS: Immobilized cold-acclimation ANAMMOX granules showed higher nitrogen removal efficiency at 23°C → 5°C. Immobilization method effectively retained biomass (Candidatus Kuenenia and Candidatus Brocadia). Immobilization facilitated TB-EPS release and biological aggregation in cold-acclimation granules. Expression of cold-stress proteins in immobilized cold-acclimation granules was more active.


Assuntos
Desnitrificação , Nitrogênio , Temperatura , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Anaerobiose , Oxirredução , Reatores Biológicos , Aclimatação , Proteínas de Choque Térmico/metabolismo , Esgotos
5.
Water Res ; 252: 121211, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309059

RESUMO

Conventional anaerobic digestion models used in wastewater treatment plants suffer from inaccuracies due to the limited consideration given to hydrodynamics within the digester tank. A solution to this is to combine computational fluid dynamics simulations with anaerobic models. This paper introduces a novel methodology in the form of a software toolbox that implements the standard anaerobic digestion model no.1 in C++ and can interface with particle-based Lagrangian simulations. This method provides significantly more insights into the biochemical conversion process by accounting for the impact of the hydrodynamics on the biochemical reactions. The paper presents the background of the method along with a conceptual and numerical verification. It also presents a case study of a 3D lab scale digester comparing the results from the solver with the standard anaerobic digestion model. This integrated approach can be used by operators and designers for optimisations and also for predictive modelling.


Assuntos
Reatores Biológicos , Hidrodinâmica , Anaerobiose
6.
Water Res ; 252: 121228, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309060

RESUMO

Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes. Experimental results indicate that by introducing alkaline-heat and ultrasonic pre-treatments to AD systems, the removal efficiencies of total solids (TS) from the raw grass increased by 60.8 % and 42.5 %, respectively, compared to sole wet fermentation. Pre-treatments have been shown to enhance the stability of AD systems, both in terms of enhancing methane production and mitigating pH fluctuations triggered by the accumulation of organic acids. Remarkably, even though the Rad-Cs leaching rate was highest when the AD system was fed with the alkaline-heat pre-treated grass, it remained unsatisfactory at only 5.77 %. We inadvertently isolated a soil-like component from the raw grass, and analyzed both its proportion in the raw grass and the radioactivity intensity. The results indicate that although the soil constituted only 9.51 % TS of the raw grass, it accounted for a significant 81.35 % of the total radioactivity. The soil, which has a pronounced affinity for ionic Cs, being mixed into the raw grass, was identified as the primary factor limiting the leaching efficiency of Rad-Cs throughout both the pre-treatment and wet fermentation phases.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Poaceae , Fermentação , Anaerobiose , Biomassa , Radioisótopos de Césio/análise , Japão , Solo
7.
Water Res ; 252: 121192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309066

RESUMO

Samples from a dairy cattle waste-fed anaerobic digester were collected across seasons to assess sanitary safety for biofertilizer use. Isolated enterobacteria (suggestive of Escherichia coli) were tested for susceptibility to biocides, antimicrobials, and biofilm-forming capability. Results revealed a decrease in total bacteria, coliforms, and enterobacteria in biofertilizer compared to the effluent. Among 488 isolates, 98.12 % exhibited high biofilm formation. Biofertilizer isolates exhibited a similar biofilm formation capability as effluent isolates in summer, but greater propensity in winter. Resistance to biocides and antimicrobials varied, with tetracycline resistance reaching 19 %. Of the isolates, 25 were multidrug-resistant (MDR), with 64 % resistant to three drugs. Positive correlations were observed between MDR and increased biofilm formation capacity in both samples, while there was negative correlation between MDR and increased biocide resistance. A higher number of MDR bacteria were found in biofertilizer compared to the effluent, revealing the persistence of E. coli resistance, posing challenges to food safety and public health.


