Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.347
Filtrar
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 228-232, 2024 Apr 29.
Artigo em Chinês | MEDLINE | ID: mdl-38952306

RESUMO

Malaria is one of the most serious mosquito-borne infectious diseases in the world. The global malaria control progress has stalled in recent years, which is largely due to the biological threats from the malaria pathogen Plasmodium and the vector Anopheles mosquitoes. This article provides an overview of biological threats to global malaria elimination, including antimalarial drug resistance, deletions in the malaria rapid diagnostic test target P. falciparum histidine-rich protein 2/3 (Pfhrp2/3) genes, vector insecticide resistance and emergence of invasive vector species, so as to provide insights into malaria and vector research and the formulation and adjustment of the malaria control and elimination strategy.


Assuntos
Malária , Mosquitos Vetores , Animais , Malária/prevenção & controle , Malária/transmissão , Malária/parasitologia , Humanos , Mosquitos Vetores/parasitologia , Anopheles/parasitologia , Anopheles/genética , Resistência a Medicamentos/genética
2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 247-250, 2024 Apr 26.
Artigo em Chinês | MEDLINE | ID: mdl-38952310

RESUMO

Driven by international exchanges and climate changes, the invasion and spread of vector Anopheles mosquitoes posed a new challenge to achieving global malaria elimination. Taking the invasion of An. stephensi to exacerbate the malaria epidemic in Africa as an example, this article summarizes the current situation of global Anopheles invasion, and estimates the potential risk of vector Anopheles mosquitoes to unravel the difficulties and challenges in the global malaria elimination program, so as to provide insights into improved early earning and precision control of vector Anopheles mosquito invasion across the world.


Assuntos
Anopheles , Espécies Introduzidas , Malária , Mosquitos Vetores , Malária/prevenção & controle , Malária/transmissão , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Humanos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Erradicação de Doenças/métodos
3.
PLoS One ; 19(7): e0306289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950022

RESUMO

Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.


Assuntos
Anopheles , Mosquitos Vetores , Esporozoítos , Animais , Etiópia/epidemiologia , Humanos , Anopheles/parasitologia , Feminino , Adulto , Esporozoítos/fisiologia , Adolescente , Adulto Jovem , Masculino , Estudos Transversais , Mosquitos Vetores/parasitologia , Criança , Pré-Escolar , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , Pessoa de Meia-Idade , Plasmodium/isolamento & purificação , Lactente , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Prevalência
4.
PLoS One ; 19(7): e0305167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968228

RESUMO

Malaria elimination in Southeast Asia remains a challenge, underscoring the importance of accurately identifying malaria mosquitoes to understand transmission dynamics and improve vector control. Traditional methods such as morphological identification require extensive training and cannot distinguish between sibling species, while molecular approaches are costly for extensive screening. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and cost-effective tool for Anopheles species identification, yet its current use is limited to few specialized laboratories. This study aimed to develop and validate an online reference database for MALDI-TOF MS identification of Southeast Asian Anopheles species. The database, constructed using the in-house data analysis pipeline MSI2 (Sorbonne University), comprised 2046 head mass spectra from 209 specimens collected at the Thailand-Myanmar border. Molecular identification via COI and ITS2 DNA barcodes enabled the identification of 20 sensu stricto species and 5 sibling species complexes. The high quality of the mass spectra was demonstrated by a MSI2 median score (min-max) of 61.62 (15.94-77.55) for correct answers, using the best result of four technical replicates of a test panel. Applying an identification threshold of 45, 93.9% (201/214) of the specimens were identified, with 98.5% (198/201) consistency with the molecular taxonomic assignment. In conclusion, MALDI-TOF MS holds promise for malaria mosquito identification and can be scaled up for entomological surveillance in Southeast Asia. The free online sharing of our database on the MSI2 platform (https://msi.happy-dev.fr/) represents an important step towards the broader use of MALDI-TOF MS in malaria vector surveillance.


Assuntos
Anopheles , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Anopheles/genética , Anopheles/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Malária/transmissão , Sudeste Asiático , Especificidade da Espécie , Código de Barras de DNA Taxonômico/métodos , Tailândia , População do Sudeste Asiático
5.
PLoS One ; 19(7): e0306664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968270

RESUMO

BACKGROUNDS: Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS: The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE: The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.


Assuntos
Adjuvantes Imunológicos , Anopheles , Antígenos CD13 , Vacinas Antimaláricas , Saponinas , Animais , Anopheles/parasitologia , Anopheles/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Camundongos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Saponinas/farmacologia , Saponinas/administração & dosagem , Antígenos CD13/imunologia , Antígenos CD13/metabolismo , Feminino , Plasmodium falciparum/imunologia , Malária/prevenção & controle , Malária/transmissão , Malária/imunologia , Malária/parasitologia , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Camundongos Endogâmicos BALB C , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Malária Falciparum/imunologia , Malária Falciparum/parasitologia
6.
PLoS One ; 19(7): e0305207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968330

RESUMO

Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Interferência de RNA , Animais , Anopheles/genética , Anopheles/parasitologia , Malária/prevenção & controle , Malária/transmissão , Malária/parasitologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Biologia Computacional/métodos , Camundongos , Humanos , Controle de Mosquitos/métodos , Genes Essenciais , Feminino , Plasmodium berghei/genética
7.
PLoS One ; 19(7): e0300368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985752

RESUMO

BACKGROUND: A treated fabric device for emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against night-biting Anopheles and Culex mosquitoes for several months. Here perceptions of community end users provided with such transfluthrin emanators, primarily intended to protect them against day-active Aedes vectors of human arboviruses that often attack people outdoors, were assessed in Port-au-Prince, Haiti. METHODS: Following the distribution of transfluthrin emanators to participating households in poor-to-middle class urban neighbourhoods, questionnaire surveys and in-depth interviews of end-user households were supplemented with conventional and Photovoice-based focus group discussions. Observations were assessed synthetically to evaluate user perceptions of protection and acceptability, and to solicit advice for improving and promoting them in the future. RESULTS: Many participants viewed emanators positively and several outlined various advantages over current alternatives, although some expressed concerns about smell, health hazards, bulkiness, unattractiveness and future cost. Most participants expressed moderate to high satisfaction with protection against mosquitoes, especially indoors. Protection against other arthropod pests was also commonly reported, although satisfaction levels were highly variable. Diverse use practices were reported, some of which probably targeted nocturnal Culex resting indoors, rather than Aedes attacking them outdoors during daylight hours. Perceived durability of protection varied: While many participants noted some slow loss over months, others noted rapid decline within days. A few participants specifically attributed efficacy loss to outdoor use and exposure to wind or moisture. Many expressed stringent expectations of satisfactory protection levels, with even a single mosquito bite considered unsatisfactory. Some participants considered emanators superior to fans, bedsheets, sprays and coils, but it is concerning that several preferred them to bed nets and consequently stopped using the latter. CONCLUSIONS: The perspectives shared by Haitian end-users are consistent with those from similar studies in Brazil and recent epidemiological evidence from Peru that other transfluthrin emanator products can protect against arbovirus infection. While these encouraging sociological observations contrast starkly with evidence of essentially negligible effects upon Aedes landing rates from parallel entomological assessments across Haiti, Tanzania, Brazil and Peru, no other reason to doubt the generally encouraging views expressed herein by Haitian end users could be identified.


Assuntos
Ciclopropanos , Fluorbenzenos , Controle de Mosquitos , Haiti , Animais , Humanos , Controle de Mosquitos/métodos , Feminino , Masculino , Inseticidas , Adulto , Mosquitos Vetores , Aedes/efeitos dos fármacos , Pessoa de Meia-Idade , Inquéritos e Questionários , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos
8.
Parasit Vectors ; 17(1): 290, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971776

RESUMO

BACKGROUND: Aedes and Anopheles mosquitoes are responsible for tremendous global health burdens from their transmission of pathogens causing malaria, lymphatic filariasis, dengue, and yellow fever. Innovative vector control strategies will help to reduce the prevalence of these diseases. Mass rearing of mosquitoes for research and support of these strategies presently depends on meals of vertebrate blood, which is subject to acquisition, handling, and storage issues. Various blood-free replacements have been formulated for these mosquitoes, but none of these replacements are in wide use, and little is known about their potential impact on competence of the mosquitoes for Plasmodium infection. METHODS: Colonies of Aedes aegypti and Anopheles stephensi were continuously maintained on a blood-free replacement (SkitoSnack; SS) or bovine blood (BB) and monitored for engorgement and hatch rates. Infections of Ae. aegypti and An. stephensi were assessed with Plasmodium gallinaceum and P. falciparum, respectively. RESULTS: Replicate colonies of mosquitoes were maintained on BB or SS for 10 generations of Ae. aegypti and more than 63 generations of An. stephensi. The odds of engorgement by SS- relative to BB-maintained mosquitoes were higher for both Ae. aegypti (OR = 2.6, 95% CI 1.3-5.2) and An. stephensi (OR 2.7, 95% CI 1.4-5.5), while lower odds of hatching were found for eggs from the SS-maintained mosquitoes of both species (Ae. aegypti OR = 0.40, 95% CI 0.26-0.62; An. stephensi OR = 0.59, 95% CI 0.36-0.96). Oocyst counts were similar for P. gallinaceum infections of Ae. aegypti mosquitoes maintained on SS or BB (mean ratio = [mean on SS]/[mean on BB] = 1.11, 95% CI 0.85-1.49). Similar oocyst counts were also observed from the P. falciparum infections of SS- or BB-maintained An. stephensi (mean ratio = 0.76, 95% CI 0.44-1.37). The average counts of sporozoites/mosquito showed no evidence of reductions in the SS-maintained relative to BB-maintained mosquitoes of both species. CONCLUSIONS: Aedes aegypti and An. stephensi can be reliably maintained on SS over multiple generations and are as competent for Plasmodium infection as mosquitoes maintained on BB. Use of SS alleviates the need to acquire and preserve blood for mosquito husbandry and may support new initiatives in fundamental and applied research, including novel manipulations of midgut microbiota and factors important to the mosquito life cycle and pathogen susceptibility.


Assuntos
Aedes , Anopheles , Mosquitos Vetores , Animais , Aedes/parasitologia , Aedes/fisiologia , Anopheles/parasitologia , Anopheles/fisiologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium gallinaceum/fisiologia , Plasmodium falciparum/fisiologia , Bovinos , Feminino , Sangue/parasitologia , Comportamento Alimentar
9.
Parasit Vectors ; 17(1): 289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971773

RESUMO

BACKGROUND: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood. METHODS: The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations. RESULTS: While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups. CONCLUSIONS: This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.


Assuntos
Anopheles , Dieta , Fertilidade , Animais , Anopheles/fisiologia , Feminino , Dieta/veterinária , Masculino , Bovinos , Controle de Mosquitos/métodos , Aptidão Genética , Sangue , Mosquitos Vetores/fisiologia , Mosquitos Vetores/genética , Reprodução
10.
Parasit Vectors ; 17(1): 300, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992693

RESUMO

BACKGROUND: The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS: Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS: The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS: The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.


Assuntos
Anopheles , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Benin , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Malária/prevenção & controle , Malária/transmissão , Feminino
11.
PLoS One ; 19(7): e0298512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995958

RESUMO

Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Piretrinas/farmacologia , Piretrinas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Mosquitos Vetores/efeitos dos fármacos , Controle de Mosquitos/métodos , Feminino , Nitrilas/farmacologia , Permetrina/farmacologia , Malária/transmissão , Malária/prevenção & controle
12.
BMC Genomics ; 25(1): 700, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020310

RESUMO

Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.


Assuntos
Aedes , Anopheles , Sistemas CRISPR-Cas , Animais , Anopheles/genética , Aedes/genética , Variação Genética , RNA Guia de Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Genoma de Inseto , Mosquitos Vetores/genética , Edição de Genes , Proteínas de Bactérias
13.
Malar J ; 23(1): 211, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020365

RESUMO

BACKGROUND: Anopheles stephensi is recognized as the main malaria vector in Iran. In recent years, resistance to several insecticide classes, including organochlorine, pyrethroids, and carbamate compounds, has been reported for this medically important malaria vector. The main objective of the present study was to evaluate the insecticide susceptibility status of An. stephensi collected from the southern part of Iran, and to clarify the mechanism of resistance, using bioassay tests and molecular methods comparing the sequence of susceptible and resistant mosquitoes. METHODS: Mosquito larvae were collected from various larval habitats across six different districts (Gabrik, Sardasht, Tidar, Dehbarez, Kishi and Bandar Abbas) in Hormozgan Provine, located in the southern part of Iran. From each district standing water areas with the highest densities of Anopheles larvae were selected for sampling, and adult mosquitoes were reared from them. Finally, the collected mosquito species were identified using valid keys. Insecticide susceptibility of An. stephensi was tested using permethrin 0.75%, lambdacyhalothrin 0.05%, deltamethrin 0.05%, and DDT 4%, following the World Health Organization (WHO) test procedures for insecticide resistance monitoring. Additionally, knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene was sequenced and analysed among resistant populations to detect possible molecular mechanisms of observed resistance phenotypes. RESULTS: The susceptibility status of An. stephensi revealed that resistance to DDT and permethrin was found in all districts. Furthermore, resistance to all tested insecticides in An. stephensi was detected in Gabrik, Sardasht, Tidar, and Dehbarez. Analysis of knockdown resistance (kdr) mutations at the vgsc did not show evidence for the presence of this mutation in An. stephensi. CONCLUSION: Based on the results of the current study, it appears that in An. stephensi from Hormozgan Province (Iran), other resistance mechanisms such as biochemical resistance due to detoxification enzymes may be involved due to the absence of the kdr mutation or non-target site resistance. Further investigation is warranted in the future to identify the exact resistance mechanisms in this main malaria vector across the country.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Mutação , Anopheles/genética , Anopheles/efeitos dos fármacos , Animais , Irã (Geográfico) , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Piretrinas/farmacologia , Permetrina/farmacologia , DDT/farmacologia , Bioensaio , Nitrilas/farmacologia , Feminino
14.
Malar J ; 23(1): 213, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020392

RESUMO

BACKGROUND: Livestock keeping is one of the potential factors related to malaria transmission. To date, the impact of livestock keeping on malaria transmission remains inconclusive, as some studies suggest a zooprophylactic effect while others indicate a zoopotentiation effect. This study assessed the impact of livestock management on malaria transmission risks in rural Tanzania. Additionally, the study explored the knowledge and perceptions of residents about the relationships between livestock keeping and malaria transmission risks in a selected village. METHODS: In a longitudinal entomological study in Minepa village, South Eastern Tanzania, 40 households were randomly selected (20 with livestock, 20 without). Weekly mosquito collection was performed from January to April 2023. Indoor and outdoor collections used CDC-Light traps, Prokopack aspirators, human-baited double-net traps, and resting buckets. A subsample of mosquitoes was analysed using PCR and ELISA for mosquito species identification and blood meal detection. Livestock's impact on mosquito density was assessed using negative binomial GLMMs. Additionally, in-depth interviews explored community knowledge and perceptions of the relationship between livestock keeping and malaria transmission risks. RESULTS: A total of 48,677 female Anopheles mosquitoes were collected. Out of these, 89% were Anopheles gambiae sensu lato (s.l.) while other species were Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani, and Anopheles squamosus. The findings revealed a statistically significant increase in the overall number of An. gambiae s.l. outdoors (RR = 1.181, 95%CI 1.050-1.862, p = 0.043). Also, there was an increase of the mean number of An. funestus s.l. mosquitoes collected in households with livestock indoors (RR = 2.866, 95%CI: 1.471-5.582, p = 0.002) and outdoors (RR = 1.579,95%CI 1.080-2.865, p = 0.023). The human blood index of Anopheles arabiensis mosquitoes from houses with livestock was less than those without livestock (OR = 0.149, 95%CI 0.110-0.178, p < 0.001). The majority of participants in the in-depth interviews reported a perceived high density of mosquitoes in houses with livestock compared to houses without livestock. CONCLUSION: Despite the potential for zooprophylaxis, this study indicates a higher malaria transmission risk in livestock-keeping communities. It is crucial to prioritize and implement targeted interventions to control vector populations within these communities. Furthermore, it is important to enhance community education and awareness regarding covariates such as livestock that influence malaria transmission.


Assuntos
Anopheles , Gado , Malária , Mosquitos Vetores , População Rural , Tanzânia , Animais , Mosquitos Vetores/fisiologia , Anopheles/fisiologia , Malária/prevenção & controle , Malária/transmissão , População Rural/estatística & dados numéricos , Feminino , Humanos , Estudos Longitudinais , Criação de Animais Domésticos/métodos , Mordeduras e Picadas de Insetos/prevenção & controle , Masculino , Conhecimentos, Atitudes e Prática em Saúde , Adulto
15.
BMC Infect Dis ; 24(1): 724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044181

RESUMO

BACKGROUND: The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of this malaria vector group in the northeastern region of Iran, juxtaposed with documented occurrences from different areas within Iran and worldwide. METHODS: Mosquitoes were collected using various methods from nine different locations in Golestan province from April to December 2023. The collected mosquitoes were identified morphologically using valid taxonomic keys. DNA was isolated using the Sambio™ Kit. COI and ITS2 primers were designed using Oligo7 and GeneRunner. PCR and purification were performed with the Qiagen kit. Subsequently, sequencing was carried out at the Mehr Mam GENE Center using an Applied Biosystems 3730XL sequencer. The nucleotide sequences were then analyzed and aligned with GenBank data using BioEdit. Kimura 2-parameter was Utilized for base substitutions. DNA models were selected based on AIC and BIC criteria. Bayesian and Maximum Likelihood trees were constructed, along with a haplotype network. Molecular diversity statistics computed using DnaSP software. RESULTS: In this study, a total of 819 adult mosquitoes were collected. An. hyrcanus was the second most abundant species, predominantly found in Kalaleh and Turkman counties. The sequenced and edited COI and ITS2 sequences were deposited in GenBank under specific accession numbers. Phylogenetic analyses using ML, BI, and NJ methods confirmed a monophyletic lineage for An. hyrcanus with strong support. Molecular analysis of Iranian An. hyrcanus found 11 diverse haplotypes, with the COI gene displaying low diversity. The ITS2 gene revealed two clades - one associating with Iran, Europe, and Asia; the other originating from southwestern Iran. The haplotype network showed two main groups - one from southwest Iran and the other from north Iran. Iran exhibited six distinct haplotypes, while Turkey showcased the highest diversity. CONCLUSIONS: An. hyrcanus in southwestern Iran exhibits a distinct haplogroup, suggesting possible subspecies differentiation. Additional studies are required to validate this phenomenon.


Assuntos
Anopheles , Complexo IV da Cadeia de Transporte de Elétrons , Mosquitos Vetores , Filogenia , Animais , Irã (Geográfico) , Anopheles/genética , Anopheles/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Haplótipos , Variação Genética , Genética Populacional , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética
16.
Open Biol ; 14(7): 240057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39043224

RESUMO

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Assuntos
Anopheles , Guanidinas , Inseticidas , Mosquitos Vetores , Neonicotinoides , Nitrocompostos , Receptores Nicotínicos , Animais , Anopheles/metabolismo , Anopheles/genética , Anopheles/efeitos dos fármacos , Neonicotinoides/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Inseticidas/farmacologia , Inseticidas/química , Nitrocompostos/farmacologia , Nitrocompostos/química , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Xenopus laevis , Ligantes , Piridinas/farmacologia , Malária/transmissão , Malária/parasitologia , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/metabolismo , Tiazinas/farmacologia , Tiazinas/química , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Feminino , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Imidazóis/farmacologia , Imidazóis/química
17.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38985692

RESUMO

The primary control methods for the African malaria mosquito, Anopheles gambiae, are based on insecticidal interventions. Emerging resistance to these compounds is therefore of major concern to malaria control programs. The organophosphate (OP), pirimiphos-methyl, is a relatively new chemical in the vector control armory but is now widely used in indoor-residual spray campaigns. While generally effective, phenotypic resistance has developed in some areas in malaria vectors. Here, we used a population genomic approach to identify novel mechanisms of resistance to pirimiphos-methyl in A. gambiae s.l mosquitoes. In multiple populations, we found large and repeated signals of selection at a locus containing a cluster of detoxification enzymes, some of whose orthologs are known to confer resistance to OPs in Culex pipiens. Close examination revealed a pair of alpha-esterases, Coeae1f and Coeae2f, and a complex and diverse pattern of haplotypes under selection in A. gambiae, A. coluzzii and A. arabiensis. As in C. pipiens, copy number variants have arisen at this locus. We used diplotype clustering to examine whether these signals arise from parallel evolution or adaptive introgression. Using whole-genome sequenced phenotyped samples, we found that in West Africa, a copy number variant in A. gambiae is associated with resistance to pirimiphos-methyl. Overall, we demonstrate a striking example of contemporary parallel evolution which has important implications for malaria control programs.


Assuntos
Anopheles , Esterases , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Compostos Organotiofosforados , Animais , Anopheles/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Inseticidas/farmacologia , Esterases/genética , Evolução Molecular
18.
Malar J ; 23(1): 214, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026236

RESUMO

BACKGROUND: Attractive targeted sugar bait (ATSB) stations are a novel tool with potential to complement current approaches to malaria vector control. To assess the public health value of ATSB station deployment in areas of high coverage with standard vector control, a two-arm cluster-randomized controlled trial (cRCT) of Sarabi ATSB® stations (Westham Ltd., Hod-Hasharon, Israel) was conducted in Western Province, Zambia, a high-burden location were Anopheles funestus is the dominant vector. The trial included 70 clusters and was designed to measure the effect of ATSBs on case incidence and infection prevalence over two 7-month deployments. Reported here are results of the vector surveillance component of the study, conducted in a subset of 20 clusters and designed to provide entomological context to guide overall interpretation of trial findings. METHODS: Each month, 200 paired indoor-outdoor human landing catch (HLC) and 200 paired light trap (LT) collections were conducted to monitor An. funestus parity, abundance, biting rates, sporozoite prevalence, and entomological inoculation rates (EIR). RESULTS: During the study 20,337 female An. funestus were collected, 11,229 from control and 9,108 from intervention clusters. A subset of 3,131 HLC specimens were assessed for parity: The mean non-parous proportion was 23.0% (95% CI 18.2-28.7%, total n = 1477) in the control and 21.2% (95% CI 18.8-23.9%, total n = 1654) in the intervention arm, an OR = 1.05 (95% CI 0.82-1.34; p = 0.688). A non-significant reduction in LT abundance (RR = 0.65 [95% CI 0.30-1.40, p = 0.267]) was associated with ATSB deployment. HLC rates were highly variable, but model results indicate a similar non-significant trend with a RR = 0.68 (95%CI 0.22-2.00; p = 0.479). There were no effects on sporozoite prevalence or EIR. CONCLUSIONS: Anopheles funestus parity did not differ across study arms, but ATSB deployment was associated with a non-significant 35% reduction in vector LT density, results that are consistent with the epidemiological impact reported elsewhere. Additional research is needed to better understand how to maximize the potential impact of ATSB approaches in Zambia and other contexts. TRIAL REGISTRATION NUMBER: This trial was registered with Clinicaltrials.gov (NCT04800055, 16 March 2021).


Assuntos
Anopheles , Controle de Mosquitos , Mosquitos Vetores , Zâmbia , Anopheles/fisiologia , Animais , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos , Feminino , Humanos , Açúcares , Malária/prevenção & controle
19.
Parasit Vectors ; 17(1): 303, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997729

RESUMO

BACKGROUND: Malaria transmission is known to be perennial and heterogeneous in Benin. Studies assessing local malaria prevalence, transmission levels and vector characteristics are critical for designing, monitoring and evaluating new vector control interventions in community trials. We conducted a study in the Zakpota sub-district of central Benin to collect baseline data on household characteristics, malaria prevalence, vector characteristics and transmission dynamics in preparation for a randomised controlled trial to evaluate the community impact of VECTRON™ T500, a new broflanilide indoor residual spraying (IRS) product. METHODS: A total of 480 children under 5 years of age from the 15 villages of the sub-district were tested for malaria by rapid diagnostic tests (RDTs). Mosquitoes were collected by human landing catches (HLCs), pyrethrum spray catches (PSCs) and Centers for Disease Control and Prevention miniature light traps (CDC-LTs) in selected houses in each village to assess vector density, composition, vector infectivity and prevalence of insecticide resistance markers. Bioassays were performed to detect vector susceptibility to pyrethroids, broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). RESULTS: A total of 9080 households were enumerated in the 15 study villages. Insecticide-treated net (ITN) usage was > 90%, with 1-2 ITNs owned per household. Houses were constructed mainly with cement (44%) and mud (38%) substrates or a mixture of cement and mud (18%), and 60% of them had open eaves. The overall prevalence of P. falciparum infection was 19% among surveyed children: 20% among females and 18% among males. The haemoglobin rate showed an anaemia (< 11 g/dl) prevalence of 66%. Anopheles coluzzii and An. gambiae sensu stricto (s.s.) were the two vector species present at an overall proportion of 46% versus 54%, respectively. The human biting rate was 2.3 bites per person per night (b/p/n) and biting occurred mostly indoors compared with outdoors (IRR = 0.776; P = 0.001). The overall proportion of outdoor biting was 44% and exceeded indoor biting in three villages. The sporozoite rate was 2% with a combined yearly entomological inoculation rate (EIR) of 16.1 infected bites per person per year (ib/p/y). There was great variability in malaria transmission risk across the villages, with EIR ranging from 0 to 29.3 ib/p/y. The vector population showed a high intensity of resistance to pyrethroids across the study villages but was largely susceptible to broflanilide and clothianidin. CONCLUSIONS: This study found high levels of malaria prevalence, vector density and transmission in the Zakpota sub-district despite the wide use of insecticide-treated nets. The vector population was mostly indoor resting and showed a high intensity of pyrethroid resistance but was generally fully susceptible to broflanilide. These findings demonstrated the suitability of the study area for the assessment of VECTRON™ T500 in a community randomised trial.


Assuntos
Anopheles , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Benin/epidemiologia , Humanos , Animais , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Prevalência , Pré-Escolar , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/parasitologia , Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Anopheles/fisiologia , Feminino , Malária/transmissão , Malária/prevenção & controle , Malária/epidemiologia , Masculino , Lactente , Resistência a Inseticidas , Piretrinas/farmacologia
20.
Sci Rep ; 14(1): 16325, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009775

RESUMO

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/ß), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/ß), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.


Assuntos
Anopheles , Emulsões , Inseticidas , Lantana , Larva , Óleos Voláteis , Anopheles/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Animais , Lantana/química , Inseticidas/farmacologia , Inseticidas/química , Larva/efeitos dos fármacos , Cinética , Acetilcolinesterase/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/antagonistas & inibidores , Mosquitos Vetores/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Controle de Mosquitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA