Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
1.
J Environ Manage ; 374: 123974, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39778348

RESUMO

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO2 emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments. The digestate generated during anaerobic digestion proved to be an effective approach for mitigating some CO2 emissions while managing sludge waste within the anaerobic digestion and CHP system. Incorporating biochar production and application in soil into the process led to a 3.5 % reduction in CO2 emissions, which contributed to a more sustainable form of energy production while offering the potential for the generation of carbon credits through a carbon-negative process. The employment of digestate biochar for energy production seems a feasible way to reduce the amount of residue to final disposal in landfill with a minimal reduction of profit per GWh and a slight increase in the CO2 emissions by 2.7 %.


Assuntos
Biocombustíveis , Dióxido de Carbono , Carvão Vegetal , Esgotos , Anaerobiose , Carvão Vegetal/química , Gerenciamento de Resíduos/métodos , Custos e Análise de Custo
2.
Appl Microbiol Biotechnol ; 108(1): 519, 2024 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-39549075

RESUMO

Biochemical methane potential (BMP) test is an important tool to evaluate the methane production biodegradability and toxicity of different wastes or wastewaters. This is a key parameter for assessing design and feasibility issues in the full-scale implementation of anaerobic digestion processes. A standardized and storable inoculum is the key to obtain reproducible results. In Uruguay, a local enterprise dedicated to design and install anaerobic digesters operated a lab-scale bioreactor as a source of biomass for BMP tests, using a protocol previously described. This reactor was controlled and fed with a mixture of varied organic compounds (lipids, cellulolytic wastes, proteins). Biomass was reintroduced into the reactor after BMP assays to maintain a constant volume and biomass concentration. The aim of this work was to evaluate how the microbial community evolved during this operation and the effect of storing biomass in the refrigerator. The composition of the microbial communities was analyzed by 16S rRNA amplicon sequencing using primers for Bacteria and Archaea. The methanogenic activity was determined, and the methanogens were quantified by mcrA qPCR. One sample was stored for a 5-month period in the refrigerator (4 °C); the activity and the microbial community composition were analyzed before and after storage. Results showed that applying the reported methodology, a reliable methanogenic sludge with an acceptable SMA was obtained even though the reactor suffered biomass alterations along the evaluated period. Refrigerating the acclimatized biomass for 5 months did not affect its activity nor its microbial composition according to the 16S rRNA gene sequence analysis, even though changes in the mcrA abundance were observed. KEY POINTS: • The applied methodology was successful to obtain biomass suitable to perform BMP assays. • The microbial community was resilient to external biomass addition. • Biomass storage at 4 °C for 5 months did not alter the methanogenic activity.


Assuntos
Archaea , Bactérias , Biomassa , Reatores Biológicos , Metano , RNA Ribossômico 16S , Esgotos , Metano/metabolismo , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Anaerobiose , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Microbiota , Biodegradação Ambiental
3.
Environ Sci Pollut Res Int ; 31(54): 62825-62839, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39460861

RESUMO

Anaerobic digestion of fruit and vegetable waste (FVW) offers an environmentally friendly alternative for waste disposal, converting it into methane for energy recovery. Typically, FVW digestion is conducted in a continuously stirred tank reactor (CSTR) due to its ease of use and stability with solid concentrations between 5 and 10%. However, CSTRs are limited to organic loading rates (OLRs) of about 3 kg COD/m3.day, resulting in large reactor volumes, low methane productivity, and costly wet digestate handling. This work introduces a novel method for methane production from FVW using a high-rate reactor system. The proposed approach involves grinding, centrifuging, and/or pressing the FVW to separate it into liquid and solid phases. The liquid phase is then digested in an up-flow anaerobic sludge blanket (UASB) reactor, while the solid phase undergoes digestion in a dry methanization reactor. A model incorporating all biological reactors was implemented in the Anaerobic Digestion Model 1 (ADM1) to provide a theoretical basis for the experimental development of this system. The current simulation scenarios offer initial references for operating the experimental system, which will, in turn, generate data for further model refinement. For instance, constrained liquid-gas mass transfer was considered for dry fermentation, with additional potential biochemical kinetic limitations to be incorporated following on experimental evidence. The success of this system could enable energy recovery in 72 Central Wholesale Markets across Brazil, offering a critical tool for planning, operating, and optimizing such systems.


Assuntos
Reatores Biológicos , Frutas , Metano , Verduras , Anaerobiose , Esgotos
4.
Environ Pollut ; 363(Pt 1): 125130, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414064

RESUMO

This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment.


Assuntos
Antibacterianos , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Antibacterianos/farmacologia , Eliminação de Resíduos Líquidos/métodos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Bactérias/efeitos dos fármacos , Óxidos , Anaerobiose , Compostos de Cálcio/farmacologia , Farmacorresistência Bacteriana/genética
5.
Biodegradation ; 36(1): 3, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470853

RESUMO

The study evaluated the performance of thermophilic co-digestion in both single-stage methanogenic reactors (TMR) and two-stage systems, consisting of a thermophilic acidogenic reactor and a thermophilic sequential methanogenic reactor (TSMR). A 1:1 mixture of sugarcane vinasse and molasses was codigested in anaerobic fluidized bed reactors, with varying organic matter concentrations based on chemical oxygen demand (COD) ranging from 5 to 22.5 g COD L-1. Both systems achieved high organic matter removal efficiency (51 to 86.5%) and similar methane (CH4) yields (> 148 mL CH4 g-1CODremoved). However, at the highest substrate concentration (22.5 g COD L-1), the TSMR outperformed the TMR in terms of energy generation potential (205.6 kJ d-1 vs. 125 kJ d-1). Phase separation in the two-stage system increased bioenergy generation by up to 43.5% at lower substrate concentrations (7.5 g COD L-1), with hydrogen (H2) generation playing a critical role in this enhancement. Additionally, the two-stage system produced value-added products, including ethanol (2.3 g L-1), volatile organic acids (3.2 g lactate L-1), and H2 (0.6-2.7 L H2 L-1 d-1). Microbial analysis revealed that Thermoanaerobacterium, Caldanaerobius, and Clostridium were dominant at 5 g COD L-1, while Lactobacillus prevailed at concentrations of ≥ 15 g COD L-1. The primary methane producers in the single-stage system were Methanosarcina, Methanoculleus, and Methanobacterium, whereas Methanothermobacter, Bathyarchaeia, and Methanosarcina dominated in the two-stage system.


Assuntos
Reatores Biológicos , Metano , Melaço , Saccharum , Saccharum/química , Metano/metabolismo , Reatores Biológicos/microbiologia , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Biocombustíveis
6.
Biodegradation ; 36(1): 5, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470883

RESUMO

Pentachlorophenol (PCP) is a highly toxic and carcinogenic compound with significant environmental impact, necessitating effective treatment technologies. This study evaluates PCP removal mechanisms, including adsorption and biodegradation, during the startup of a horizontal-flow anaerobic immobilized biomass reactor (HAIB), and examines the impact of PCP concentration on microbial diversity using denaturing gradient gel electrophoresis (DGGE). The primary mechanism for PCP removal in the HAIB was adsorption, effectively described by the Freundlich isotherm model. Adsorption efficiency ranged from 86 to 104% for PCP concentrations between 0.2 and 5.0 mg/L, and 46% to 64% for concentrations between 0.098 and 0.05 mg/L. Additionally, PCP degradation intermediates such as 2,3-DCP and 2,6-DCP were detected, indicating that biodegradation also occurred in the HAIB. Organic matter degradation averaged 81 ± 9%, and methane content in the biogas averaged 46 ± 9%, confirming the anaerobic process. No inhibition of microbial activity was observed due to PCP toxicity, even at a PCP load of 5 mg PCP/g STV per day. While the archaeal community showed only slight changes, with similarity coefficients ranging from 88 to 95%, the bacterial community was significantly affected by PCP, with similarity coefficients ranging from 18 to 50%. Bacterial groups were responsible for the initial PCP degradation, while the archaeal community was involved in metabolizing the resulting byproducts. The use of indigenous inoculum from the Santos-São Vicente estuary demonstrated its potential for effective PCP removal. Polyurethane foam proved to be an effective support material, enhancing the adsorption process and reducing PCP toxicity to the microbial consortium. This study provides valuable insights into PCP adsorption and biodegradation mechanisms in HAIB, highlighting the effectiveness of indigenous inoculum and polyurethane foam for PCP removal.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Microbiota , Pentaclorofenol , Poluentes Químicos da Água , Pentaclorofenol/metabolismo , Reatores Biológicos/microbiologia , Adsorção , Anaerobiose , Poluentes Químicos da Água/metabolismo , Biomassa , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Archaea/metabolismo
7.
Environ Sci Pollut Res Int ; 31(49): 58687-58719, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316211