Assuntos
Anti-Infecciosos , Desinfetantes , Saúde Única , Animais , Bovinos , Escherichia coli , Enterobacteriaceae , Virulência , Anaerobiose , Águas Residuárias , Antibacterianos , Desinfetantes/farmacologia , Testes de Sensibilidade Microbiana
8.
Water Res ; 252: 121224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309072

RESUMO

The rapid enrichment of anammox bacteria and its fragile resistance to adverse environment are the critical problems facing of anammox processes. As an abundant component in anammox bacteria, iron has been proved to promote the activity and growth of anammox bacteria in the mature anammox systems, but the functional and metabolic profiles in Fe(III) enhanced emerging anammox systems have not been evaluated. Results indicated that the relative abundance of functional genes involved in oxidative phosphorylation, nitrogen metabolism, cofactors synthesis, and extracellular polymers synthesis pathways was significantly promoted in the system added with 5 mg/L Fe(III) (R5). These enhanced pathways were crucial to energy generation, nitrogen removal, cell activity and proliferation, and microbial self-defense, thereby accelerating the enrichment of anammox bacteria Ca. Brocadia and facilitating their resistance to adverse environments. Microbial community analysis showed that the proportion of Ca. Brocadia in R5 also increased to 64.42 %. Hence, R5 could adapt rapidly to the increased nitrogen loading rate and increase the nitrogen removal rate by 108 % compared to the system without Fe(III) addition. However, the addition of 10 and 20 mg/L Fe(III) showed inhibitory effects on the growth and activity of anammox bacteria, which exhibited the lower relative abundance of Ca. Brocadia and unstable or even collapsed nitrogen removal performance. This study not only clarified the concentration range of Fe(III) that promoted and inhibited the enrichment of anammox bacteria, but also deepened our understanding of the functional and metabolic mechanisms underlying enhanced enrichment of anammox bacteria by Fe(III), providing a potential strategy to hasten the start-up of anammox from conventional activated sludge.


Assuntos
Reatores Biológicos , Compostos Férricos , Compostos Férricos/metabolismo , Anaerobiose , Oxirredução , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Esgotos , Nitrogênio/metabolismo , Desnitrificação
9.
Water Res ; 252: 121234, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310803

RESUMO

The stringent effluent quality standards in wastewater treatment plants (WWTPs) can effectively mitigate environmental issues such as eutrophication by reducing the discharge of nutrients into water environments. However, the current wastewater treatment process often struggles to achieve advanced nutrient removal while also saving energy and reducing carbon consumption. The first full-scale anaerobic/aerobic/anoxic (AOA) system was established with a wastewater treatment scale of 40,000 m3/d. Over one year of operation, the average TN and TP concentration in the effluent of 7.53 ± 0.81 and 0.37 ± 0.05 mg/L was achieved in low TN/COD (C/N) ratio (average 5) wastewater treatment. The post-anoxic zones fully utilized the internal carbon source stored in pre-anaerobic zones, removing 41.29 % of TN and 36.25 % of TP. Intracellular glycogen (Gly) and proteins in extracellular polymeric substances (EPS) served as potential drivers for post-anoxic denitrification and phosphorus uptake. The sludge fermentation process was enhanced by the long anoxic hydraulic retention time (HRT) of the AOA system. The relative abundance of fermentative bacteria was 31.66 - 55.83 %, and their fermentation metabolites can provide additional substrates and energy for nutrient removal. The development and utilization of internal carbon sources in the AOA system benefited from reducing excess sludge production, energy conservation, and advanced nutrient removal under carbon-limited. The successful full-scale validation of the AOA process provided a potentially transformative technology with wide applicability to WWTPs.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Fósforo/metabolismo , Nutrientes , Carbono , Nitrogênio , Desnitrificação
10.
Water Res ; 252: 121240, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330717

RESUMO

Glycans are crucial for the structure and function of anaerobic granular sludge in wastewater treatment. Yet, there is limited knowledge regarding the microorganisms and biosynthesis pathways responsible for glycan production. In this study, we analysed samples from anaerobic granular sludges treating papermill and brewery wastewater, examining glycans composition and using metagenome-assembled genomes (MAGs) to explore potential biochemical pathways associated with their production. Uronic acids were the predominant constituents of the glycans in extracellular polymeric substances (EPS) produced by the anaerobic granular sludges, comprising up to 60 % of the total polysaccharide content. MAGs affiliated with Anaerolineacae, Methanobacteriaceae and Methanosaetaceae represented the majority of the microbial community (30-50 % of total reads per MAG). Based on the analysis of MAGs, it appears that Anaerolinea sp. and members of the Methanobacteria class are involved in the production of exopolysaccharides within the analysed granular sludges. These findings shed light on the functional roles of microorganisms in glycan production in industrial anaerobic wastewater treatment systems.


Assuntos
Metagenoma , Esgotos , Esgotos/química , Anaerobiose , Águas Residuárias , Polissacarídeos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos
11.
Sci Rep ; 14(1): 4838, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418870

RESUMO

This study aimed to examine the distribution of anaerobic bacteria in the rumen fluid of Thai crossbred goats and to screen potential probiotic strains capable of producing antimicrobial compounds and inhibiting bacteria that cause milk fat depression. Thirty-four strains of bacteria from the rumen fluid were divided into 13 groups within 12 genera based on 16S rRNA gene sequences. The RF1-5 and RF5-12 were identified as Streptococcus luteliensis and Bacillus licheniformis, respectively, and demonstrated non-ropy exopolysaccharide. Furthermore, mPRGC5T was closely related to Selenomonas caprae JCM 33725 T (97.8% similarity) based on 16S rRNA gene sequences. It exhibited low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values with related type strains ranging from 84.9 to 86.0%, 21.3 to 21.8%, and 73.8 to 76.1%, respectively. The genotypic and phenotypic characteristics of mPRGC5T strongly support this strain as a new species of the genus Selenomonas for which the name Selenomonas ruminis mPRGC5T was proposed. The type strain is mPRGC5T (= JCM 33724 T = KCTC 25177 T). Ligilactobacillus salivarius MP3 showed antibacterial activity against Cutibacterium acnes subsp. acnes DSM 1897 T and Kocuria rhizophila MIII. The enterolysin A cluster gene was identified in its genome. The auto-aggregation of L. salivarius MP3 was 93.6 ± 0.2%. Additionally, co-aggregation of L. salivarius MP3 with C. acnes DSM 1897 T and K. rhizophila MIII had 92.2 ± 3.4% and 87.3 ± 4.5%, respectively. The adhesion capacity of strain MP3 was 76.11 ± 2.2%. Probiogenomic analysis revealed that L. salivarius MP3 was nonhazardous to animal supplementation and included acid- and bile-tolerant ability. However, strain MP3 contained three antibiotic resistance genes. Thus, the supplementation of L. salivarius MP3 could increase the milk fat content by suppressing C. acnes DSM 1897 T with antibiotic resistance gene horizontal transfer awareness.


Assuntos
Ácidos Graxos , Ligilactobacillus salivarius , Animais , Feminino , Ácidos Graxos/análise , Selenomonas/genética , Anaerobiose , RNA Ribossômico 16S/genética , Lactação , DNA , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
12.
Antonie Van Leeuwenhoek ; 117(1): 35, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351143

RESUMO

A Gram-stain-negative, oxidase-negative, rod-shaped, motile, facultatively anaerobic bacterial strain, designated as CY1220T, was isolated from an anaerobic fermentation liquid of food waste treatment plant. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain CY1220T belongs to the genus Thiopseudomonas, with the highest sequence similarity to Thiopseudomonas alkaliphila B4199T (95.91%), followed by Thiopseudomonas denitrificans X2T (95.56%). The genomic DNA G + C content of strain CY1220T was 48.6 mol%. The average nucleotide identity values and digital DNA-DNA hybridization values between strain CY1220T and the type species of T. alkaliphila and T. denitrificans were in the range of 70.8-71.6% and 19.2-20.0%, respectively, below the thresholds for species delineation. The strain was able to grow utilizing acetic acid and butyric acid (AABA) as the sole carbon source in aerobic conditions. Genomic analysis predicted that the strain could synthesize vitamin B12 and ectoine. The predominant cellular fatty acids were C18:1 ω7c and/or C18:1 ω6c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C12:0. The polar lipids comprised diphosphatidylglycerol, unknown polar lipid, phosphatidylethanolamine, phosphatidylglycerol, and phospholipid. Q-8 (2.1%) and Q-9 (97.9%) were detected as the respiratory quinones. Based on its phenotypic, genotypic and genomic characteristics, strain CY1220T represents a novel species in the genus Thiopseudomonas, for which the name Thiopseudomonas acetoxidans sp. nov. is proposed. The type strain is CY1220T (= GDMCC 1.3503 T = JCM 35747 T).


Assuntos
Eliminação de Resíduos , Fermentação , Filogenia , RNA Ribossômico 16S/genética , Butiratos , Anaerobiose , Alimentos , Ácidos Graxos , Fosfolipídeos , DNA , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Ubiquinona
13.
Bioresour Technol ; 396: 130412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310977

RESUMO

This study presents a fractional calculus model as a generalized kinetic model for estimating the maximum methane yield and degradation kinetics in biomethane potential (BMP) assays, a key analytical method in anaerobic digestion research and application. The fractional model outperformed common first-order kinetic models by yielding superior data fitting and properly managing substrate heterogeneity. The fractional model showed robust performance in mono-digestion, co-digestion and pre-treatment BMP assays with or without presence of large tailing or sigmoidal patterns in the BMP curve. The main advantage of the fractional model over other models is its ability to capture the complexities of the methane production process without losing model accuracy. Assessment of the mathematical model revealed that for fractional orders greater than 0.8 the Mittag-Leffler sequence could be transformed into a more computationally efficient exponential function.


Assuntos
Metano , Modelos Teóricos , Anaerobiose , Reatores Biológicos
14.
Bioresour Technol ; 396: 130383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316227

RESUMO

The addition of biochar resulted in a 31.5 % to 44.6 % increase in decolorization efficiency and favorable decolorization stability. Biochar promoted extracellular polymeric substances (EPS) secretion, especially humic-like and fulvic-like substances. Additionally, biochar enhanced the electron transfer capacity of anaerobic sludge and facilitated surface attachment of microbial cells. 16S rRNA gene sequencing analysis indicated that biochar reduced microbial species diversity, enriching fermentative bacteria such as Trichococcus. Finally, a machine learning model was employed to establish a predictive model for biochar characteristics and decolorization efficiency. Biochar electrical conductivity, H/C ratio, and O/C ratio had the most significant impact on RR2 anaerobic decolorization efficiency. According to the results, the possible mechanism of RR2 anaerobic decolorization enhanced by different types of biochar was proposed.


Assuntos
Compostos Azo , Carvão Vegetal , Corantes , Compostos Azo/metabolismo , Corantes/metabolismo , Anaerobiose , RNA Ribossômico 16S/genética , Esgotos
15.
Bioresour Technol ; 396: 130422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320714

RESUMO

Anammox bacteria are being increasingly investigated as part of an emerging nitrogen removal technology. However, due to the difficulty in culturing, current understanding of their behavior is limited. In this study, anaerobic microfluidic chips were used to study anammox bacteria, showing great advantages over reactors. On-chip fluorescence in situ hybridization (FISH) showed the relative abundance of free form anammox bacteria increased by 56.1 % after one week's culture, an increase that is three times higher than that of bioreactor (17.1 %). For granular form cultures, the nitrogen removal load reached 2.34 âˆ¼ 2.51 kg-N/(m3·d), which was also substantially higher than the bioreactor (∼1.22 kg-N/(m3·d)). Furthermore, studying the kinetics of nitrite inhibition of granular sludge with different particle sizes (100-900 µm) showed that the maximum ammonia load and the nitrite semi-saturation coefficient noticeably decreased for smaller particle sizes. These results illustrate the usefulness of the microfluidic method for in-depth understanding anammox process and its implementation.


Assuntos
Oxidação Anaeróbia da Amônia , Nitritos , Anaerobiose , Hibridização in Situ Fluorescente , Microfluídica , Bactérias/genética , Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitrogênio , Esgotos/microbiologia , Bactérias Anaeróbias
16.
Bioresour Technol ; 396: 130419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325610

RESUMO

Effects of short hydraulic retention time (HRT) in wet weather and long HRT in dry weather on sludge properties, microbial community, and metabolomic of anammox granular system were studied. Results showed under equal nitrogen loading rate (0.4 kg N/(m3 · d)) conditions, an HRT of 4.41 h was beneficial for total nitrogen removal efficiency (78.9 %). The shorter the HRT, the lower the particle density (1.01±0.34 g/cm3), the lower the settling performance (1.18±0.28 cm/s), and the worse the biomass retention (1.04±0.18 g/L), but the higher the mechanical strength (85.22 Pa). Properly decreasing HRT could increase the permeability of anammox granules, ensuring their activity. Metabolomics analysis indicated that the activity of anaerobic ammonium oxidizing bacteria was promoted by stimulating the metabolic pathways of amino acids and glycerophospholipids. In summary, this research clarified the effect of wet/dry weather on anammox granular system and provided theoretical guidance for the application in engineering.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Tempo (Meteorologia) , Nitrogênio/metabolismo , Oxirredução , Anaerobiose
17.
Bioresour Technol ; 396: 130404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336215

RESUMO

With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.


Assuntos
Ácidos Alcanossulfônicos , Fontes de Energia Bioelétrica , Purificação da Água , Águas Residuárias , Anaerobiose , Fenômenos Físicos
18.
Bioresour Technol ; 396: 130426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341042

RESUMO

Realizing the quick enrichment and development of denitrifying phosphorus accumulating organisms (DPAOs) in actual household wastewater and industrial nitrate wastewater has significant research significance. In this study, a novel operation mode of anaerobic-oxic-anoxic (AOA) was adopted to successfully realize the enrichment and cultivation of DPAOs in urban domestic wastewater. Adjusting influent COD to PO43--P ratio, shortening the aerobic time and decreasing the aeration volume were conducive to select DPAOs in microbial populations. The system was operated for 180 days and the DPAOs were well enriched during the stable operation with the percentage of Dechloromonas increased to 5.1 %. Accordingly, the effluent PO43--P was < 0.3 mg P/L, the removal efficiency of phosphorus was 96.9 % and the removal efficiency of nitrate was 92.5 %. Above all, DPR can be successfully applied to AOA systems with good phosphorus removal performance.


Assuntos
Fósforo , Águas Residuárias , Eliminação de Resíduos Líquidos , Esgotos , Desnitrificação , Nitrogênio , Nitratos , Anaerobiose , Reatores Biológicos
19.
Bioresour Technol ; 396: 130428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341044

RESUMO

The current study explored the performance of an integrated partial denitrification-anaerobic ammonium oxidation (anammox)-bioelectrochemical system on simultaneous removal of ammonia nitrogen and nitrate nitrogen. Different operational conditions were selected to optimize critical parameters of the process for improving nitrogen removal. The results indicated that more than 90 % of total inorganic nitrogen removal efficiency was achieved under the optimal conditions: ammonia nitrogen/nitrate nitrogen ratio of 1:2, external resistance of 200 Ω and inoculation volume ratio of anammox bacteria/denitrifying at 2:1. Improved nitrogen removal under the optimal conditions were confirmed by microbial community changes (Candidatus Brocadia and Thiobacillus) and enhanced of nitrogen metabolism-related genes (hao, hzsA/C and hdh). Increases of Limnobacter indicated an enhanced electron transfer efficiency. Overall, high-efficiency and stable nitrogen removal efficiency without nitrite nitrogen accumulation could be achieved by the integrated system under the optimal conditions, providing novel insights for simultaneous treatment of domestic wastewater and groundwater.


Assuntos
Amônia , Compostos de Amônio , Desnitrificação , Nitratos , Anaerobiose , Oxirredução , Reatores Biológicos , Nitrogênio , Esgotos
20.
Bioresour Technol ; 396: 130431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342279

RESUMO

Organic matter concentration is a critical factor influencing the adaptability of anaerobic ammonium oxidation (anammox) bacteria to low-strength sewage treatment. To address this challenge and achieve stable anammox activity, a micro-aeration partial nitrification-anammox process was developed for continuous-flow municipal sewage treatment. Under limited ammonium conditions, the effective utilization of organics in denitrification promoted the stable accumulation of nitrite and enhanced anammox activity. This, in turn, led to enhanced nitrogen removal efficiency, reaching approximately 87.7%. During the start-up phase, the protein content of extracellular polymeric substances (EPS) increased. This enhanced EPS intensified the inhibitory effect of denitrifying bacteria (DNB) on nitrite-oxidizing bacteria through competition for nitrite, thereby facilitating the proliferation of anammox bacteria (AnAOB). Additionally, several types of DNB capable of utilizing slowly biodegradable organics contributed to the adaptability of AnAOB. These findings provide valuable insights for ensuring efficient anammox performance and robust nitrogen removal in the treatment of low-strength sewage.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Desnitrificação , Nitritos/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...