Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163.174
Filtrar
1.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714767

RESUMO

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Assuntos
Nanopartículas Metálicas , Compostos de Prata , Nanopartículas Metálicas/química , Animais , Humanos , Compostos de Prata/química , Compostos de Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Artemia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Células Vero , Antifúngicos/farmacologia , Antifúngicos/química , Prata/química , Prata/farmacologia , Óxidos
2.
Libyan J Med ; 19(1): 2348235, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38718270

RESUMO

Among hospitalized patients worldwide, infections caused by multidrug-resistant (MDR) bacteria are a major cause of morbidity and mortality. This study aimed to isolate MDR bacteria from five intensive care units (ICUs) at Tripoli University Hospital (TUH). A prospective cross-sectional study was conducted over a seven-month period (September 2022 to March 2023) across five ICUs at TUH. A total of 197 swabs were collected from Patients', healthcare workers' and ICUs equipment. Samples collected from patients were nasal swabs, oral cavity swabs, hand swabs, sputum specimens, skin swabs, umbilical venous catheter swabs, and around cannula. Swabs collected from health care workers were nasal swabs, whereas ICUs equipment's samples were from endotracheal tubes, oxygen masks, and neonatal incubators. Identification and antimicrobial susceptibility test was confirmed by using MicroScan auto SCAN 4 (Beckman Coulter). The most frequent strains were Gram negative bacilli 113 (57.4%) with the predominance of Acinetobacter baumannii 50/113 (44%) followed by Klebsiella pneumoniae 44/113 (40%) and Pseudomonas aeruginosa 6/113 (5.3%). The total Gram positive bacterial strains isolated were 84 (42.6%), coagulase negative Staphylococci 55 (66%) with MDRs (89%) were the most common isolates followed by Staphylococcus aureus 15 (17.8%). Different antibiotics were used against these isolates; Gram- negative isolates showed high resistance rates to ceftazidime, gentamicin, amikacin and ertapenem. A. baumannii were the most frequent MDROs (94%), and the highest resistance rates in Gram-positive strains were observed toward ampicillin, oxacillin, ampicillin/sulbactam and Cefoxitin, representing 90% of total MDR Gram-positive isolates. ESBL and MRS were identified in most of strains. The prevalence of antibiotic resistance was high for both Gram negative and Gram positive isolates. This prevalence requires strict infection prevention and control intervention, continuous monitoring, implementation of effective antibiotic stewardship, immediate, concerted and collaborative action to monitor its prevalence and spread in the hospital.


Assuntos
Farmacorresistência Bacteriana Múltipla , Hospitais Universitários , Unidades de Terapia Intensiva , Humanos , Líbia/epidemiologia , Estudos Transversais , Prevalência , Estudos Prospectivos , Masculino , Feminino , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Adulto , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Pessoa de Meia-Idade
3.
Sci Rep ; 14(1): 10528, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719861

RESUMO

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Assuntos
Antioxidantes , Germinação , Mostardeira , Fenóis , Extratos Vegetais , Sementes , Fenóis/análise , Fenóis/farmacologia , Fenóis/química , Antioxidantes/farmacologia , Antioxidantes/química , Germinação/efeitos dos fármacos , Sementes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Mostardeira/química , Antibacterianos/farmacologia , Antibacterianos/química , Flavonoides/análise , Flavonoides/farmacologia , Flavonoides/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Cromatografia Líquida de Alta Pressão
4.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719900

RESUMO

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Assuntos
Antibacterianos , Cromatografia Gasosa-Espectrometria de Massas , Hexanos , Compostos Fitoquímicos , Verduras , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Verduras/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Hexanos/química , Apiaceae/química , Testes de Sensibilidade Microbiana , Derivados de Alilbenzenos , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácidos Graxos Insaturados/análise , Staphylococcus aureus/efeitos dos fármacos , Dioxolanos
5.
Microbiome ; 12(1): 84, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725076

RESUMO

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Assuntos
Bactérias , Redes Neurais de Computação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Aprendizado Profundo
6.
PeerJ ; 12: e17381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726379

RESUMO

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Assuntos
Escherichia coli , Fezes , Panthera , Tigres , Sequenciamento Completo do Genoma , Animais , Tigres/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Panthera/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , China , Virulência/genética , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único/genética , Tipagem de Sequências Multilocus
7.
PLoS One ; 19(5): e0301388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722868

RESUMO

Salmonella is a primary cause of foodborne diseases globally. Despite food contamination and clinical infections garnering substantial attention and research, asymptomatic Salmonella carriers, potential sources of infection, have been comparatively overlooked. In this study, we conducted a comparative analysis of serotype distribution, antimicrobial resistance phenotypes, and genetic profiles of archived Salmonella strains isolated from food (26), asymptomatic carriers (41), and clinical cases (47) in Shiyan City, China. Among the 114 Salmonella strains identified, representing 31 serotypes and 34 Sequence Types (STs), the most prevalent serovars included Typhimurium, Derby, Enteritidis, Thompson, and London, with the most predominant STs being ST11, ST40, ST26, ST34, and ST155. Antimicrobial resistance testing revealed that all strains were only sensitive to meropenem, with 74.6% showing antimicrobial resistance (AMR) and 53.5% demonstrating multidrug resistance (MDR). Strains resistant to five and six classes of antibiotics were the most common. Pearson's chi-square test showed no statistically significant difference in the occurrence of AMR (p = 0.105) or MDR (p = 0.326) among Salmonella isolates from the three sources. Our findings underscore associations and diversities among Salmonella strains isolated from food, asymptomatic carriers, and clinical patients, emphasizing the need for increased vigilance towards asymptomatic Salmonella carriers by authorities.


Assuntos
Antibacterianos , Salmonella , Sorogrupo , China/epidemiologia , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonella/classificação , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia de Alimentos , Portador Sadio/microbiologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/tratamento farmacológico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética
8.
Protein Sci ; 33(6): e5006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723168

RESUMO

The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Biologia Computacional/métodos , Redes Neurais de Computação , Testes de Sensibilidade Microbiana
9.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724913

RESUMO

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Assuntos
Antibacterianos , Infecções por Campylobacter , Campylobacter jejuni , Cefoperazona , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Sulbactam , Animais , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/crescimento & desenvolvimento , Feminino , Antibacterianos/farmacologia , Cefoperazona/farmacologia , Fezes/microbiologia , Infecções por Campylobacter/microbiologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Sulbactam/farmacologia , RNA Ribossômico 16S/genética , Intestinos/microbiologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , DNA Bacteriano/genética , DNA Ribossômico/genética
10.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725019

RESUMO

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Assuntos
Quitosana , Campos Magnéticos , Selênio , Selênio/química , Selênio/farmacologia , Quitosana/química , Quitosana/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas Metálicas/química
11.
Medicine (Baltimore) ; 103(19): e38101, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728506

RESUMO

To understand the distribution and antimicrobial resistance (AMR) of pathogens in respiratory samples in Changle District People's Hospital in Fujian Province in recent years, and provide empirical guidance for infection control and clinical treatment in the region. A retrospective analysis was conducted on 5137 isolates of pathogens from respiratory samples collected from 2019 to 2022. The AMR patterns were systematically analyzed. For research purposes, the data was accessed on October 12, 2023. A total of 3517 isolates were included in the study, including 811 (23.06%) gram-positive bacteria and 2706 (76.94%) gram-negative bacteria. The top 3 gram-positive bacteria were Staphylococcus aureus with 455 isolates (12.94%), Streptococcus pneumoniae with 99 isolates (2.81%), and Staphylococcus hemolytic with 99 isolates (2.81%). The top 3 gram-negative bacteria were Klebsiella pneumoniae with 815 isolates (23.17%), Pseudomonas aeruginosa with 589 isolates (16.75%), and Acinetobacter baumannii with 328 isolates (9.33%). The proportion of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and K pneumoniae fluctuated between 41.9% and 70.5%, and 18.6% and 20.9%, respectively. The resistance rates of E coli, K pneumoniae, P aeruginosa, and A baumannii to carbapenems were 2.36%, 8.9%, 18.5%, and 19.6%, respectively. The prevalence of methicillin-resistant S aureus (MRSA) was 48.55%, but it decreased to 38.4% by 2022. The resistance rate of Staphylococcus haemolyticus to methicillin was 100%, and 1 case of vancomycin-resistant strain was detected. K pneumoniae, P aeruginosa, A baumannii, and S aureus are the main pathogens in respiratory samples. Although the resistance rates of some multidrug-resistant strains have decreased, ESBL-producing Enterobacteriaceae, carbapenem-resistant bacteria have still increased. Therefore, it is necessary to strengthen the monitoring of pathogen resistance, promote rational use of antibiotics, and promptly report findings.


Assuntos
Antibacterianos , COVID-19 , Infecções Respiratórias , Humanos , Estudos Retrospectivos , China/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/tratamento farmacológico , COVID-19/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação
12.
J Appl Biomater Funct Mater ; 22: 22808000241245298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733215

RESUMO

In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.


Assuntos
Bandagens , Diabetes Mellitus Experimental , Gelatina , Cicatrização , Animais , Gelatina/química , Cicatrização/efeitos dos fármacos , Ratos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patologia , Masculino , Humanos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Alicerces Teciduais/química
13.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710124

RESUMO

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Assuntos
Antibacterianos , Quitosana , Ácido Cítrico , Escherichia coli , Géis , Staphylococcus aureus , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Géis/química , Quitosana/química , Ácido Cítrico/química , Biomassa , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Ácido Fítico/química , Pectinas/química , Reagentes de Ligações Cruzadas/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Tamanho da Partícula , Temperatura
14.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Nat Commun ; 15(1): 3981, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730266

RESUMO

Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.


Assuntos
Antibacterianos , Variações do Número de Cópias de DNA , Escherichia coli , Klebsiella pneumoniae , Plasmídeos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Camundongos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Dosagem de Genes , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Humanos , Elementos de DNA Transponíveis/genética , Feminino
16.
Microbiome ; 12(1): 87, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730321

RESUMO

BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract.


Assuntos
Antibacterianos , Bactérias , Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Dinamarca , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Feminino , Fezes/microbiologia , Resistência Microbiana a Medicamentos/genética , Masculino , Estudos de Coortes , Recém-Nascido
17.
BMC Infect Dis ; 24(1): 486, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730362

RESUMO

BACKGROUND: Recently, linezolid-resistant staphylococci have become an emerging problem worldwide. Understanding the mechanisms of resistance, molecular epidemiology and transmission of linezolid-resistant CoNS in hospitals is very important. METHODS: The antimicrobial susceptibilities of all isolates were determined by the microdilution method. The resistance mechanisms and molecular characteristics of the strains were determined using whole-genome sequencing and PCR. RESULTS: All the strains were resistant to oxacillin and carried the mecA gene; 13 patients (36.1%) had prior linezolid exposure. Most S. epidermidis and S. hominis isolates were ST22 and ST1, respectively. MLST typing and evolutionary analysis indicated most linezolid-resistant CoNS strains were genetically related. In this study, we revealed that distinct CoNS strains have different mechanisms of linezolid resistance. Among ST22-type S. epidermidis, acquisition of the T2504A and C2534T mutations in the V domain of the 23 S rRNA gene, as well as mutations in the ribosomal proteins L3 (L101V, G152D, and D159Y) and L4 (N158S), were linked to the development of linezolid resistance. In S. cohnii isolates, cfr, S158Y and D159Y mutations in the ribosomal protein L3 were detected. Additionally, emergence of the G2576T mutation and the cfr gene were major causes of linezolid resistance in S. hominis isolates. The cfr gene, G2576T and C2104T mutations, M156T change in L3 protein, and I188S change in L4 protein were found in S. capitis isolates. CONCLUSION: The emergence of linezolid-resistant CoNS in the environment is concerning because it involves clonal dissemination and frequently coexists with various drug resistance mechanisms.


Assuntos
Antibacterianos , Linezolida , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Centros de Atenção Terciária , Linezolida/farmacologia , Humanos , China/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Antibacterianos/farmacologia , Feminino , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Idoso , Sequenciamento Completo do Genoma , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Staphylococcus/classificação , Staphylococcus/enzimologia , Coagulase/metabolismo , Coagulase/genética , RNA Ribossômico 23S/genética , Adulto , Resistência a Meticilina/genética , Mutação , Proteínas de Bactérias/genética
18.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731857

RESUMO

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Assuntos
Erysipelothrix , Gansos , Prófagos , Animais , Gansos/microbiologia , Polônia , Erysipelothrix/genética , Prófagos/genética , Antibacterianos/farmacologia , Infecções por Erysipelothrix/microbiologia , Infecções por Erysipelothrix/genética , Doenças das Aves Domésticas/microbiologia , Sequenciamento Completo do Genoma , Genoma Bacteriano , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Conjugação Genética , Plasmídeos/genética
19.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731923

RESUMO

Ionic liquids (ILs) have gained considerable attention due to their versatile and designable properties. ILs show great potential as antibacterial agents, but understanding the mechanism of attack on bacterial cells is essential to ensure the optimal design of IL-based biocides. The final aim is to achieve maximum efficacy while minimising toxicity and preventing resistance development in target organisms. In this study, we examined a dose-response analysis of ILs' antimicrobial activity against two pathogenic bacteria with different Gram types in terms of molecular responses on a cellular level using Fourier-transform infrared (FTIR) spectroscopy. In total, 18 ILs with different antimicrobial active motifs were evaluated on the Gram-negative enteropathogenic Escherichia coli (EPEC) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). The results showed that most ILs impact bacterial proteins with increasing concentration but have a minimal effect on cellular membranes. Dose-response spectral analysis revealed a distinct ante-mortem response against certain ILs for MRSA but not for EPEC. We found that at sub-lethal concentrations, MRSA actively changed their membrane composition to counteract the damaging effect induced by the ILs. This suggests a new adaptive mechanism of Gram-positive bacteria against ILs and demonstrates the need for a better understanding before using such substances as novel antimicrobials.


Assuntos
Escherichia coli Enteropatogênica , Líquidos Iônicos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731927

RESUMO

Bordetella hinzii (B. hinzii), a Gram-negative bacillus commonly associated with respiratory infections in animals, has garnered attention for its sporadic cases in humans, particularly in immunocompromised individuals. Despite its opportunistic nature, there remains limited understanding regarding its pathogenicity, diagnostic challenges, and optimal treatment strategies, especially in the context of immunosuppression. Herein, we present the first documented case of acute bronchitis caused by B. hinzii in an immunocompromised patient following double-lung transplantation. The patient, a former smoker with sarcoidosis stage IV, underwent transplant surgery and subsequently developed a febrile episode, leading to the identification of B. hinzii in broncho-alveolar lavage samples. Antimicrobial susceptibility testing revealed resistance to multiple antibiotics, necessitating tailored treatment adjustments. Our case underscores the importance of heightened awareness among clinicians regarding B. hinzii infections and the imperative for further research to elucidate its epidemiology and optimal management strategies, particularly in immunocompromised populations.


Assuntos
Infecções por Bordetella , Bordetella , Hospedeiro Imunocomprometido , Transplante de Pulmão , Transplante de Pulmão/efeitos adversos , Humanos , Bordetella/isolamento & purificação , Infecções por Bordetella/microbiologia , Infecções por Bordetella/diagnóstico , Masculino , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Transplantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...