RESUMO

The global shift towards sustainable waste management has led to an intensified exploration of co-digestion and co-treatment of sewage and organic waste using anaerobic reactors. This review advocates for an integrated approach where organic waste is treated along with the sewage stream, as a promising solution to collect, treat, and dispose of organic waste, thereby reducing the environmental and economic burden on municipalities. Various efforts, ranging from laboratory to full-scale studies, have been undertaken to assess the feasibility and impacts of co-digestion or co-management of sewage and organic waste, using technologies such as up-flow anaerobic sludge blankets or anaerobic membrane bioreactors. However, there has been no consensus on a standardized definition of co-digestion, nor a comprehensive understanding of its impacts. In this paper, we present a comprehensive review of the state-of-the-art in liquid anaerobic co-digestion systems, which typically operate at 1.1% total solids. The research aims to investigate how the integration of organic waste into mainstream anaerobic-based sewage treatment plants has the potential to enhance the sustainability of both sewage and organic waste management. In addition, utilizing the surplus capacity of existing anaerobic reactors leads to significant increases in methane production ranging from 190 to 388% (v/v). However, it should be noted that certain challenges may arise, such as the necessity for the development of tailored strategies and regulatory frameworks to enhance co-digestion practices and address the inherent challenges.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Gerenciamento de Resíduos/métodos , Metano
8.
Rev Argent Microbiol ; 56(4): 394-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39299828

RESUMO

Tackling the dissemination of antibiotic resistance is one of the main global challenges. Manures from animal production are a recognized source of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) requiring appropriate treatment methods. One of the main approaches for manure treatment is anaerobic digestion (AD). Meta-analyses have demonstrated that AD can significantly reduce the load of ARGs. However, antibiotics, ARGs and MGEs still remain in the final product (digestate). A sustainable agricultural use of digestates under the One Health framework requires wide assessments of their effects in the soil resistome. The objective of this review was to present the state of the art of digestate effects on ARGs of agricultural soils, focusing exclusively on digestates from animal manures. A systematic review was conducted. The examination of the resulting literature indicated that although temporal decays are observed for a variety of ARGs in single-application and repeated-applications experiments, for certain ARGs the pre-treatment or control levels are not restored. However, the low number of studies and the heterogeneous experimental conditions preclude a clear understanding of the fate of ARGs in soil and their risk for agroecosystems. The inclusion of multiple MGEs and the assessment of the long-term influence of digestates on soil properties and microbial communities could be keystones for a better understanding of the risks associated with digestate-induced changes in the soil resistome.


Assuntos
Agricultura , Resistência Microbiana a Medicamentos , Esterco , Microbiologia do Solo , Esterco/microbiologia , Resistência Microbiana a Medicamentos/genética , Anaerobiose , Animais , Solo , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia
9.
Biotechnol Lett ; 46(6): 997-1011, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39261355

RESUMO

To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.


Assuntos
Reatores Biológicos , Metano , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Hidrogênio/metabolismo , Biocombustíveis , Acetatos/metabolismo , Microbiota
10.
Water Sci Technol ; 90(4): 1181-1197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215731

RESUMO

Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.


Assuntos
Compostos de Anilina , Biodegradação Ambiental , Compostos de Anilina/toxicidade , Compostos de Anilina/metabolismo , Anaerobiose , Cinética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
11.
Microb Biotechnol ; 17(8): e70000, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39160605

RESUMO

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Assuntos
Metano , Oxirredutases , Oxigenases , Proteínas Recombinantes , Metano/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxirredução , Anaerobiose , Aerobiose , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo
12.
Curr Microbiol ; 81(10): 323, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179725

RESUMO

This study characterized the microbial community present in the bench scale horizontal-flow anaerobic immobilized biomass bioreactor (HAIB) used in the removal of limonene, a compound present in citrus processing industries. The HAIB was filled with three support materials (coal, polyurethane foam and gravel) which were inoculated with anaerobic sludge. The limonene initial concentration on the substrate ranged from 10 mg/L to 500 mg/L. The analysis of 16S rRNA showed the presence of 22 OTUs (based on ⩾97% sequence identity), distributed in 57 genera, considering three different matrices. Higher relative abundance of phyla was observed as Synergistetes (43-57%), Proteobacteria (32-42%), Firmicutes (7-8%) and Acidobacteria (2-3%). Actinobacteria, Bacterioidetes and Chloroflexi had the lowest relative abundances between 1 and 2%. Synergistaceae family was the predominated group (47.6%-mineral coal, 55.9%-foam and 43.5%-gravel) followed by Syntrophaceae (2.4%-coal, 1.5%-foam and 2.2%-gravel), which kept a syntrophic relationship with methanogenesis (hydrogenotrophic methanogens) to maintain the anaerobic digestion. Among the Proteobacteria phylum, the Pseudomonadaceae family was predominant in the system with 12.0% on coal, 13.1% on foam, and 20.4% on gravel. The metabolic versatility of Pseudomonas sp. makes them an important bioremediation agent by being capable of metabolizing xenobiotic and chemical toxic compounds, thus having great prominence for the limonene removal in the HAIB bioreactor.


Assuntos
Bactérias , Biomassa , Reatores Biológicos , Limoneno , RNA Ribossômico 16S , Reatores Biológicos/microbiologia , Limoneno/metabolismo , Anaerobiose , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Filogenia , Esgotos/microbiologia , Microbiota
13.
Mem Inst Oswaldo Cruz ; 119: e240058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39082582

RESUMO

The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell's survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.


Assuntos
Endocitose , Entamoeba histolytica , Giardia lamblia , Endocitose/fisiologia , Trichomonas vaginalis , Tritrichomonas foetus , Anaerobiose , Animais
14.
Curr Microbiol ; 81(8): 255, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955830

RESUMO

Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.


Assuntos
Bactérias , Celulase , Metano , Poligalacturonase , Perus , Anaerobiose , Animais , Metano/metabolismo , Celulase/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Perus/microbiologia , Poligalacturonase/metabolismo , Hidrólise , Lignina/metabolismo , Agricultura , Metagenômica
15.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895814

RESUMO

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Anaerobiose , Águas Residuárias/química , Biota , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Eliminação de Resíduos Líquidos/métodos , Chironomidae/efeitos dos fármacos , Chironomidae/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo
16.
Anaerobe ; 88: 102877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866129

RESUMO

OBJECTIVES: This lab-scale study aimed to investigate the effect of total ammonia nitrogen (TAN) stress on the methanogenic activity and the taxonomic and functional profiles of the microbial community of anaerobic sludge (AS) from a full-scale bioreactor. METHODS: The AS was subjected to a stepwise increase in TAN every 14 days at concentrations of 1, 2, 2.5, 3, 3.5, and 4 g TAN/L (Acclimated-AS or AAS). This acclimation stage was followed by an ammonia stress stage (4 g/L). A blank-AS (BAS) was maintained without TAN during the acclimation stage. In the second stress stage (ST), the BAS was divided into two new treatments: a control (BAS') and one that received a shock load of TAN of 4 g/L (SBAS'). Methane production was measured, and a metagenomic analysis was conducted to describe the microbial community. RESULTS: A decrease in the relative abundance of Methanothrix soehngenii of 16 % was related to a decrease of 23 % in the methanogenic capacity of AAS when comparing with the final stage of BAS. However, recovery was observed at 3.5 g TAN/L, and a shift to methylotrophic metabolism occurred, indicated by a 4-fold increase in abundance of Methanosarcina mazei. The functional analysis of sludge metagenomes indicated that no statistical differences (p > 0.05, RM ANOVA) were found in the relative abundance of methanogenic genes that initiate acetoclastic and hydrogenotrophic pathways (acetyl-CoA synthetase, ACSS; acetate kinase, ackA; phosphate acetyltransferase, pta; and formylmethanofuran dehydrogenase subunit A, fwdA) into the BAS and AAS during the acclimation phase. The same was observed between groups of genes associated with methanogenesis from methylated compounds. In contrast, statistical differences (p < 0.05, one-way ANOVA) in the relative abundance of these genes were recorded during ST. The functional profiles of the genes involved in acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways were brought to light for acclimatation and stress experimental stages. CONCLUSIONS: TAN inhibited methanogenic activity and acetoclastic metabolism. The gradual acclimatization to TAN leads to metabolic and taxonomic changes that allow for the subsequent recovery of methanogenic functionality. The study highlights the importance of adequate management of anaerobic bioprocesses with high nitrogen loads to maintain the methanogenic functionality of the microbial community.


Assuntos
Amônia , Reatores Biológicos , Metano , Esgotos , Metano/metabolismo , Amônia/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Nitrogênio/metabolismo
17.
Bioresour Technol ; 406: 130961, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876281

RESUMO

This study investigates the potential of humic substances (HS) and graphene oxide (GO), as extracellular electron acceptors (EEA) for nitrification, aiming to explore alternatives to sustain this process in wastewater treatment systems. Experimental results demonstrate the conversion of ammonium to nitrate (up to 87 % of conversion) coupled to the reduction of either HS or GO by anaerobic consortia. Electron balance confirmed the contribution of HS and GO to ammonium oxidation. Tracer analysis in incubations performed with 15NH4+ demonstrated 15NO3- as the main product with a minor fraction ending as 29N2. Phylogenetic analysis identified Firmicutes, Euryarchaeota, and Chloroflexi as the microbial lineages potentially involved in anoxic nitrification linked to HS reduction. This study introduces a new avenue for research in which carbon-based materials with electron-accepting capacity may support the anoxic oxidation of ammonium, for instance in bioelectrochemical systems in which carbon-based anodes could support this novel process.


Assuntos
Carbono , Nitrificação , Carbono/química , Elétrons , Grafite/química , Filogenia , Oxirredução , Compostos de Amônio/metabolismo , Anaerobiose , Nitratos/metabolismo , Bactérias/metabolismo
18.
Braz J Microbiol ; 55(3): 2253-2266, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38775907

RESUMO

Variation in fermentation time may be an essential alternative to provide coffee beverages with different and unique sensory profiles. This work investigated the microbiological, chemical, and sensory changes in coffees submitted to different fermentation durations (0, 24, 48, 72, and 96 h). Self-induced anaerobiosis fermentation (SIAF) was used, and two treatments were performed: spontaneous fermentation and inoculation with S. cerevisiae CCMA0543. Microbiological analyses were performed, and the permanence of the inoculum was monitored. Chromatography (sugars, organic acids, and volatile compounds) was analyzed, and sensory analysis (temporal dominance of sensations - TDS) was performed. A total of 228 isolates were identified during spontaneous fermentation. The dominant bacteria and yeasts were Leuconostoc mesenteroides, Lactiplantibacillus plantarum, Staphylococcus warneri, Bacillus sp., Torulaspora delbrueckii, Hanseniaspora uvarum, and Meyerozyma caribbica. High concentrations of citric (18.67 mg.g- 1) and succinic (5.04 mg.g- 1) acids were detected at 96 h in SIAF fermentation. One hundred twenty-one volatile compounds were detected, but 22 were detected only in inoculated coffees. In spontaneous fermentation, 48 h of fermentation showed woody notes, while 72 h showed chestnuts. However, in the inoculated coffee, 72 h of fermentation showed high fruity dominance, and 96 h of fermentation was the only one with herbaceous notes. In addition, yeast inoculation increased the intensity of caramel notes in the first 48 h and increased the fruity flavor after 72 h of fermentation. Therefore, the type of fermentation (with or without inoculation) and the chosen fermentation time will depend on the sensorial profile the producer intends to obtain.


Assuntos
Bactérias , Fermentação , Paladar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Anaerobiose , Café/microbiologia , Café/química , Humanos , Fatores de Tempo , Microbiologia de Alimentos , Manipulação de Alimentos , Leveduras/metabolismo , Leveduras/isolamento & purificação , Leveduras/classificação
19.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575013

RESUMO

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Assuntos
Carvão Vegetal , Fertilizantes , Fertilizantes/análise , Carvão Vegetal/química , Anaerobiose , Agricultura/métodos , Nitrogênio/análise , Potássio/análise , Fósforo/análise , Biocombustíveis
20.
Sci Total Environ ; 923: 171368, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438040

RESUMO

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Anaerobiose , Sedimentos Geológicos/química , Compostos Férricos , Ecossistema , RNA Ribossômico 16S/genética , México , Óxidos , Oxirredução , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA