Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.052
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281289

RESUMO

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


Assuntos
Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Plantas/efeitos dos fármacos , Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Secas , Engenharia Genética , Resposta ao Choque Térmico/efeitos dos fármacos , Inativação Metabólica , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Modelos Biológicos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Estresse Fisiológico/genética
2.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200345

RESUMO

Efficient accumulation of flavonoids is important for increased tolerance to biotic stress. Although several plant defense mechanisms are known, the roles of many pathways, proteins, and secondary metabolites in stress tolerance are unknown. We generated a flavanone 3-hydroxylase (F3H) overexpressor rice line and inoculated Xanthomonas Oryzae pv. oryzae and compared the control and wildtype inoculated plants. In addition to promoting plant growth and developmental maintenance, the overexpression of F3H increased the accumulation of flavonoids and increased tolerance to bacterial leaf blight (BLB) stress. Moreover, leaf lesion length was higher in the infected wildtype plants compared with infected transgenics. Kaempferol and quercetin, which scavenge reactive oxygen species, overaccumulated in transgenic lines compared with wildtypes in response to pathogenic infection, detected by scanning electron microscopy and spectrophotometry. The induction of F3H altered the antioxidant system and reduced the levels of glutathione peroxidase activity and malondialdehyde (MDA) contents in the transgenic lines compared with the wildtypes. Downstream gene regulation analysis showed that the expression of F3H increased the regulation of flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and slender rice mutant (SLR1) during BLB stress. The analysis of SA and JA signaling revealed an antagonistic interaction between both hormones and that F3H induction significantly promoted SA and inhibited JA accumulation in the transgenic lines. SA-dependent nonexpressor pathogenesis-related (NPR1) and Xa1 showed significant upregulation in the infected transgenic lines compared with the infected control and wildtype lines. Thus, the overexpression of F3H was essential for increasing BLB stress tolerance.


Assuntos
Antioxidantes/metabolismo , Resistência à Doença/imunologia , Flavonoides/metabolismo , Hormônios/metabolismo , Oxigenases de Função Mista/metabolismo , Oryza/imunologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Estresse Fisiológico , Xanthomonas/fisiologia
3.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202179

RESUMO

The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.


Assuntos
Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia , Ésteres do Colesterol/metabolismo , Biologia Computacional/métodos , Suscetibilidade a Doenças , Fibrose , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Estresse Oxidativo , Triglicerídeos/metabolismo
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199590

RESUMO

In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.


Assuntos
Antioxidantes/metabolismo , Homeostase/genética , MicroRNAs/genética , Estresse Oxidativo/genética , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202230

RESUMO

Prediabetes (PrDM) is a prodromal stage of diabetes mellitus (DM) with an increasing prevalence worldwide. During DM progression, individuals gradually develop complications in various organs. However, lungs are suggested to be affected later than other organs, such as the eyes, heart or brain. In this work, we studied the effects of PrDM on male Wistar rats' lungs and whether the regular consumption of white tea (WTEA) for 2 months contributes to the improvement of the antioxidant profile of this tissue, namely through improved activity of the first line defense antioxidant enzymes, the total antioxidant capacity and the damages caused in proteins, lipids and histone H2A. Our data shows that PrDM induced a decrease in lung superoxide dismutase and glutathione peroxidase activities and histone H2A levels and an increase in protein nitration and lipid peroxidation. Remarkably, the regular WTEA intake improved lung antioxidant enzymes activity and total antioxidant capacity and re-established the values of protein nitration, lipid peroxidation and histone H2A. Overall, this is the first time that lung is reported as a major target for PrDM. Moreover, it is also the first report showing that WTEA possesses relevant chemical properties against PrDM-induced lung dysfunction.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estado Pré-Diabético/metabolismo , Chá/química , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glutationa Peroxidase/metabolismo , Histonas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Extratos Vegetais/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
6.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204595

RESUMO

Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer's disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.


Assuntos
Doença de Alzheimer/patologia , Microscopia de Fluorescência/métodos , NAD/metabolismo , Neurônios Receptores Olfatórios/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Humanos
7.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205205

RESUMO

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


Assuntos
Antioxidantes/farmacologia , Células da Medula Óssea/citologia , Peptídeos Penetradores de Células/genética , Produtos do Gene tat/genética , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase-1/genética , Animais , Antioxidantes/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Peptídeos Penetradores de Células/metabolismo , Células Cultivadas , Produtos do Gene tat/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/metabolismo , Irradiação Corporal Total
8.
Int J Nanomedicine ; 16: 4335-4349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234429

RESUMO

Purpose: Selenium nanoparticles (SeNPs) have recently gained much attention in nanomedicine applications owing to their unique biological properties. Biosynthesis of SeNPs using nutraceuticals as lycopene (LYC) maximizes their stability and bioactivities. In this context, this study aimed to elucidate the renoprotective activity of SeNPs coated with LYC (LYC-SeNPs) in the acute kidney injury (AKI) model. Methods: Rats were divided into six groups: control, AKI (glycerol-treated), AKI+sodium selenite (Na2SeO3; 0.5 mg/kg), AKI+LYC (10 mg/kg), AKI+LYC-SeNPs (0.5 mg/kg) and treated for 14 days. Results: Glycerol treatment evoked significant increases in rhabdomyolysis-related markers (creatine kinase and LDH). Furthermore, relative kidney weight, Kim-1, neutrophil gelatinase-associated lipocalin (NGAL), serum urea, and creatinine in the AKI group were elevated. Glycerol-injected rats displayed declines in reduced glutathione level, and superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities, paralleled with downregulations in Nfe2l2 and Hmox-1 expressions and high renal MDA and NO contents. Glycerol-induced renal inflammation was evident by rises in TNF-α, IL-1ß, IL-6, and upregulated Nos2 expression. Also, apoptotic (elevated caspase-3, Bax, and cytochrome-c with lowered Bcl-2) and necroptotic (elevated Pipk3 expression) changes were reported in damaged renal tissue. Co-treatment with Na2SeO3, LYC, or LYC-SeNPs restored the biochemical, molecular, and histological alterations in AKI. In comparison with Na2SeO3 or LYC treatment, LYC-SeNPs had the best nephroprotective profile. Conclusion: Our findings authentically revealed that LYC-SeNPs co-administration could be a prospective candidate against AKI-mediated renal damage via antioxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic activities.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Glicerol/efeitos adversos , Licopeno/química , Nanopartículas/química , Selênio/química , Selênio/farmacologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Antioxidantes/metabolismo , Creatinina/sangue , Química Verde , Lipocalina-2/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Selênio/uso terapêutico
9.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200152

RESUMO

Lupin seeds can represent a valuable source of phenolics and other antioxidant compounds. In this work, a comprehensive analysis of the phytochemical profile was performed on seeds from three Lupinus species, including one cultivar (Lupinus albus) and two wild accessions (Lupinus cossentinii and Lupinus luteus), collected from the northern region of Tunisia. Untargeted metabolomic profiling allowed to identify 249 compounds, with a great abundance of phenolics and alkaloids. In this regard, the species L. cossentinii showed the highest phenolic content, being 6.54 mg/g DW, followed by L. luteus (1.60 mg/g DW) and L. albus (1.14 mg/g DW). The in vitro antioxidant capacity measured by the ABTS assay on seed extracts ranged from 4.67 to 17.58 mg trolox equivalents (TE)/g, recording the highest values for L. albus and the lowest for L. luteus. The DPPH radical scavenging activity ranged from 0.39 to 3.50 mg TE/g. FRAP values varied between 4.11 and 5.75 mg TE/g. CUPRAC values for lupin seeds ranged from 7.20 to 8.95 mg TE/g, recording the highest for L. cossentinii. The results of phosphomolybdenum assay and metal chelation showed similarity between the three species of Lupinus. The acetylcholinesterase (AChE) inhibition activity was detected in each methanolic extract analyzed with similar results. Regarding the butyrylcholinesterase (BChE) enzyme, it was weakly inhibited by the Lupinus extracts; in particular, the highest activity values were recorded for L. albus (1.74 mg GALAE/g). Overall, our results showed that L. cossentinii was the most abundant source of polyphenols, consisting mainly in tyrosol equivalents (5.82 mg/g DW). Finally, significant correlations were outlined between the phenolic compounds and the in vitro biological activity measured, particularly when considering flavones, phenolic acids and lower-molecular-weight phenolics.


Assuntos
Antioxidantes/química , Lupinus/química , Compostos Fitoquímicos/química , Sementes/química , Alcaloides/química , Alcaloides/metabolismo , Antioxidantes/metabolismo , Lupinus/metabolismo , Metabolômica/métodos , Fenóis/química , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Sementes/metabolismo , Tunísia
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203800

RESUMO

Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor ß/δ (PPARß/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARß/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARß/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARß/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARß/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARß/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARß/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiotônicos/uso terapêutico , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , PPAR delta/metabolismo , PPAR beta/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Antioxidantes/metabolismo , Caderinas/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Catalase/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Ratos Wistar , Superóxido Dismutase/metabolismo , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Proteína Desacopladora 3/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207571

RESUMO

Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.


Assuntos
Antioxidantes , Dieta , Tocotrienóis , alfa-Tocoferol , gama-Tocoferol , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Tocotrienóis/química , Tocotrienóis/metabolismo , alfa-Tocoferol/química , alfa-Tocoferol/metabolismo , gama-Tocoferol/química , gama-Tocoferol/metabolismo
12.
Trop Anim Health Prod ; 53(3): 394, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245354

RESUMO

Sheep production is traditional for rural communities in Mexico, based on natural grasslands and semi-stabled feeding. Quality forages are necessary to improve productivity in these systems. Weeds are an alternative to feed ruminants and to manage crops. Also, many plants have secondary metabolites beneficial for livestock. The objective was to assess the nutritive value in vitro and the antioxidant activity of three weeds (Tithonia tubiformis, Cosmos bipinnatus, and Tagetes lucida) and four treatments (T0 = control diet, T1 = diet + 5% T. tubiformis, T2 = diet + 5% C. bipinnatus, and T3 = diet + 5% T. lucida). Nutritive value was determined from chemical composition by standard methods and mineral contents by inductively coupled plasma analyses. Secondary compounds, total phenols (TP), total tannins (TT), condensed tannins (CT), and phenolic compounds, were determined by high-performance liquid chromatography, and total antioxidant activity was determined by measuring the oxygen radical absorbance capacity. Rumen fermentation kinetics and in vitro digestibility of dry matter (IVDMD), organic matter (IVOMD), and neutral detergent fibre (IVNDFD) were determined per species and treatment by in vitro gas production. T. tubiformis had the highest CP and TP contents (P < 0.05), and C. bipinnatus had the highest fibre and CT contents (P < 0.05). Inclusion of T. lucida in the diet resulted in an 18% increase in TP content and a 30% increase in antioxidant activity in comparison to the control diet. No significant differences (P > 0.05) were found in rumen kinetics parameters, IVDMD, IVOMD, IVNDFD, or metabolizable energy, indicating that the tested weeds can be used as additives to increase antioxidant activity in sheep diets without negative effects.


Assuntos
Ração Animal , Digestão , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Fermentação , México , Valor Nutritivo , Rúmen/metabolismo , Ovinos
13.
Pestic Biochem Physiol ; 177: 104876, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301349

RESUMO

Fipronil is a current use pesticide, widely used in many crops, commonly adsorbed to sediments of aquatic environments. The purpose of this study was to evaluate the biomarker responses and fipronil distribution pattern in different matrixes (fish, sediment and water) after juveniles P. lineatus exposure at two environmental concentrations (5.5 and 82 µg kg--1) of fipronil-spiked sediments. The levels of oxidized proteins (PO), lipid peroxidation (LPO), and enzymatic activity of superoxide dismutase (SOD), reduced glutathione content (GSH), antioxidant capacity against peroxyls (ACAP) and acetylcholinesterase (AChE) were evaluated in liver, gills and brain. Concentrations of fipronil and its metabolites (f. desulfinyl, f sulphpHide and f. sulfone) were quantified by GC-ECD. F. desulfinyl was the major metabolite found in all matrixes, followed by f. sulphide in sediments, while f. sulfone was mainly accumulated in fish. Fipronil promoted oxidative stress in P. lineatus, as evidenced by the increases in LPO and PO levels and the decrease brain AChE activity. Fish exposed at both concentrations showed significant decrease in antioxidant capacity. Alterations in the antioxidant defenses system was evidenced in all organs. These results suggest that the occurrence of fipronil in aquatic environments can generate oxidative stress at different levels in P. lineatus, showing that this species is highly sensitive to the deleterious effects of fipronil and metabolites.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Bioacumulação , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Pirazóis , Poluentes Químicos da Água/toxicidade
14.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209454

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) exacerbates the oxidative stress status of the pregnant women. Τo improve the oxidative stress status, several therapeutic interventions have been suggested. The aim of this network meta-analysis is to assess the effect of different dietary supplements on the oxidative stress status in pregnant women with GDM. METHODS: A network meta-analysis of randomized control trials was performed comparing the changes delta (Δ) in total antioxidant capacity (TAC) and concentration of malondialdehyde (MDA) as primary outcomes, following different therapeutic interventions with dietary supplements in pregnant women with GDM. Four electronic databases and grey literature sources were searched. The secondary outcomes were other markers of oxidative stress. RESULTS: The meta-analysis included 16 studies of 1173 women with GDM. Regarding ΔTAC: probiotics and omega-3 with vitamin E were superior to placebo/no intervention. Regarding ΔMDA: vitamin D with calcium, omega-3, vitamin D, omega-3 with vitamin E, magnesium with zinc and calcium, and probiotics were superior to placebo/no intervention. CONCLUSIONS: Administration of dietary supplements in women with GDM can be helpful in limiting the oxidative stress which develop in these pregnancies.


Assuntos
Diabetes Gestacional/patologia , Suplementos Nutricionais , Estresse Oxidativo , Antioxidantes/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Gravidez , Gestantes , Viés de Publicação , Risco
15.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070033

RESUMO

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


Assuntos
Secas , Mutação , Triticum/genética , Triticum/fisiologia , Aclimatação/genética , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Metanossulfonato de Etila/toxicidade , Mutagênicos/toxicidade , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Melhoramento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico/genética , Triticum/efeitos dos fármacos , Água/metabolismo
16.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070080

RESUMO

In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the "domain of unknown function" novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.


Assuntos
Aclimatação/genética , Arabidopsis/genética , Secas , Genes de Plantas , Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Antioxidantes/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Peroxidação de Lipídeos , Mutação com Perda de Função , Fenótipo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética
17.
BMC Plant Biol ; 21(1): 252, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078280

RESUMO

BACKGROUND: Flavonoids can protect plants against extreme temperatures and ROS due to their antioxidant activities. We found that deep-purple seed coat color was controlled by two gene interaction (12:3:1) from the cross between yellow and deep-purple seed coat colored inbreds. F2:3 seeds were grouped in 3 by seed coat color and germinated under chilling (4 °C) and non-acclimated conditions (18 °C) for a week, followed by normal conditions (18 °C) for three weeks and a subsequent chilling stress (4 °C) induction. We analyzed mean daily germination in each group. Additionally, to study the acclimation in relationship to the different seed coat colors on the germination ability and seedling performances under the cold temperatures, we measured the chlorophyll content, ROS scavenging activity, and expression levels of genes involved in ROS scavenging, flavonoid biosynthetic pathway, and cold response in seedlings. RESULTS: The results of seed color segregation between yellow and deep purple suggested a two-gene model. In the germination study, normal environmental conditions induced the germination of yellow-seed, while under chilling conditions, the germination ratio of deep purple-seed was higher than that of yellow-colored seeds. We also found that the darker seed coat colors were highly responsive to cold acclimation based on the ROS scavenging enzymes activity and gene expression of ROS scavenging enzymes, flavonoid biosynthetic pathway and cold responsive genes. CONCLUSIONS: We suggest that deep purple colored seed might be in a state of innate pre-acquired stress response state under normal conditions to counteract stresses in a more effective way. Whereas, after the acclimation, another stress should enhance the cold genes expression response, which might result in a more efficient chilling stress response in deep purple seed seedlings. Low temperature has a large impact on the yield of crops. Thus, understanding the benefit of seed coat color response to chilling stress and the identification of limiting factors are useful for developing breeding strategies in order to improve the yield of wheat under chilling stress.


Assuntos
Aclimatação , Temperatura Baixa , Germinação/fisiologia , Plântula/fisiologia , Sementes/fisiologia , Triticum/fisiologia , Antocianinas , Antioxidantes/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Fenóis , Pigmentos Biológicos , Espécies Reativas de Oxigênio
18.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067571

RESUMO

This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs). In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 µg/mL) or N-Acetyl-L-cysteine (NAC) (20 µM) for 24 h, and then incubated with 200 µM of H2O2 for 24 h. Compared with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2) accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed to NAC (30 µM) or PCs (4, 8 or 16 µg/mL) in the absence or presence of 300 µM of H2O2 for 4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE) activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and alleviating oxidative damage.


Assuntos
Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Acetilcisteína/farmacologia , Animais , Elementos de Resposta Antioxidante , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator de Transcrição NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
19.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072023

RESUMO

This study was aimed at evaluating the changes in metallothionein (MT) concentration in the blood of patients with acute pancreatitis (AP) and healthy subjects, taking into account the extracellular (plasma) and intracellular (erythrocyte lysate) compartments. The impact of single-nucleotide polymorphisms (SNPs) in the MT1A (rs11640851), MT1B (rs964372) and MT2A (rs10636) genes on MT concentration and their association with the concentration of metals (Cu, Zn, Cd) and ceruloplasmin as Cu-related proteins were analyzed. The concentration of a high-sensitivity C-reactive protein (hs-CRP) and IL-6 as markers of inflammation, and malonyldialdehyde (MDA), superoxide dismutase (SODs) activity and the value of total antioxidant capacity (TAC) as parameters describing the pro/antioxidative balance were also assessed. In the AP patient groups, an increased MT concentration in erythrocyte lysate compared to healthy subjects was shown, especially in individuals with the GG genotype for rs964372 in the MT1B gene. A Zn concentration was especially decreased in the blood of smoking AP patients with the AA genotype for SNP rs11640851 in the MT1A gene and the GC genotype for SNP rs10636 in MT2A, compared to non-smokers with AP, which was accompanied by an increase in the value of the Cu/Zn ratio. The exposure to tobacco smoke xenobiotics increased the risk of AP occurrence in subjects with the CC genotype for SNP rs11640851 in the MT1A gene by more than fourfold. The investigated polymorphisms, rs11640851 in the MT1A gene, rs964372 in the MT1B gene and rs10636 in the MT2A gene, seem to be an important factor in maintaining homeostasis in an organism under oxidative stress conditions.


Assuntos
Suscetibilidade a Doenças , Metalotioneína/genética , Metais/efeitos adversos , Pancreatite/etiologia , Polimorfismo de Nucleotídeo Único , Fumantes , Alelos , Antioxidantes/metabolismo , Biomarcadores , Predisposição Genética para Doença , Genótipo , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Metais/metabolismo , Razão de Chances
20.
Clin Interv Aging ; 16: 1057-1070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135578

RESUMO

Introduction: The prevalence of metabolic syndrome among the elderly population is growing. The elements of metabolic syndrome in an aging society are currently being researched. Atherosclerosis is a slow process in which the first symptoms may be observed after many years. The mechanisms underlying the progression of atherosclerosis are oxidative stress and inflammation. Inflammation and oxidative stress are associated with the increased incidence of metabolic syndrome. Taking the above into consideration, metabolic syndrome is thought to be a clinical equivalent of atherosclerosis. Aim: The aim of this paper is to review the impact of the interplay of oxidant-antioxidant and inflammation markers in metabolic syndrome in general as well as its components in the pathophysiology which underlies development of atherosclerosis in elderly individuals. Methods: A systematic scan of online resources designed for elderly (≥65 years) published from 2005 to the end of 2020 were reviewed. This was supplemented with grey literature and then all resources were narratively analyzed. The analysis included the following terms: "atherosclerosis or metabolic syndrome" and "oxidative stress or inflammation" and "elderly" to find reports of atherosclerotic disease from asymptomatic to life-threatening among the elderly population with metabolic syndrome . Results: The work summarizes articles that were applicable to this study, including systematic reviews, qualitative studies and opinion pieces. Current knowledge focuses on monitoring the inflammation and oxidant-antioxidant imbalance in disentangling atherosclerosis in patients diagnosed with metabolic syndrome. The population-based studies described inflammation, increased oxidative stress and weak antioxidant defense systems as the mechanisms underlying atherosclerosis development. Moreover, there are discussions that these targets could potentially be a point of intervention to reduce the development of atherosclerosis in the elderly, especially those with altered glucose and lipid metabolism. Specific markers may be used as an approach for the prevention and lifestyle modification of atherosclerotic disease in such population. Conclusion: Metabolic syndrome and its components are important contributors in the progression of atherosclerotic disease in the elderly population but constant efforts should be made to broaden our knowledge of elderly groups who are the most susceptible for the development of atherosclerosis complications.


Assuntos
Antioxidantes/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Síndrome Metabólica/metabolismo , Oxidantes/metabolismo , Idoso , Envelhecimento/fisiologia , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Humanos , Inflamação/fisiopatologia , Metabolismo dos Lipídeos , Masculino , Síndrome Metabólica/fisiopatologia , Obesidade/metabolismo , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...