Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111.867
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(10): 1119-1124, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33059811

RESUMO

OBJECTIVE: To study the expression of angiotensin-converting enzyme 2 (ACE2) and other key molecules of the RAS pathway in normal mice at different developmental stages, and to provide ideas for understanding the infection mechanism of coronavirus disease 2019 (COVID-19) as well as the diagnosis and treatment of children with COVID-19. METHODS: The mice at different developmental stages were enrolled, including fetal mice (embryonic days 14.5 and 18.5), neonatal mice (0, 3, 7, 14, and 21 days old), young mice (28 and 42 days old), and adult mice (84 days old). The lung tissues of all fetal mice from 4 pregnant mice were collected at each time point in the fetal group. Four mice were sampled in other age groups at each time point. Whole transcriptome resequencing was used to measure the mRNA expression of AGT, ACE, ACE2, Renin, Agtr1a, Agtr1b, Agtr2, and Mas1 in mouse lung tissue. RESULTS: The expression of ACE2 in the lungs showed changes from embryonic stage to adult stage. It increased gradually after birth, reached a peak on day 3 after birth, and reached a nadir on day 14 after birth (P<0.05). The expression of AGT reached a peak on days 0 and 7 after birth and reached a nadir on day 21 after birth (P<0.05). The expression of ACE increased rapidly after birth and reached a peak on day 21 after birth (P<0.05). Agtr1a expression reached a peak on day 21 after birth (P<0.05). Agtr2 expression gradually decreased to a low level after birth. Renin, Agtr1b, and Mas1 showed low expression in lung tissues at all developmental stages. CONCLUSIONS: At different developmental stages of mice, ACE2 has dynamic expression changes, with high expression in early neonatal and adult mice. The other key molecules of the RAS pathway have their own expression patterns. These suggest that the difference in clinical features between children and adults with COVID-19 might be associated with the different expression levels of ACE2 in the different stages, and further studies are needed for the mechanism.


Assuntos
Fatores Etários , Infecções por Coronavirus/patologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Animais , Animais Recém-Nascidos , Betacoronavirus , Feminino , Feto , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Pandemias , Gravidez , Sistema Renina-Angiotensina
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(5): 676-682, 2020 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-32897202

RESUMO

OBJECTIVE: To investigate the effects of etomidate on electrophysiological properties and nicotinic acetylcholine receptors (nAChRs) of ventral horn neurons in the spinal cord. METHODS: The spinal cord containing lumbosacral enlargement was isolated from 19 neonatal SD rats aged 7-12 days. The spinal cord were sliced and digested with papain (0.18 g/30 mL artificial cerebrospinal fluid) and incubated for 40 min. At the ventral horn, acute mechanical separation of neurons was performed with fire-polished Pasteur pipettes, and perforated patch-clamp recordings combined with pharmacological methods were employed on the adherent healthy neurons. In current-clamp mode, the spontaneous action potential (AP) of the ventral horn neurons in the spinal cord was recorded. The effects of pretreatment with different concentrations of etomidate on AP recorded in the ventral horn neurons were examined. In the voltage-clamp mode, nicotine was applied to induce inward currents in the ventral horn neurons, and the effect of pretreatment with etomidate on the inward currents induced by nicotine were examined with different etomidate concentrations, different holding potentials and different use time. RESULTS: The isolated ventral horn neurons were in good condition with large diverse somata and intact processes. The isolated spinal ventral horn neurons (n=21) had spontaneous action potentials, and were continuously perfused for 2 min with 0.3, 3.0 and 30.0 µmol/L etomidate. Compared with those before administration, the AP amplitude, spike potential amplitude and overshoot were concentration-dependently suppressed (P < 0.01), and spontaneous discharge frequency was obviously reduced (P < 0.01, n=12). The APs of the other 9 neurons were completely abolished by etomidate at 3.0 or 30 µmol/L. At the same holding potential (VH=-70 mV), pretreatment with 0.3, 3.0 or 30.0 µmol/L etomidate for 2 min concentration-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine (P < 0.01, n=7). At the holding potentials of - 30, - 50, and - 70 mV, pretreatment with 30.0 µmol/L etomidate for 2 min voltage-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine (P < 0.01, n=6 for each holding potential). During the 6 min of 30.0 µmol/L etomidate pretreatment, the clamped cells were exposed to 0.4 mmol/L nicotine for 4 times at 0, 2, 4, and 6 min (each exposure time was 2 s), and the nicotinic current amplitude decreased gradually as the number of exposures increased. But at the same concentration, two nicotine exposures (one at the beginning and the other at the end of the 6 min pretreatment) resulted in a significantly lower inhibition rate compared with 4 nicotine exposures (P < 0.01, n=6). CONCLUSIONS: etomidate reduces the excitability of the spinal ventral neurons in a concentration-dependent manner and suppresses the function of nAChR in a concentration-, voltage-, and use-dependent manner.


Assuntos
Neurônios , Animais , Animais Recém-Nascidos , Etomidato , Técnicas de Patch-Clamp , Ratos , Medula Espinal
5.
Nat Commun ; 11(1): 4375, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873797

RESUMO

In the testis, interstitial macrophages are thought to be derived from the yolk sac during fetal development, and later replaced by bone marrow-derived macrophages. By contrast, the peritubular macrophages have been reported to emerge first in the postnatal testis and solely represent descendants of bone marrow-derived monocytes. Here, we define new monocyte and macrophage types in the fetal and postnatal testis using high-dimensional single-cell analyses. Our results show that interstitial macrophages have a dominant contribution from fetal liver-derived precursors, while peritubular macrophages are generated already at birth from embryonic precursors. We find that bone marrow-derived monocytes do not substantially contribute to the replenishment of the testicular macrophage pool even after systemic macrophage depletion. The presence of macrophages prenatally, but not postnatally, is necessary for normal spermatogenesis. Our multifaceted data thus challenge the current paradigms in testicular macrophage biology by delineating their differentiation, homeostasis and functions.


Assuntos
Macrófagos/fisiologia , Testículo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Knockout , Monócitos/fisiologia , Análise de Célula Única , Espermatogênese/fisiologia
6.
Vet Parasitol Reg Stud Reports ; 21: 100435, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32862896

RESUMO

Faecal specimens from 36 scouring neonatal calves from two dairy farms located in the Al Ain region of the UAE were screened with pathogen-specific antigen ELISA for Cryptosporidium parvum, Escherichia coli K99, rotavirus, and coronavirus. Additionally, faecal smears were stained with modified-acid-fast for Cryptosporidium oocysts, and the VITEK 2 system plus Gram's stain used to identify bacteria isolated from the faecal samples. Farm management practices were also evaluated during a farm visit. Of the 36 calves, 29, 13, 5, and 6 were positive for C. parvum, E. coli K99, bovine coronavirus, and rotavirus antigens respectively, while 27 were positive for Cryptosporidium oocysts. In various combinations, mixed infections were detected in 20/36 calves. This is the first report of C. parvum, E. coli K99, Salmonella spp., rotavirus, and coronavirus in ≤14-days-old scouring neonatal dairy calves from the UAE. Molecular characterization of these pathogens and nationwide epidemiological calf scour studies are recommended.


Assuntos
Doenças dos Bovinos/epidemiologia , Criptosporidiose/epidemiologia , Cryptosporidium parvum , Animais , Animais Recém-Nascidos/microbiologia , Animais Recém-Nascidos/parasitologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino , Indústria de Laticínios , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Feminino , Masculino , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Salmonelose Animal/epidemiologia , Emirados Árabes Unidos/epidemiologia
7.
Benef Microbes ; 11(5): 477-488, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877228

RESUMO

Neonatal calf diarrhoea is one of the challenges faced by intensive farming, and probiotics are considered a promising approach to improve calves' health. The objective of this study was to evaluate the effect of potential probiotic lactobacilli on new-born dairy calves' growth, diarrhoea incidence, faecal score, cytokine expression in blood cells, immunoglobulin A (IgA) levels in plasma and faeces, and pathogen abundance in faeces. Two in vivo assays were conducted at the same farm in two annual calving seasons. Treated calves received one daily dose of the selected lactobacilli (Lactobacillus reuteri TP1.3B or Lactobacillus johnsonii TP1.6) for 10 consecutive days. A faecal score was recorded daily, average daily gain (ADG) was calculated, and blood and faeces samples were collected. Pathogen abundance was analysed by absolute qPCR in faeces using primers directed at Salmonella enterica, rotavirus, coronavirus, Cryptosporidium parvum and three Escherichia coli virulence genes (eae, clpG and Stx1). The faecal score was positively affected by the administration of both lactobacilli strains, and diarrhoea incidence was significantly lower in treated calves. No differences were found regarding ADG, cytokine expression, IgA levels and pathogen abundance. Our findings showed that oral administration of these strains could improve gastrointestinal health, but results could vary depending on the calving season, which may be related to pathogen seasonality and other environmental effects.


Assuntos
Doenças dos Bovinos/terapia , Diarreia , Lactobacillus johnsonii/metabolismo , Lactobacillus reuteri/metabolismo , Probióticos/uso terapêutico , Animais , Animais Recém-Nascidos , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Criptosporidiose/prevenção & controle , Citocinas/sangue , Indústria de Laticínios , Diarreia/prevenção & controle , Diarreia/terapia , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Fezes/virologia , Trato Gastrointestinal/microbiologia , Imunoglobulina A/sangue , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/veterinária , Salmonelose Animal/prevenção & controle
8.
PLoS One ; 15(9): e0238038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32870925

RESUMO

In the dairy industry, feeding management has considerable influence on calf behavioral development, yet there is limited understanding of how aspects of diet or accommodating more varied feeding behavior may affect cognitive development in young calves. The objective of this study was to evaluate effects of provision and presentation of hay on the cognitive ability of pre-weaned dairy calves. Individually-housed Holstein heifer calves were assigned at birth to 1 of 3 treatments: pelleted starter only (n = 10), hay (chopped to 5 cm) and starter provided in separate buckets (n = 12), or hay and starter offered as a mixture (n = 11). During week 5 of age, calves were tested daily in a learning task consisting of a T-maze with a milk reward (0.2 L milk) placed in one arm. Calves were subjected to an initial learning and reversal learning stage, where the reward location was changed to the opposite arm of the maze. Calves received 5 sessions/d until they met learning criterion (moving directly to correct side in 3 consecutive sessions) for initial and reversal learning. Dietary treatment did not affect pass rate or the number of sessions required to pass the initial learning stage. During the reversal learning stage, calves provided only starter had a lower pass rate (0.038, during first 8 testing session) early during testing than calves provided hay separately (0.20; P = 0.020) and tended to have a lower pass rate than calves provided hay as a mixture (0.14; P = 0.057). Calves provided only starter also tended to require more sessions to meet the learning criterion (15.8) than both calves provided hay separately (10.8; P = 0.089) and as a mixture (11.8; P = 0.10). Calves provided hay also kicked less and spent more time sniffing or licking the testing area. The results of this experiment indicate that provision of hay may affect behavioral flexibility in dairy calves.


Assuntos
Ração Animal/análise , Comportamento Animal , Cognição/fisiologia , Indústria de Laticínios/métodos , Dieta/veterinária , Comportamento Alimentar , Criação de Animais Domésticos , Animais , Animais Recém-Nascidos , Bovinos , Indústria de Laticínios/normas , Indústria de Laticínios/estatística & dados numéricos , Desmame
9.
PLoS Biol ; 18(9): e3000848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898131

RESUMO

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Miocárdio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Sarcômeros/metabolismo
10.
Nat Commun ; 11(1): 3929, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764559

RESUMO

Surfactant protein B (SP-B) deficiency is an autosomal recessive disorder that impairs surfactant homeostasis and manifests as lethal respiratory distress. A compelling argument exists for gene therapy to treat this disease, as de novo protein synthesis of SP-B in alveolar type 2 epithelial cells is required for proper surfactant production. Here we report a rationally designed adeno-associated virus (AAV) 6 capsid that demonstrates efficiency in lung epithelial cell transduction based on imaging and flow cytometry analysis. Intratracheal administration of this vector delivering murine or human proSFTPB cDNA into SP-B deficient mice restores surfactant homeostasis, prevents lung injury, and improves lung physiology. Untreated SP-B deficient mice develop fatal respiratory distress within two days. Gene therapy results in an improvement in median survival to greater than 200 days. This vector also transduces human lung tissue, demonstrating its potential for clinical translation against this lethal disease.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Parvovirinae/genética , Proteinose Alveolar Pulmonar/congênito , Proteína B Associada a Surfactante Pulmonar/deficiência , Animais , Animais Recém-Nascidos , Linhagem Celular , Modelos Animais de Doenças , Feminino , Expressão Gênica , Células HEK293 , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Precursores de Proteínas/genética , Proteolipídeos/genética , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/terapia , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , Transdução Genética
11.
Yonsei Med J ; 61(8): 660-669, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32734729

RESUMO

PURPOSE: Neonatal hypoxic ischemic encephalopathy (HIE) is an essential factor underlying neonatal death and disability. This study sought to explore the role of miR-146b-5p in regulating neonatal HIE. MATERIALS AND METHODS: In vitro and in vivo HIE models were established in PC12 cells and 10-day neonatal Sprague Dawley rats, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess miR-146b-5p expression and inflammatory factors [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] in brain lesions and PC12 cells, while enzyme-linked immunosorbent assay was employed to detect the expression of oxidative stress factors (SOD and GSH-Px). Gain- and loss-assays of miR-146b-5p were conducted to verify its role in modulating the viability and apoptosis of PC12 cells under oxygen-glucose deprivation (OGD) treatment. Expression of TLR4, IRAK1, TRAF6, TAK1, and NF-κB were examined by qRT-PCR and/or Western blot. Dual luciferase activity assay was conducted to identify relationships between miR-146b-5p and IRAK1. RESULTS: In the HIE models, significant oxidative stress and inflammatory responses emerged upon upregulation of TLR4/IRAK1/TRAF6/TAK1/NF-κB signaling. Overexpression of miR-146b-5p greatly inhibited OGD-induced PC12 cell injury, inflammatory responses, and oxidative stress. Inhibiting miR-146b-5p, however, had the opposite effects. IRAK1 was found to be a target of miR-146b-5p, and miR-146b-5p overexpression suppressed the activation of IRAK1/TRAF6/TAK1/NF-κB signaling. CONCLUSION: This study demonstrated that miR-146b-5p overexpression alleviates HIE-induced neuron injury by inhibiting the IRAK1/TRAF6/TAK1/NF-κB pathway.


Assuntos
Hipóxia-Isquemia Encefálica/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Sequência de Bases , Modelos Animais de Doenças , Regulação para Baixo/genética , Glucose/deficiência , Inflamação/patologia , MicroRNAs/genética , Estresse Oxidativo , Oxigênio , Células PC12 , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
12.
Yonsei Med J ; 61(8): 679-688, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32734731

RESUMO

PURPOSE: Hyperoxia-induced bronchopulmonary dysplasia (BPD) is a lung disease in preterm infants. We aimed to explore the role of cell division cycle 2 (CDC2) on histopathologic changes of lung tissues, as well as the viability, apoptosis, and inflammation of lung cells in rats with hyperoxia-induced BPD. MATERIALS AND METHODS: Hyperoxia-induced BPD in neonatal rats and hyperoxia-induced A549 cells were constructed. The mRNA expression of CDC2 was detected by qRT-PCR. The fibrosis score of lung tissues was evaluated by hematoxylin-eosin staining. The viability and apoptosis of A549 cells were detected by cell counting kit-8 assay and flow cytometry. The protein expressions of bcl-2, bax, and caspase-3 were measured by western blot. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in A549 cells were detected by enzyme-linked immunosorbent assay. The pcDNA3.1-CDC2 was injected into rats to determine the role of CDC2 in hyperoxia-induced BPD in vivo. RESULTS: The expression of CDC2 was decreased in lung tissues of neonatal rats with hyperoxia-induced BPD and hyperoxia-induced A549 cells. The fibrosis score was increased in the lung tissues of neonatal rats with hyperoxia-induced BPD. Overexpression of CDC2 increased the viability and protein expression of bcl-2; and inhibited the apoptosis, inflammation, and protein expression of bax and caspase-3 in hyperoxia-induced A549 cells. Up-regulation of CDC2 alleviated the histopathologic changes in lung tissues of neonatal rats with hyperoxia-induced BPD. CONCLUSION: Overexpression of CDC2 promoted the viability and inhibited the apoptosis and inflammation of hyperoxia-induced cells, and alleviated the histopathologic changes of lung tissues in neonatal rats with hyperoxia-induced BPD.


Assuntos
Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/prevenção & controle , Proteína Quinase CDC2/metabolismo , Hiperóxia/complicações , Células A549 , Animais , Animais Recém-Nascidos , Apoptose , Ciclo Celular , Sobrevivência Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hiperóxia/patologia , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Ratos Wistar
13.
PLoS One ; 15(8): e0237182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764797

RESUMO

Necrotizing enterocolitis is the most common gastrointestinal disorder in premature neonates. This disease is characterized by massive epithelial necrosis, gut barrier dysfunction and improper mucosal defense development. Studies have shown that probiotic administration can decrease NEC incidence and mortality. The proposed mechanisms of probiotics for the prevention of NEC are: promotion of intestinal development; improved barrier function through decreased apoptosis and improved mucin production; decreased expression of proinflammatory cytokines IL6, IL8, and TNFα, and modulation of microbiota dysbiosis in preterm infants. However, reported sepsis in the immunocompromised preterm host has deterred routine prophylactic administration of probiotics in the neonatal intensive care unit. We hypothesize that maternal administration of probiotics to pregnant mouse dams can recapitulate the beneficial effects observed in neonates fed with probiotics directly. We exposed pregnant mice to the probiotics and monitored the changes in the developing intestines of the offspring. Pregnant mice were fed daily with the probiotics Lactobacillus acidophilus and Bifidobacterium infantis (LB) from embryonic day15 to 2-week-old postnatally. Intraperitoneal administration of IL-1ß in the pups was used to model proinflammatory insults. Sera were collected at 2 weeks of age and evaluated for inflammatory cytokines by enzyme-linked-immunosorbent-assay and gut permeability by Fluorescein isothiocyanate-dextran tracer assay. Ileal tissues were collected for the evaluation of apoptosis and proliferation of the intestinal epithelium; as well as mucin and tight junction integrity at mucosal surface by immunofluorescent staining. We find that maternal LB exposure facilitated intestinal epithelial cell differentiation, prevented loss of mucin and preserved the intestinal integrity and barrier function and decreased serum levels of IL-1ß, TNF-α and IL-6 in the preweaned offsprings. in LB exposed pups. We demonstrate that maternal probiotic supplementation promotes gut maturation in developing offspring. This is potentially a safe alternative therapy to induce intestinal maturation and prevent prematurity-associated neonatal disorders.


Assuntos
Enterocolite Necrosante/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Exposição Materna , Probióticos/administração & dosagem , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/microbiologia , Bifidobacterium longum subspecies infantis , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Fezes/microbiologia , Feminino , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-1beta/administração & dosagem , Interleucina-1beta/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lactobacillus acidophilus , Camundongos
14.
Nat Commun ; 11(1): 3955, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769998

RESUMO

Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.


Assuntos
Microambiente Celular , Miocárdio/patologia , Cicatrização , Animais , Animais Recém-Nascidos , Capilares/patologia , Agregação Celular , Morte Celular , Linhagem da Célula , Tamanho Celular , Citoproteção , Células Progenitoras Endoteliais/citologia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos NOD , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Estresse Oxidativo , Comunicação Parácrina , Ratos Sprague-Dawley , Transcrição Genética
15.
Life Sci ; 258: 118197, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781059

RESUMO

AIMS: Patients with neurodevelopmental disorders, usually suffer from bone diseases. Many studies have revealed a higher risk of fracture after atypical antipsychotic drug Risperidone (RIS) treatment, which is usually used to treat such disorders. It remains debatable whether neurodevelopmental disorders by itself are the cause of bone diseases or pharmacotherapy may be the reason. MATERIALS AND METHODS: This study attempts to evaluate the biomechanical, histological, stereological, and molecular properties of bones in the offspring of Lipopolysaccharide (LPS) and saline-treated mothers that received saline, drug vehicle or the atypical antipsychotic drug risperidone (RIS) at different days of postnatal development. After postnatal drug treatment, animals were assessed for autistic-like behaviors. Then their bones were taken for evaluations. RESULTS: Maternal LPS exposure resulted in deficits in all behavioral tests and RIS ameliorated these behaviors (p < 0.01& p < 0.05). The administration of LPS and RIS individually led to a significant decrease in the biomechanical parameters such as bone stiffness, strength and the energy used to fracture of bone. The numerical density of osteocalcin-positive cells were significantly decreased in these groups. These rats also had decreased RUNX2 and osteocalcin gene expression. When LPS rats were treated with RIS, these conditions were accelerated (p < 0.001). DISCUSSIONS: The results of our preclinical study, consistent with previous studies in animals, explore that autistic-like deficits induced by prenatal exposure to LPS, can reduce bone stability and bone mass similar to those observed in neurodevelopmental disorders, and, for the first time, reveal that this condition worsened when these animals were treated with RIS.


Assuntos
Transtorno Autístico/induzido quimicamente , Reabsorção Óssea/induzido quimicamente , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal/patologia , Risperidona/efeitos adversos , Animais , Animais Recém-Nascidos , Transtorno Autístico/sangue , Transtorno Autístico/complicações , Comportamento Animal , Fenômenos Biomecânicos , Reabsorção Óssea/sangue , Reabsorção Óssea/fisiopatologia , Citocinas/sangue , Citocinas/genética , Feminino , Lipopolissacarídeos/administração & dosagem , Masculino , Atividade Motora , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Risperidona/administração & dosagem , Comportamento Estereotipado
16.
Anesthesiology ; 133(3): 595-610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32701572

RESUMO

BACKGROUND: Sevoflurane anesthesia induces Tau phosphorylation and cognitive impairment in neonatal but not in adult mice. This study tested the hypothesis that differences in brain Tau amounts and in the activity of mitochondria-adenosine triphosphate (ATP)-Nuak1-Tau cascade between the neonatal and adult mice contribute to the age-dependent effects of sevoflurane on cognitive function. METHODS: 6- and 60-day-old mice of both sexes received anesthesia with 3% sevoflurane for 2 h daily for 3 days. Biochemical methods were used to measure amounts of Tau, phosphorylated Tau, Nuak1, ATP concentrations, and mitochondrial metabolism in the cerebral cortex and hippocampus. The Morris water maze test was used to evaluate cognitive function in the neonatal and adult mice. RESULTS: Under baseline conditions and compared with 60-day-old mice, 6-day-old mice had higher amounts of Tau (2.6 ± 0.4 [arbitrary units, mean ± SD] vs. 1.3 ± 0.2; P < 0.001), Tau oligomer (0.3 ± 0.1 vs. 0.1 ± 0.1; P = 0.008), and Nuak1 (0.9 ± 0.3 vs. 0.3 ± 0.1; P = 0.025) but lesser amounts of ATP (0.8 ± 0.1 vs. 1.5 ± 0.1; P < 0.001) and mitochondrial metabolism (74.8 ± 14.1 [pmol/min] vs. 169.6 ± 15.3; P < 0.001) in the cerebral cortex. Compared with baseline conditions, sevoflurane anesthesia induced Tau phosphorylation at its serine 202/threonine 205 residues (1.1 ± 0.4 vs. 0.2 ± 0.1; P < 0.001) in the 6-day-old mice but not in the 60-day-old mice (0.05 ± 0.04 vs. 0.03 ± 0.01; P = 0.186). The sevoflurane-induced Tau phosphorylation and cognitive impairment in the neonatal mice were both attenuated by the inhibition of Nuak1 and the treatment of vitamin K2. CONCLUSIONS: Higher brain Tau concentrations and lower brain mitochondrial metabolism in neonatal compared with adult mice contribute to developmental stage-dependent cognitive dysfunction after sevoflurane anesthesia.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Sevoflurano/farmacologia , Proteínas tau/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos
17.
J Vis Exp ; (160)2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32628170

RESUMO

Blood vessels form intricate networks in 3-dimensional space. Consequently, it is difficult to visually appreciate how vascular networks interact and behave by observing the surface of a tissue. This method provides a means to visualize the complex 3-dimensional vascular architecture of the lung. To accomplish this, a catheter is inserted into the pulmonary artery and the vasculature is simultaneously flushed of blood and chemically dilated to limit resistance. Lungs are then inflated through the trachea at a standard pressure and the polymer compound is infused into the vascular bed at a standard flow rate. Once the entire arterial network is filled and allowed to cure, the lung vasculature may be visualized directly or imaged on a micro-CT (µCT) scanner. When performed successfully, one can appreciate the pulmonary arterial network in mice ranging from early postnatal ages to adults. Additionally, while demonstrated in the pulmonary arterial bed, this method can be applied to any vascular bed with optimized catheter placement and endpoints.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Microcirculação , Artéria Pulmonar/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL
18.
BMC Vet Res ; 16(1): 264, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727468

RESUMO

BACKGROUND: Neonatal diarrhea remains one of the main causes of morbi-mortality in dairy calves under artificial rearing. It is often caused by infectious agents of viral, bacterial, or parasitic origin. Cows vaccination and colostrum intake by calves during the first 6 h of life are critical strategies to prevent severe diarrhea but these are still insufficient. Here we report the field evaluation of a product based on IgY antibodies against group A rotavirus (RVA), coronavirus (CoV), enterotoxigenic Escherichia coli, and Salmonella sp. This product, named IgY DNT, has been designed as a complementary passive immunization strategy to prevent neonatal calf diarrhea. The quality of the product depends on the titers of specific IgY antibodies to each antigen evaluated by ELISA. In the case of the viral antigens, ELISA antibody (Ab) titers are correlated with protection against infection in calves experimentally challenged with RVA and CoV (Bok M, et al., Passive immunity to control bovine coronavirus diarrhea in a dairy herd in Argentina, 2017), (Vega C, et al., Vet Immunol Immunopathol, 142:156-69, 2011), (Vega C, et al., Res Vet Sci, 103:1-10, 2015). To evaluate the efficiency in dairy farms, thirty newborn Holstein calves were randomly assigned to IgY DNT or control groups and treatment initiated after colostrum intake and gut closure. Calves in the IgY DNT group received 20 g of the oral passive treatment in 2 L of milk twice a day during the first 2 weeks of life. Animals were followed until 3 weeks of age and diarrhea due to natural exposure to infectious agents was recorded during all the experimental time. RESULTS: Results demonstrate that the oral administration of IgY DNT during the first 2 weeks of life to newborn calves caused a delay in diarrhea onset and significantly reduced its severity and duration compared with untreated calves. Animals treated with IgY DNT showed a trend towards a delay in RVA infection with significantly shorter duration and virus shedding compared to control calves. CONCLUSIONS: This indicates that IgY DNT is an effective product to complement current preventive strategies against neonatal calf diarrhea in dairy farms. Furthermore, to our knowledge, this is the only biological product available for the prevention of virus-associated neonatal calf diarrhea.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doenças dos Bovinos/terapia , Diarreia/veterinária , Imunoglobulinas/uso terapêutico , Imunoterapia , Animais , Animais Recém-Nascidos , Anticorpos Antiprotozoários , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Criptosporidiose/prevenção & controle , Indústria de Laticínios , Diarreia/microbiologia , Diarreia/terapia , Diarreia/virologia , Imunização Passiva/métodos , Imunização Passiva/veterinária
19.
Nat Commun ; 11(1): 3692, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703946

RESUMO

Following birth, the neonatal intestine is exposed to maternal and environmental bacteria that successively form a dense and highly dynamic intestinal microbiota. Whereas the effect of exogenous factors has been extensively investigated, endogenous, host-mediated mechanisms have remained largely unexplored. Concomitantly with microbial colonization, the liver undergoes functional transition from a hematopoietic organ to a central organ of metabolic regulation and immune surveillance. The aim of the present study was to analyze the influence of the developing hepatic function and liver metabolism on the early intestinal microbiota. Here, we report on the characterization of the colonization dynamics and liver metabolism in the murine gastrointestinal tract (n = 6-10 per age group) using metabolomic and microbial profiling in combination with multivariate analysis. We observed major age-dependent microbial and metabolic changes and identified bile acids as potent drivers of the early intestinal microbiota maturation. Consistently, oral administration of tauro-cholic acid or ß-tauro-murocholic acid to newborn mice (n = 7-14 per group) accelerated postnatal microbiota maturation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Administração Oral , Animais , Animais Recém-Nascidos , Ácidos e Sais Biliares/administração & dosagem , Absorção Intestinal , Cinética , Lactobacillus/fisiologia , Fígado/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Filogenia , Análise de Componente Principal
20.
PLoS One ; 15(7): e0232963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730272

RESUMO

Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarction LV dilatation, or death, and represents one of the most significant public health morbidities worldwide. Interestingly however, the hearts of neonatal pigs have been shown to regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a recovery period which is accompanied by an increased expression of markers for cell-cycle activity, and suggests that early postnatal myocardial regeneration may be driven in part by the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified signaling pathways known to regulate the cell cycle, and determined of these, the pathways persistently upregulated in response to MI injury. We identified five pathways (mitogen associated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in these pathways were persistently upregulated at day 7 through day 28, suggesting there exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our observations provide a list of key regulators to be examined in future studies targeting cell-cycle activity as an avenue for myocardial regeneration.


Assuntos
Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases , Infarto do Miocárdio/metabolismo , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA