Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.516
Filtrar
1.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
2.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905281

RESUMO

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Assuntos
Antivirais , Vírus Chikungunya , Simulação de Acoplamento Molecular , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/tratamento farmacológico , Metabolismo Secundário , Simulação de Dinâmica Molecular , Halogenação , Plantas/química , Simulação por Computador , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química
3.
J Biosci Bioeng ; 138(2): 111-117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824112

RESUMO

The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 µM CrS, 40 µM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.


Assuntos
Ciclopentanos , Escherichia coli , Ciclopentanos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Candida/enzimologia , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/genética , Antivirais/metabolismo , Antivirais/síntese química , NAD/metabolismo , Biocatálise , Oxirredutases/metabolismo , Clonagem Molecular
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928400

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) posed a major challenge to healthcare systems worldwide, especially as mutations in the culprit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) complicated the development of vaccines and antiviral drugs. Therefore, the search for natural products with broad anti-SARS-CoV-2 capabilities is an important option for the prevention and treatment of similar infectious diseases. Lectins, which are widely recognized as antiviral agents, could contribute to the development of anti-SARS-CoV-2 drugs. This study evaluated the binding affinity of six lectins (including the cyanobacterial lectin from Microcystis viridis NIES-102 (MVL), and Jacalin, a lectin from the breadfruit, Artocarpus altilis) to the receptor binding domain (RBD) of the spike protein on the original (wild) SARS-CoV-2 and three of its mutants: Alpha, Delta, and Omicron. MVL and Jacalin showed distinct binding affinity to the RBDs of the four SARS-CoV-2 strains. The remaining four lectins (DB1, ConA, PHA-M and CSL3) showed no such binding affinity. Although the glycan specificities of MVL and Jacalin were different, they showed the same affinity for the spike protein RBDs of the four SARS-CoV-2 strains, in the order of effectiveness Alpha > Delta > original > Omicron. The verification of glycan-specific inhibition revealed that both lectins bind to RBDs by glycan-specific recognition, but, in addition, MVL binds to RBDs through protein-protein interactions.


Assuntos
Lectinas , Microcystis , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Lectinas/metabolismo , Lectinas/química , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Microcystis/metabolismo , Humanos , COVID-19/virologia , COVID-19/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Domínios e Motivos de Interação entre Proteínas , Cianobactérias/metabolismo , Lectinas de Plantas/metabolismo , Lectinas de Plantas/química , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mutação
5.
Microb Cell Fact ; 23(1): 163, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824527

RESUMO

BACKGROUND: Type I interferons (IFN-I)-a group of cytokines with immunomodulatory, antiproliferative, and antiviral properties-are widely used as therapeutics for various cancers and viral diseases. Since IFNs are proteins, they are highly susceptible to degradation by proteases and by hydrolysis in the strong acid environment of the stomach, and they are therefore administered parenterally. In this study, we examined whether the intestinal bacterium, enteropathogenic Escherichia coli (EPEC), can be exploited for oral delivery of IFN-Is. EPEC survives the harsh conditions of the stomach and, upon reaching the small intestine, expresses a type III secretion system (T3SS) that is used to translocate effector proteins across the bacterial envelope into the eukaryotic host cells. RESULTS: In this study, we developed an attenuated EPEC strain that cannot colonize the host but can secrete functional human IFNα2 variant through the T3SS. We found that this bacteria-secreted IFN exhibited antiproliferative and antiviral activities similar to commercially available IFN. CONCLUSION: These findings present a potential novel approach for the oral delivery of IFN via secreting bacteria.


Assuntos
Escherichia coli Enteropatogênica , Sistemas de Secreção Tipo III , Escherichia coli Enteropatogênica/metabolismo , Humanos , Sistemas de Secreção Tipo III/metabolismo , Interferon-alfa/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Interferon alfa-2/metabolismo , Proliferação de Células/efeitos dos fármacos
6.
Luminescence ; 39(6): e4792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845344

RESUMO

Favipiravir (FVP) is an oral antiviral drug approved in 2021 for the treatment of COVID-19. It is a pyrazine derivative that can be integrated into anti-viral RNA products to inhibit viral replication. While, adenine is a purine nucleobase that is found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) to generate genetic information. For the first time, the binding mechanism between FVP and adenine was determined using different techniques, including UV-visible spectrophotometry, spectrofluorimetry, synchronous fluorescence (SF) spectroscopy, Fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET), and metal ion complexation. The fluorescence spectra indicated that FVP is bound to adenine via Van der Waals forces and hydrogen bonding through a spontaneous binding process (ΔGο < 0). The quenching mechanism was found to be static. Various temperature settings were used to investigate thermodynamic characteristics, such as binding forces, binding constants, and the number of binding sites. The reaction parameters, including the enthalpy change (ΔHο) and entropy change (ΔSο), were calculated using Van't Hoff's equation. The findings demonstrated that the adenine-FVP binding was endothermic. Furthermore, the results of the experiments revealed that some metal ions (K+, Ca+2, Co+2, Cu+2, and Al+3) might facilitate the binding interaction between FVP and adenine. Slight changes are observed in the FTIR spectra of adenine, indicating the binding interaction between adenine and FVP. This study may be useful in understanding the pharmacokinetic characteristics of FVP and how the drug binds to adenine to prevent any side effects.


Assuntos
Nucleotídeos de Adenina , Amidas , Antivirais , Pirazinas , Termodinâmica , Pirazinas/química , Pirazinas/metabolismo , Amidas/química , Amidas/metabolismo , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Antivirais/química , Antivirais/farmacologia , Antivirais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Espectrofotometria Ultravioleta , Sítios de Ligação , Adenina/química , Adenina/metabolismo
7.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690769

RESUMO

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Assuntos
Adenosina/análogos & derivados , Antivirais , Catepsina A , Pulmão , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Animais , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Humanos , Catepsina A/metabolismo , Pulmão/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacologia , Permeabilidade , Ariloxifosforamidatos
8.
J Colloid Interface Sci ; 670: 563-575, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776691

RESUMO

The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed. The HIV fusion peptide (gp41) exhibited strong binding to the DOPC/DOPS bilayer, comprising a liquid disordered phase, with neutron reflectometry (NR) showing interaction with the bilayer's headgroup area. Conversely, negligible binding was observed with lipid bilayers in a liquid ordered phase. Notably, the influenza peptide (E4K) demonstrated slower binding kinetics with DOPC/DOPS bilayers and distinct interactions compared to gp41, as observed through QCM-D. This suggests different mechanisms of interaction with the lipid bilayers: one peptide interacts more within the headgroup region, while the other is more involved in transmembrane interactions. These findings hold implications for understanding viral fusion mechanisms and developing antimicrobials and antivirals targeting membrane interactions. The differential binding behaviours of the viral fusion peptides underscore the importance of considering membrane composition and properties in therapeutic strategy design.


Assuntos
Antivirais , Proteína gp41 do Envelope de HIV , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Antivirais/química , Antivirais/farmacologia , Antivirais/metabolismo , Humanos , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/metabolismo , Técnicas de Microbalança de Cristal de Quartzo
9.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732174

RESUMO

Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.


Assuntos
Sítio Alostérico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Regulação Alostérica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Ligantes , Humanos , Sítios de Ligação , Conformação Proteica , Antivirais/química , Antivirais/farmacologia , Antivirais/metabolismo , Multimerização Proteica , Aprendizado de Máquina
10.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
11.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636700

RESUMO

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Assuntos
Antioxidantes , Proteínas de Peixes , Galectinas , Smegmamorpha , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Smegmamorpha/imunologia , Smegmamorpha/genética , Galectinas/metabolismo , Galectinas/genética , Antioxidantes/metabolismo , Doenças dos Peixes/imunologia , Citocinas/metabolismo , Imunidade Inata , Poli I-C/imunologia , Lactococcus/fisiologia , Lipopolissacarídeos/imunologia , Quimiocinas/metabolismo , Quimiocinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Novirhabdovirus/fisiologia , Novirhabdovirus/imunologia , Antivirais/metabolismo
12.
ACS Chem Biol ; 19(5): 1093-1105, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646883

RESUMO

Viral macrodomains that can bind to or hydrolyze protein adenosine diphosphate ribosylation (ADP-ribosylation) have emerged as promising targets for antiviral drug development. Many inhibitor development efforts have been directed against the severe acute respiratory syndrome coronavirus 2 macrodomain 1 (SARS-CoV-2 Mac1). However, potent inhibitors for viral macrodomains are still lacking, with the best inhibitors still in the micromolar range. Based on GS-441524, a remdesivir precursor, and our previous studies, we have designed and synthesized potent binders of SARS-CoV-2 Mac1 and other viral macrodomains including those of Middle East respiratory syndrome coronavirus (MERS-CoV), Venezuelan equine encephalitis virus (VEEV), and Chikungunya virus (CHIKV). We show that the 1'-CN group of GS-441524 promotes binding to all four viral macrodomains tested while capping the 1″-OH of GS-441524-diphosphate-ribose with a simple phenyl ring further contributes to binding. Incorporating these two structural features, the best binders show 20- to 6000-fold increases in binding affinity over ADP-ribose for SARS-CoV-2, MERS-CoV, VEEV, and CHIKV macrodomains. Moreover, building on these potent binders, we have developed two highly sensitive fluorescence polarization tracers that only require nanomolar proteins and can effectively resolve the binding affinities of nanomolar inhibitors. Our findings and probes described here will facilitate future development of more potent viral macrodomain inhibitors.


Assuntos
Antivirais , Polarização de Fluorescência , SARS-CoV-2 , Humanos , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Vírus Chikungunya/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos
13.
J Virol ; 98(4): e0017124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488361

RESUMO

The global impact of emerging viral infections emphasizes the urgent need for effective broad-spectrum antivirals. The cellular organelle, lipid droplet (LD), is utilized by many types of viruses for replication, but its reduction does not affect cell survival. Therefore, LD is a potential target for developing broad-spectrum antivirals. In this study, we found that 2-bromopalmitate (2 BP), a previously defined palmitoylation inhibitor, depletes LD across all studied cell lines and exerts remarkable antiviral effects on different coronaviruses. We comprehensively utilized 2 BP, alongside other palmitoylation inhibitors such as cerulenin and 2-fluoro palmitic acid (2-FPA), as well as the enhancer palmostatin B and evaluated their impact on LD and the replication of human coronaviruses (hCoV-229E, hCoV-Oc43) and murine hepatitis virus (MHV-A59) at non-cytotoxic concentrations. While cerulenin and 2-FPA exhibited moderate inhibition of viral replication, 2 BP exhibited a much stronger suppressive effect on MHV-A59 replication, although they share similar inhibitory effects on palmitoylation. As expected, palmostatin B significantly enhanced viral replication, it failed to rescue the inhibitory effects of 2 BP, whereas it effectively counteracted the effects of cerulenin and 2-FPA. This suggests that the mechanism that 2 BP used to inhibit viral replication is beyond palmitoylation inhibition. Further investigations unveil that 2 BP uniquely depletes LDs, a phenomenon not exhibited by 2-FPA and cerulenin. Importantly, the depletion of LDs was closely associated with the inhibition of viral replication because the addition of oleic acid to 2 BP significantly rescued LD depletion and its inhibitory effects on MHV-A59. Our findings indicate that the inhibitory effects of 2 BP on viral replication primarily stem from LD disruption rather than palmitoylation inhibition. Intriguingly, fatty acid (FA) assays demonstrated that 2 BP reduces the FA level in mitochondria while concurrently increasing FA levels in the cytoplasm. These results highlight the crucial role of LDs in viral replication and uncover a novel biological activity of 2 BP. These insights contribute to the development of broad-spectrum antiviral strategies. IMPORTANCE: In our study, we conducted a comparative investigation into the antiviral effects of palmitoylation inhibitors including 2-bromopalmitate (2-BP), 2-fluoro palmitic acid (2-FPA), and cerulenin. Surprisingly, we discovered that 2-BP has superior inhibitory effects on viral replication compared to 2-FPA and cerulenin. However, their inhibitory effects on palmitoylation were the same. Intrigued by this finding, we delved deeper into the underlying mechanism of 2-BP's potent antiviral activity, and we unveiled a novel biological activity of 2-BP: depletion of lipid droplets (LDs). Importantly, we also highlighted the crucial role of LDs in viral replication. Our insights shed new light on the antiviral mechanism of LD depletion paving the way for the development of broad-spectrum antiviral strategies by targeting LDs.


Assuntos
Antivirais , Coronavirus , Vírus da Hepatite Murina , Palmitatos , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/metabolismo , Cerulenina/metabolismo , Cerulenina/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Gotículas Lipídicas/efeitos dos fármacos , Palmitatos/farmacologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Propiolactona/análogos & derivados , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia
14.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512975

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Assuntos
Capsídeo , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Capsídeo/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Antivirais/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo
15.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
16.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498560

RESUMO

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A/genética , Chaperonas Moleculares/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
17.
PLoS Pathog ; 20(3): e1012093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512999

RESUMO

Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Autofagia , Antivirais/metabolismo
18.
J Med Virol ; 96(4): e29522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533889

RESUMO

The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.


Assuntos
Fenômenos Biológicos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Chlorocebus aethiops , Humanos , Janus Quinases/metabolismo , Células Vero , Receptor gp130 de Citocina/metabolismo , Antivirais/metabolismo
19.
J Med Virol ; 96(3): e29540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529542

RESUMO

The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.


Assuntos
Androgênios , Benzamidas , Coronavirus Humano 229E , Nitrilas , Feniltioidantoína , Masculino , Feminino , Humanos , Androgênios/metabolismo , Androgênios/farmacologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/metabolismo , Estações do Ano , Antivirais/farmacologia , Antivirais/metabolismo , Luciferases
20.
Biochem Biophys Res Commun ; 706: 149728, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479246

RESUMO

Influenza A virus is the cause of a widespread human disease with high morbidity and mortality rates. The influenza virus encodes non-structural protein 1 (NS1), an exceedingly multifunctional virulence component. NS1 plays essential roles in viral replication and evasion of the cellular innate immune system. Protein kinase RNA-activated also known as protein kinase R (PKR) phosphorylates translation initiation factor eIF-2α on serine 51 to inhibit protein synthesis in virus-infected mammalian cells. Consequently, PKR activation inhibits mRNA translation, which results in the assert of both viral protein synthesis and cellular and possibly apoptosis in response to virus infection. Host signaling pathways are important in the replication of influenza virus, but the mechanisms involved remain to be characterized. Herein, the structure of NS1 and PKR complex was determined using Cryo-EM. We found the N91, E94, and G95 residues of PKR bind directly with N188, D125, and K126, respectively, of NS1. Furthermore, the study shows that PKR peptide offers a potential treatment for Influenza A virus infections.


Assuntos
Vírus da Influenza A , eIF-2 Quinase , Animais , Humanos , eIF-2 Quinase/metabolismo , Proteínas não Estruturais Virais/química , Vírus da Influenza A/genética , Microscopia Crioeletrônica , Linhagem Celular , Antivirais/metabolismo , Replicação Viral , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA