Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.629
Filtrar
1.
Cell Biochem Funct ; 42(4): e4070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845544

RESUMO

In this study, we report the cardioprotective effect of the glycerol monooleate (GMO) based nanocurcumin in both in vitro and in vivo conditions under a hyperthyroid state. The heart is one of the primary target organs sensitive to the action of thyroid hormone, and slight variations in the thyroid hormone serum concentrations result in measurable changes in cardiac performance. Hyperthyroidism-induced hypermetabolism is associated with oxidative stress and is an important mechanism responsible for the progression of heart failure. Curcumin has been known to play a protective role against oxidative stress-related diseases like Alzheimer's, asthma, and aging due to its antioxidant properties. Nevertheless, its potent biological activity has been hindered due to its poor bioavailability. To overcome this drawback, a GMO-based biodegradable nanoparticle (NP) formulation loaded with curcumin has been developed, and the protective effect of curcumin-loaded NPs was compared against the native drug. Oxidative stress parameters like reactive oxygen species (ROS) release, change in mitochondrial membrane permeability, lipid peroxidation (LPx), lactate dehydrogenase (LDH) release, and the activity and protein expression of the endogenous antioxidant enzymes like superoxide dismutase, catalase (CAT) and glutathione peroxidase were evaluated. The results from in vitro showed that curcumin-loaded NPs showed better DPPH and NO radical scavenging activity than native curcumin in a concentrations range of 2.5-20 µM. It was also observed that the nanoparticulate curcumin was comparatively more effective than native curcumin in protecting against ROS-induced membrane damage by reducing LPx and LDH leakage at low concentrations of 5-10 µM. Further, curcumin NPs performed better in facilitating the activities of antioxidant enzymes under in vitro and in vivo conditions with respect to time and concentrations, resulting in reduced cellular ROS levels. In this scenario, we anticipate that curcumin-loaded NPs can serve as a better antioxidant than its native counterpart in protecting the heart from oxidative stress-related diseases.


Assuntos
Curcumina , Nanopartículas , Estresse Oxidativo , Ratos Wistar , Curcumina/farmacologia , Curcumina/química , Animais , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
2.
Sci Rep ; 14(1): 13016, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844763

RESUMO

Diabetes mellitus (DM) is a complex metabolic condition that causes organ dysfunction. The current experiment sought to determine the effect of thymoquinone (TQ) on hyperglycemia, hyperlipidemia, oxidative/nitrosative stress, inflammation, and apoptosis in diabetic rats prompted by streptozotocin (STZ) (55 mg/kg body weight i/p). The animals were allocated into control, TQ (50 mg/kg B.W. orally administered for 4 succeeding weeks), Diabetic, and Diabetic + TQ groups. This study confirmed that TQ preserves the levels of insulin, fasting blood glucose, HOMA ß-cell indices, HbA1c %, body weight, and lipid profile substantially relative to the DC group. Furthermore, hepatic antioxidant (CAT, GSH, and T-SOD) values were reduced. Conversely, the enzymatic activity of liver functions (AST, ALT, ALP, cytochrome P450, and hepatic glucose-6-phosphatase), lipid peroxidation (MDA), pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6), nitric oxide (NO) and inflammatory marker (CRP) enhanced with STZ administration, which is substantially restored after TQ treatment. Relative to the diabetic rats, TQ reestablished the hepatic architectural changes and collagen fibers. Additionally, TQ downregulated the intensity of the immunohistochemical staining of pro-apoptotic marker (caspase-3), p53, and tumor necrosis factor-alpha (TNF-α) proteins in hepatic tissues. Furthermore, TQ displayed abilities to interact and inhibit the binding site of caspase-3, interleukin-6 receptor, interleukin-1 receptor type 1, TNF receptor superfamily member 1A, and TNF receptor superfamily member 1B in rats following the molecular docking modeling. All these data re-establish the liver functions, antioxidant enzymes, anti-inflammatory markers, and anti-apoptotic proteins impacts of TQ in STZ-induced DM rats. Founded on these outcomes, the experiment proposes that TQ is a novel natural supplement with various clinical applications, including managing DM, which in turn is recommended to play a pivotal role in preventing the progression of diabetes mellitus.


Assuntos
Apoptose , Benzoquinonas , Diabetes Mellitus Experimental , Fígado , Simulação de Acoplamento Molecular , Estresse Nitrosativo , Estresse Oxidativo , Animais , Benzoquinonas/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Estresse Nitrosativo/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicemia/metabolismo , Ratos Wistar , Estreptozocina
3.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834972

RESUMO

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Assuntos
Antioxidantes , Glicólise , Fígado , Metionina , Animais , Fígado/metabolismo , Fígado/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacologia , Metionina/administração & dosagem , Metionina/metabolismo , Lisina/metabolismo , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Ração Animal/análise , Masculino
4.
Sci Rep ; 14(1): 12897, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839939

RESUMO

An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.


Assuntos
Antioxidantes , Nitrogênio , Triticum , Zinco , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zinco/metabolismo , Nitrogênio/metabolismo , Antioxidantes/metabolismo , Solo/química , Fotossíntese , Biomassa
5.
BMC Plant Biol ; 24(1): 505, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840043

RESUMO

BACKGROUND: The climatic changes crossing the world menace the green life through limitation of water availability. The goal of this study was to determine whether Moringa oleifera Lam. trees cultivated under Tunisian arid climate, retain their tolerance ability to tolerate accentuated environmental stress factors such as drought and salinity. For this reason, the seeds of M. oleifera tree planted in Bouhedma Park (Tunisian arid area), were collected, germinated, and grown in the research area at the National Institute of Research in Rural Engineering, Waters and Forests (INRGREF) of Tunis (Tunisia). The three years aged trees were exposed to four water-holding capacities (25, 50, 75, and 100%) for 60 days to realise this work. RESULTS: Growth change was traduced by the reduction of several biometric parameters and fluorescence (Fv/Fm) under severe water restriction (25 and 50%). Whereas roots presented miraculous development in length face to the decrease of water availability (25 and 50%) in their rhizospheres. The sensitivity to drought-induced membrane damage (Malondialdehyde (MDA) content) and reactive oxygen species (ROS) liberation (hydrogen peroxide (H2O2) content) was highly correlated with ROS antiradical scavenging (ferric reducing antioxidant power (FRAP) and (2, 2'-diphenyl-1-picrylhydrazyle (DPPH)), phenolic components and osmolytes accumulation. The drought stress tolerance of M. oleifera trees was associated with a dramatic stimulation of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities. CONCLUSION: Based on the several strategies adopted, integrated M. oleifera can grow under drought stress as accentuated adverse environmental condition imposed by climate change.


Assuntos
Moringa oleifera , Água , Moringa oleifera/fisiologia , Moringa oleifera/metabolismo , Água/metabolismo , Secas , Antioxidantes/metabolismo , Tunísia , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Análise Multivariada
6.
BMC Res Notes ; 17(1): 155, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840123

RESUMO

BACKGROUND AND OBJECTIVE: Aspartame (L-aspartyl L-phenylalanine methyl ester) is an artificial sweetener widely used as a sugar substitute. There are concerns regarding the effects of high aspartame doses on the kidney owing to oxidative stress; however, whether the maximum allowed dose of aspartame in humans affects the kidneys remains unknown. Therefore, in this study, we investigated whether the maximum allowed dose of aspartame in humans affects the kidneys. METHODS: In this study, animals were fed a folate-deficient diet to mimic human aspartame metabolism. Eight-week-old ICR mice were divided into control (CTL), 40 mg/kg/day of aspartame-administered (ASP), folate-deficient diet (FD), and 40 mg/kg/day of aspartame-administered with a folate-deficient diet (FD + ASP) groups. Aspartame was administered orally for eight weeks. Thereafter, we evaluated aspartame's effect on kidneys via histological analysis. RESULTS: There were no differences in serum creatinine and blood urea nitrogen levels between the CTL and ASP groups or between the FD and FD + ASP groups. There was no histological change in the kidneys in any group. The expression of superoxide dismutase and 4-hydroxy-2-nonenal in the kidney did not differ between the CTL and ASP groups or the FD and FD + ASP groups. CONCLUSION: Our findings indicate that the allowed doses of aspartame in humans may not affect kidney function or oxidative states.


Assuntos
Aspartame , Rim , Camundongos Endogâmicos ICR , Estresse Oxidativo , Edulcorantes , Animais , Aspartame/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Edulcorantes/farmacologia , Edulcorantes/administração & dosagem , Camundongos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Nitrogênio da Ureia Sanguínea
7.
Anim Sci J ; 95(1): e13964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831612

RESUMO

This study evaluated the effects of supplementation with Antrodia cinnamomea mycelium by-product (ACBP) on growth performance and immune response in weaning piglets. Total available content and antioxidant capacity of ACBP were determined. Ninety-six black pigs were randomly distributed to 24 pens. Study compared four groups which were supplemented with ACBP at 0%, 2.5%, 5%, or 10% for 6 weeks after weaning at 4 weeks. Results showed that ACBP on total phenolic, total flavonoid, and total triterpenoids contents were 13.68 mg GAE/g DW, 1.67 µg QE/g DW, and 15.6 mg/g, respectively. Weaning piglets fed 2.5% ACBP showed a significant decreased body weight gain compared with those supplemented with 5% ACBP, 10% ACBP, and control groups. Results showed that all ACBP groups increased the villi height of jejunum significantly. Incidence of diarrhea in 11 weeks with supplementation with 5% and 10% ACBP diets were lower than in control group. The 10% ACBP group showed significantly lower expression of immune response genes (IL-1ß, IL-6, IL-8, TNF-α, and IFN-γ) than the 2.5% and 5% ACBP groups. Based on results, dietary supplementation with 10% ACBP did not significantly affect body weight but could decrease piglet diarrhea condition and expression of IL-1ß and IL-6 genes.


Assuntos
Ração Animal , Antioxidantes , Dieta , Suplementos Nutricionais , Micélio , Desmame , Aumento de Peso , Animais , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Aumento de Peso/efeitos dos fármacos , Dieta/veterinária , Antioxidantes/metabolismo , Diarreia/veterinária , Triterpenos/farmacologia , Triterpenos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Citocinas/metabolismo , Jejuno/metabolismo , Fenóis/análise , Fenômenos Fisiológicos da Nutrição Animal , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Polyporales/química
8.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822942

RESUMO

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Assuntos
Regeneração Óssea , Grafite , Osteoprotegerina , Ligante RANK , Ratos Wistar , Grafite/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Ratos , Ligante RANK/metabolismo , Osteoprotegerina/metabolismo , Humanos , Materiais Biocompatíveis/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849727

RESUMO

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Assuntos
Cobre , Nanopartículas Metálicas , Ocimum basilicum , Spirulina , Spirulina/metabolismo , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fertilizantes , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Óleos Voláteis/farmacologia
10.
BMC Vet Res ; 20(1): 245, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849835

RESUMO

BACKGROUND: The utilization of live yeast (Saccharomyces cerevisiae, YE) in dairy cows is gaining traction in dairy production as a potential strategy to improve feed efficiency and milk yield. However, the effects of YE on dairy cow performance remain inconsistent across studies, leaving the underlying mechanisms unclear. Hence, the primary aim of this study was to investigate the impact of YE supplementation on lactation performance, ruminal microbiota composition and fermentation patterns, as well as serum antioxidant capacity and immune functions in dairy cows. RESULTS: Supplementation with YE (20 g/d/head) resulted in enhancements in dairy cow's dry matter intake (DMI) (P = 0.016), as well as increased yields of milk (P = 0.002) and its components, including solids (P = 0.003), fat (P = 0.014), protein (P = 0.002), and lactose (P = 0.001) yields. The addition of YE led to significant increases in the concentrations of ammonia nitrogen (NH3-N) (P = 0.023), acetate (P = 0.005), propionate (P = 0.025), valerate (P = 0.003), and total volatile fatty acids (VFAs) (P < 0.001) in rumen fermentation parameters. The analysis of 16s rRNA gene sequencing data revealed that the administration of YE resulted in a rise in the relative abundances of three primary genera including Ruminococcus_2 (P = 0.010), Rikenellaceae_RC9_gut_group (P = 0.009), and Ruminococcaceae_NK4A214_group (P = 0.054) at the genus level. Furthermore, this increase was accompanied with an enriched pathway related to amino acid metabolism. Additionally, enhanced serum antioxidative (P < 0.05) and immune functionalities (P < 0.05) were also observed in the YE group. CONCLUSIONS: In addition to improving milk performance, YE supplementation also induced changes in ruminal bacterial community composition and fermentation, while enhancing serum antioxidative and immunological responses during the mid-lactation stage. These findings suggest that YE may exert beneficial effects on both rumen and blood metabolism in mid-lactation dairy cows.


Assuntos
Ração Animal , Antioxidantes , Dieta , Lactação , Rúmen , Saccharomyces cerevisiae , Animais , Bovinos , Feminino , Rúmen/microbiologia , Lactação/efeitos dos fármacos , Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Leite/química , Fermentação , Fenômenos Fisiológicos da Nutrição Animal
11.
BMC Vet Res ; 20(1): 248, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849865

RESUMO

BACKGROUND: Periodontal diseases are the most frequently diagnosed problem in cats. It has been well-established that periodontal diseases could not only cause various oral health issues but could also contribute to systemic diseases. Oxidative stress is a possible link between systemic diseases and periodontitis. Our study aimed to illustrate the influence of periodontitis on oxidative stress development in cats. Furthermore, the changes in the bacterial flora of the gums were investigated. METHODS: Based on the clinical and laboratory examinations, fifty cats were divided into two groups normal (n = 25) and moderate to advanced periodontitis (n = 25). Serum total antioxidant capacity (TAC), total oxidant status (TOS), reduced (GSH) and oxidized glutathione (GSSG) were measured. In addition, samples were taken from the subgingival plaques of all cats for bacterial culture. RESULTS: Serum TOS, GSSG, GSSG to GSH ratio, and oxidative stress index (OSI), calculated as the ratio of TOS to TAC in cats with periodontal disease were significantly higher, and TAC was significantly lower (p < 0.05) compared with controls. The results of bacterial culture indicated that the number of isolated bacterial colonies is higher in patients than in the control group. Additionally, the analysis of these data showed a positive association between periodontal index and oxidative stress. CONCLUSIONS: Our results revealed that periodontitis in cats is related to a main oxidative stress. Furthermore, oxidant factors such as TOS and OSI, compared to antioxidant factors, may better indicate the presence of oxidative stress conditions in patients with periodontitis.


Assuntos
Antioxidantes , Doenças do Gato , Glutationa , Estresse Oxidativo , Periodontite , Animais , Gatos , Doenças do Gato/microbiologia , Doenças do Gato/sangue , Doenças do Gato/metabolismo , Estudos de Casos e Controles , Periodontite/veterinária , Periodontite/microbiologia , Feminino , Masculino , Antioxidantes/metabolismo , Glutationa/sangue , Glutationa/metabolismo , Dissulfeto de Glutationa/sangue , Dissulfeto de Glutationa/metabolismo , Oxidantes/metabolismo , Oxidantes/sangue
12.
Food Res Int ; 188: 114513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823886

RESUMO

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Assuntos
Antioxidantes , Digestão , Animais , Hidrólise , Antioxidantes/metabolismo , Antioxidantes/análise , Osso e Ossos/metabolismo , Suínos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Manipulação de Alimentos/métodos , Temperatura Alta , Aminoácidos/metabolismo , Aminoácidos/análise , Produtos da Carne/análise , Hipoglicemiantes/farmacologia , Anti-Hipertensivos/farmacologia , Anti-Inflamatórios/farmacologia , Peptídeo Hidrolases/metabolismo , Inibidores da Dipeptidil Peptidase IV , Neprilisina/metabolismo , Neprilisina/antagonistas & inibidores , Endopeptidases
13.
Sci Rep ; 14(1): 12701, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831069

RESUMO

The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.


Assuntos
Antioxidantes , Cobre , Hordeum , Nanopartículas Metálicas , Tolerância ao Sal , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Lamiaceae/efeitos dos fármacos , Lamiaceae/metabolismo , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Malondialdeído/metabolismo , Estresse Salino
14.
BMC Nephrol ; 25(1): 190, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831279

RESUMO

PURPOSE: Some studies have found that the pathological formation of kidney stones is closely related to injury and inflammatory response. Behaviors such as dietary composition, physical activity, obesity and smoking can all affect the body's oxidative stress levels. In order to evaluate the effects of various diets and lifestyles on the body's oxidative and antioxidant systems, an oxidative balance score was developed. To investigate whether the OBS is associated with the development of kidney stones. METHODS: Data were taken from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018, followed by retrospective observational studies. The association between kidney stones and OBS was analyzed using survey-weighted logistic regression by adjusting for demographics, laboratory tests, and medical comorbidity covariates. The oxidative balance score is calculated by screening 16 nutrients and 4 lifestyle factors, including 5 prooxidants and 15 antioxidants, based on prior information about the relationship between oxidation levels in the body and nutrients or lifestyle factors. RESULTS: A total of 26,786 adult participants were included in the study, of which 2,578, or 9.62%, had a history of nephrolithiasis. Weighted logistic regression analysis found an association between OBS and kidney stones. In the fully tuned model, i.e., model 3, the highest quartile array of OBS was associated with the lowest quartile array of OBS (OR = 0.73 (0.57, 0.92)) with the risk of kidney stone (p = 0.01), and was statistically significant and remained relatively stable in each model. At the same time, the trend test in the model is also statistically significant. With the increase of OBS, the OR value of kidney stones generally tends to decrease. CONCLUSIONS: There is an inverse correlation between OBS and kidney stone disease. At the same time, higher OBS suggests that antioxidant exposure is greater than pro-oxidative exposure in diet and lifestyle, and is associated with a lower risk of kidney stones.


Assuntos
Cálculos Renais , Inquéritos Nutricionais , Estresse Oxidativo , Humanos , Cálculos Renais/epidemiologia , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Antioxidantes/metabolismo , Estilo de Vida , Dieta , Idoso
15.
Sci Rep ; 14(1): 13091, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849601

RESUMO

The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.


Assuntos
Fertilizantes , Oxirredução , Triticum , Óxido de Zinco , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Nanopartículas Metálicas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
16.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851702

RESUMO

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Assuntos
Alternaria , Aspergillus , Bioprospecção , Endófitos , Germinação , Sementes , Sideróforos , Zea mays , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/fisiologia , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Sideróforos/metabolismo , Bioprospecção/métodos , Ácidos Indolacéticos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Antioxidantes/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo
17.
BMC Vet Res ; 20(1): 242, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831422

RESUMO

BACKGROUND: ATPase activity and the antioxidant function of intestinal tissue can reflect intestinal cell metabolic activity and oxidative damage, which might be related to intestinal function. However, the specific influence of intestinal ATPase activity and antioxidant function on growth performance, feed conversion efficiency, and the intestinal microbiota in sheep remains unclear. RESULTS: This study analyzed the correlation between ATPase activity and antioxidant function in the jejunum of 92 Hu sheep and their growth performance and feed conversion efficiency. Additionally, individuals with the highest (H group) and lowest (L group) jejunum MDA content and Na+ K+-ATPase activity were further screened, and the effects of jejunum ATPase activity and MDA content on the morphology and microbial community of sheep intestines were analyzed. There was a significant correlation between jejunum ATPase and SOD activity and the initial weight of Hu sheep (P < 0.01). The H-MDA group exhibited significantly higher average daily gain (ADG) from 0 to 80 days old and higher body weight (BW) after 80 days. ATPase and SOD activities, and MDA levels correlated significantly and positively with heart weight. The jejunum crypt depth and circular muscle thickness in the H-ATP group were significantly higher than in the L-ATP group, and the villus length, crypt depth, and longitudinal muscle thickness in the H-MDA group were significantly higher than in the L-MDA group (P < 0.01). High ATPase activity and MDA content significantly reduced the jejunum microbial diversity, as indicated by the Chao1 index and observed species, and affected the relative abundance of specific taxa. Among species, the relative abundance of Olsenella umbonata was significantly higher in the H-MDA group than in the L-MDA group (P < 0.05), while Methanobrevibacter ruminantium abundance was significantly lower than in the L-MDA group (P < 0.05). In vitro culture experiments confirmed that MDA promoted the proliferation of Olsenella umbonata. Thus, ATPase and SOD activities in the jejunum tissues of Hu sheep are predominantly influenced by congenital factors, and lambs with higher birth weights exhibit lower Na+ K+-ATPase, Ca2+ Mg2+-ATPase, and SOD activities. CONCLUSIONS: The ATPase activity and antioxidant performance of intestinal tissue are closely related to growth performance, heart development, and intestinal tissue morphology. High ATPase activity and MDA content reduced the microbial diversity of intestinal tissue and affect the relative abundance of specific taxa, representing a potential interaction between the host and its intestinal microbiota.


Assuntos
Adenosina Trifosfatases , Antioxidantes , Microbioma Gastrointestinal , Jejuno , Animais , Jejuno/microbiologia , Jejuno/enzimologia , Antioxidantes/metabolismo , Microbioma Gastrointestinal/fisiologia , Adenosina Trifosfatases/metabolismo , Ovinos , Masculino , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo
18.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
19.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853268

RESUMO

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Assuntos
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenóis , Raízes de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Fenóis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores de Crescimento de Plantas/metabolismo , Agrobacterium
20.
Pestic Biochem Physiol ; 202: 105942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879300

RESUMO

Long-term residue of difenoconazole (DFZ) in the environment caused multiple organ damage to aquatic organisms. Due to the potential hepatoprotective and neuroprotective properties of silybin (SIL), we hypothesized that SIL could alleviate growth inhibition, liver, and brain damage in carp induced by DFZ exposure. The in vivo experiments were divided into the Control group, the SIL group, the DFZ group and the DFZ + SIL group. The exposure concentration of DFZ was 0.39 mg/L, and the therapeutic dose of SIL was 400 mg/kg. The whole experiment lasted for 30 days. SIL was also found to reduce hepatic injury and lipid metabolism based on H&E staining, oil red O staining, and measurement of serum and liver tissue levels of ALT, AST, LDH, TG, and TC. Similarly, SIL reduced brain damage after DFZ exposure, according to H&E staining and detection transcription level of the ZO-1, ZO-2, occludin, and Claudin7 in carp brain. In terms of mechanism, the results showed that SIL inhibited the excessive production of ROS in liver and brain tissues, increased the activity of antioxidant enzymes (T-AOC, SOD, CAT) and resist oxidative stress. Also, SIL promoted the production of anti-inflammatory factors (TGF-ß1 and IL-10) and inhibited the expression of pro-inflammatory factors (TNF-α and IL-6) to reduce the inflammatory response in liver and brain tissues caused by DFZ. ln terms of ferroptosis, by lowering iron levels, upregulating ferroptosis-related genes (GPX4, SIC7A11, GCLC), and downregulating the expression of NCOA4, STEAP3, COX2, and P53, SIL was able to inhibit ferroptosis of liver and brain tissues of carp. In addition, SIL restored the reduced mitochondrial membrane potential (MMP) level and inhibited apoptosis as measured by MMP level detection, TUNEL staining, and apoptosis gene transcript levels. In this study, we analyzed the interactions between genes and proteins associated with oxidative stress, inflammation, ferroptosis and apoptosis using the String database and ranked the nodes in the network using the Cytoscape plugin Cytohubba, and found that P53, Caspase3, TNF-α, IL-6 and Bcl-2 were the key hub genes. Our study not only revealed the multiple pharmacological activities of SIL, but also provided a reference for the prevention and reduction pesticide hazards to aquatic organisms.


Assuntos
Apoptose , Encéfalo , Carpas , Dioxolanos , Ferroptose , Inflamação , Fígado , Estresse Oxidativo , Silibina , Animais , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Apoptose/efeitos dos fármacos , Silibina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Dioxolanos/farmacologia , Carpas/metabolismo , Inflamação/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Triazóis/farmacologia , Triazóis/toxicidade , Antioxidantes/metabolismo , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...