Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.821
Filtrar
1.
BMC Genomics ; 22(1): 684, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548018

RESUMO

BACKGROUND: The bast fiber crop ramie can be used as high-quality forage resources, especially in tropical or subtropical region where there is lack of high-quality protein feed. Hongxuan No.1 (HX_1) is a unique ramie variety with a light reddish brown leaf color, which is obviously different from elite cultivar, Zhongzhu No.1 (ZZ_1, green leaf). While, the regulatory mechanism of color difference or secondary metaboliates synthesis between these two varieties have not been studied. RESULTS: In this study, phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 were conducted to elucidate the mechanism of leaf color formation. Chromaticity value and pigment content measuring showed that anthocyanin was the main metabolites imparting the different leaf color phenotype between the two varieties. Based on LC/MS, at least 14 anthocyanins were identified in leaves of HX_1 and ZZ_1, and the HX_1 showed the higher relative content of malvidin-, pelargonidin-,and cyanidin-based anthocyanins. Transcriptome and metabolome co-analysis revealed that the up-regulated expression of flavonoids synthesis gene was positively correlated with total anthocyanins accumulation in ramie leaf, and the differentfially expression of "blue gene" (F3'5'H) and the "red gene" (F3'H) in leaves bring out HX_1 metabolic flow more input into the cyanidin branch. Furthermore, the enrichment of glycosylated modification pathway (UGT and AT) and the expression of flavonoid 3-O-glucosyl transferase (UFGT), anthocyanidin reductase (ANR), in leaves were significantly influenced the diversity of anthocyanins between HX_1 and ZZ_1. CONCLUSIONS: Phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 indicated that the expression levels of genes related to anthocyanin metabolism contribute to the color formation of ramie variety. Anthocyanins are important plant secandary metabilates with many physiological functions, the results of this study will deepened our understanding of ramie leaf color formation, and provided basis for molecular breeding of functional forage ramie.


Assuntos
Boehmeria , Antocianinas/metabolismo , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
2.
Plant Sci ; 311: 110996, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482908

RESUMO

Rubus chingii, is widely distributed in many Asian countries and well known for its medicinal and dietary properties. Diversity of fruit color in raspberry has been attributed to the presence of either anthocyanins or carotenoids. In this study, we investigated anthocyanins and carotenoids, and their biosynthesis by LC-MS/MS. Six anthocyanins mainly consisted of flavanol-anthocyanins while five carotenoids mainly consisted of ß-citraurin esters. Flavanol-anthocyanins were produced from an offshoot of the anthocyanin biosynthesis, which started with biosynthesis of flavanols and anthocyanidin by leucoanthocyanidin reductase (LAR)/anthocyanidin reductase (ANR) and anthocyanidin synthase (ANS/LDOX) respectively. ß-citraurin esters were produced from cleavage of zeaxanthin and esterification by organic acid, which was an offshoot of the carotenoid biosynthesis. The offshoot started with biosynthesis of zeaxanthin and ß-citraurin by carotene ß-hydroxylase (CHYB/LUT5) and carotenoid cleavage dioxygenase (CCD) respectively. During fruit ripening, biosynthesis of flavanols and anthocyanins was down-regulated by genes/proteins involved in phenylpropanoid and flavonoid biosynthesis, while biosynthesis of ß-citraurin esters was up-regulated by imbalanced expression of genes/proteins involved in ß,ß-ring and ß, ε-ring hydroxylation. Thus, ß-citraurin esters, instead of anthocyanins imparted reddish color to the ripe fruit. These pigments and their biosynthesis in R. chingii are totally different from what occurs in other raspberry species.


Assuntos
Antocianinas/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Pigmentação/fisiologia , Rubus/crescimento & desenvolvimento , Rubus/metabolismo , Antocianinas/genética , China , Frutas/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pigmentação/genética , Rubus/anatomia & histologia
3.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502081

RESUMO

Eggplant berries are rich in anthocyanins like delphinidin-3-rutinoside (D3R) and nasunin (NAS), which are accumulated at high amounts in the peel. NAS is derived by D3R through acylation and glycosylation steps. The presence of D3R or NAS is usually associated with black-purple or lilac fruit coloration of the most cultivated varieties, respectively. Building on QTL mapping position, a candidate gene approach was used to investigate the involvement of a BAHD anthocyanin acyltransferase (SmelAAT) in determining anthocyanin type. The cDNA sequence comparison revealed the presence of a single-base deletion in D3R-type line '305E40' (305E40_aat) with respect to the NAS-type reference line '67/3'. This is predicted to cause a frame shift mutation, leading to a loss of SmelAAT function and, thus, D3R retention. RT-qPCR analyses confirmed SmelAAT and 305E40_aat expression during berry maturation. In D3R-type lines, '305E40' and 'DR2', overexpressing the functional SmelAAT allele from '67/3', the transcript levels of the transgene correlated with the accumulation of NAS in fruit peel. Furthermore, it was also found a higher expression of the transcript for glucosyltransferase Smel5GT1, putatively involved with SmelAAT in the last steps of anthocyanin decoration. Finally, an indel marker matching with anthocyanin type in the '305E40' × '67/3' segregating population was developed and validated in a wide number of accessions, proving its usefulness for breeding purposes.


Assuntos
Aciltransferases/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Solanum melongena/genética , Aciltransferases/metabolismo , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Mutação , Pigmentação , Proteínas de Plantas/metabolismo , Solanum melongena/metabolismo
4.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361014

RESUMO

A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.


Assuntos
Flavonóis/metabolismo , Flores/metabolismo , Redes Reguladoras de Genes , Narcissus/genética , Pigmentação , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Flavonóis/genética , Flores/genética , Narcissus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445149

RESUMO

Anthocyanins contribute to the quality and flavour of fruits. They are produced through the phenylpropanoid pathway, which is regulated by specific key genes that have been identified in many species. The dominant anthocyanin forms are reversibly transformed at different pH states, thus forming different colours in aqueous solutions. In plants, anthocyanins are controlled by specific factors of the biosynthetic pathway: light, temperature, phytohormones and transcription factors. Although great progress in research on anthocyanin structures and the regulation of anthocyanin biosynthesis has been made, the molecular regulatory mechanisms of anthocyanin biosynthesis in different plants remain less clear. In addition, the co-regulation of anthocyanin biosynthesis is poorly understood. In this review, we summarise previous findings on anthocyanin biosynthesis, including the biochemical and biological features of anthocyanins; differences in anthocyanin biosynthesis among fruit species, i.e., apple, red pear, and the model plant Arabidopsis thaliana; and the developmental and environmental regulation of anthocyanin accumulation. This review reveals the molecular mechanisms underlying anthocyanin biosynthesis in different plant species and provides valuable information for the development of anthocyanin-rich red-skinned and red-fleshed apple and pear varieties.


Assuntos
Antocianinas/metabolismo , Malus/metabolismo , Pyrus/metabolismo , Antocianinas/genética , Vias Biossintéticas , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361722

RESUMO

Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.


Assuntos
Brettanomyces/metabolismo , Aromatizantes/metabolismo , Tecnologia de Alimentos/métodos , Odorantes/análise , Saccharomycetales/metabolismo , Vinho/análise , Antocianinas/metabolismo , Carboxiliases/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Dióxido de Enxofre/farmacologia , Vitis/metabolismo , Vitis/microbiologia , Vinho/microbiologia
7.
J Plant Physiol ; 263: 153468, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34247029

RESUMO

Anthocyanins not only affect the quality of horticultural crops but are also vital for human health. Glutathione transferase family members (GSTs) are enzymes that help to control plant development and stress responses, and are also involved in anthocyanin accumulation. In this study, we targeted a phi (F) class glutathione S-transferase gene RsGST1 (RSG01330.t1) as a crucial gene in the accumulation of anthocyanins in radish. RsGST1 expression was closely associated with anthocyanin content in the skin and flesh of taproot from different color type radish cultivars. Furthermore, RsGST1 was able to restore anthocyanin accumulation in Arabidopsis tt19 mutants, indicating that RsGST1 has a similar function as AtTT19, a gene responsible for the transport of anthocyanins in Arabidopsis. Transient overexpression of RsGST1 together with the key anthocyanin biosynthesis regulator RsMYB1a in radish leaves significantly enhanced anthocyanin biosynthesis compared with in plants that overexpressed RsMYB1a alone. Dual-luciferase and yeast one-hybrid assays revealed that RsMYB1a binds to promotor and activates the expression of RsGST1. Altogether, these results provide molecular evidence indicating that RsGST1 and RsMYB1a coordinate radish anthocyanin accumulation.


Assuntos
Antocianinas/metabolismo , Genes de Plantas , Variação Genética , Glutationa Transferase/metabolismo , Raphanus/genética , Raphanus/metabolismo , Antocianinas/genética , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Glutationa Transferase/genética
8.
Plant Sci ; 310: 110993, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315580

RESUMO

Plant-specific SQUAMOSA promoter-binding protein-like (SPL) transcription factors play critical regulatory roles during plant growth and development. However, the functions of SPLs in Salvia miltiorrhiza (SmSPLs; a model medicinal plant) have not been reported. Here, the expression patterns and functions of SmSPL7 were characterized in S. miltiorrhiza. SmSPL7 was expressed in all parts of S. miltiorrhiza, with the highest expression level in the leaves, and could be inhibited by multiple hormones, including methyl jasmonate, auxin, abscisic acid, and gibberellin. SmSPL7 is localized within the nucleus and exhibits robust transcriptional activation activity. Transgenic lines overexpressing SmSPL7 demonstrated pronounced growth inhibition, accompanied by increased anthocyanin accumulation via the genetic activation of the anthocyanin biosynthesis pathway. However, SmSPL7 overexpression significantly decreased salvianolic acid B (SalB) production by inhibiting the transcripts of genes implicated in its biosynthesis pathway. Further analysis indicated that SmSPL7 directly binds to SmTAT1 and Sm4CL9 promoters and blocks their expression to inhibit the biosynthesis of SalB. Taken together, these results indicate that SmSPL7 is a negative regulator of SalB biosynthesis but positively regulates anthocyanin accumulation in S. miltiorrhiza. These findings provide new insights into the functionality of the SPL family while establishing an important foundation for further uncovering the crucial roles of SmSPL7 in the growth of S. miltiorrhiza.


Assuntos
Antocianinas/metabolismo , Hidroxibenzoatos/metabolismo , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Fatores de Transcrição/genética
9.
Plant Sci ; 310: 110977, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315593

RESUMO

Lettuce is commonly consumed around the world, spurring the cultivation of green- and red-leaf varieties in indoor farms. One common consideration for indoor cultivation is the light wavelengths/spectrum, which is an important factor for regulating growth, development, and the accumulation of metabolites. Here, we show that Batavia lettuce (Lactuca sativa cv. "Batavia") grown under a combination of red (R) and blue (B) light (RB, R:B = 3:1) displayed better growth and accumulated more anthocyanin than lettuce grown under fluorescent light (FL). Anthocyanin concentration was also higher in mature stage than early stage lettuce. By performing a comparative transcriptome analysis of early and mature stage lettuce grown under RB or FL (RB or FL-lettuce), we found that RB induced the expression of genes related to oxidation-reduction reaction and secondary metabolite biosynthesis. Furthermore, plant age affected the transcriptome response to RB, as mature RB-lettuce had six times more differentially expressed genes than early RB-lettuce. Also, genes related to the accumulation of secondary metabolites such as flavonoids and anthocyanins were more induced in mature RB-lettuce. A detailed analysis of the anthocyanin biosynthesis pathway revealed key genes that were up-regulated in mature RB-lettuce. Concurrently, branching pathways for flavonol and lignin precursors were down-regulated.


Assuntos
Antocianinas/metabolismo , Alface/metabolismo , Luz , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Alface/efeitos da radiação , Fotossíntese/efeitos da radiação , Transcriptoma/genética
10.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201713

RESUMO

Exogenous application of double-stranded RNAs (dsRNAs) and small-interfering RNAs (siRNAs) to plant surfaces has emerged as a promising method for regulation of essential genes in plant pathogens and for plant disease protection. Yet, regulation of plant endogenous genes via external RNA treatments has not been sufficiently investigated. In this study, we targeted the genes of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, and two transcriptional factors, MYBL2 and ANAC032, negatively regulating anthocyanin biosynthesis in Arabidopsis. Direct foliar application of AtCHS-specific dsRNAs and siRNAs resulted in an efficient downregulation of the AtCHS gene and suppressed anthocyanin accumulation in A. thaliana under anthocyanin biosynthesis-modulating conditions. Targeting the AtMYBL2 and AtANAC032 genes by foliar dsRNA treatments markedly reduced their mRNA levels and led to a pronounced upregulation of the AtCHS gene. The content of anthocyanins was increased after treatment with AtMYBL2-dsRNA. Laser scanning microscopy showed a passage of Cy3-labeled AtCHS-dsRNA into the A. thaliana leaf vessels, leaf parenchyma cells, and stomata, indicating the dsRNA uptake and spreading into leaf tissues and plant individual cells. Together, these data show that exogenous dsRNAs were capable of downregulating Arabidopsis genes and induced relevant biochemical changes, which may have applications in plant biotechnology and gene functional studies.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , RNA de Cadeia Dupla , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transcrição Genética
11.
Plant Cell Rep ; 40(9): 1735-1749, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34308490

RESUMO

KEY MESSAGE: Overexpression of the naturally occurring intron-retained (IR) forms of radish RsMYB1 and RsTT8 transcripts in Arabidopsis causes a substantial increase in anthocyanin accumulation. The production of anthocyanins in plants is tightly controlled by the MYB-bHLH-WD40 (MBW) complex. In this study, analysis of four radish (Raphanus sativus L.) inbred lines with different colored taproots revealed that regulatory genes of anthocyanin biosynthesis, RsMYB1 and RsTT8, produce three transcripts, one completely spliced and two intron retention (IR1 and IR2) forms. Transcripts RsMYB1-IR1 and RsMYB1-IR2 retained the 1st (380 nt) and 2nd (149 nt) introns, respectively; RsTT8-IR1 retained the 4th intron (113 nt); RsTT8-IR2 retained both the 3rd (128 nt) and 4th introns. Levels of most IR forms were substantially low in radish samples, but the RsTT8-IR2 level was higher than RsTT8 in red skin/red flesh (RsRf) root. Since all IR forms contained a stop codon within the intron, they were predicted to encode truncated proteins with defective interaction domains, resulting in the inability to form the MBW complex in vivo. However, tobacco leaves transiently co-expressing RsMYB1-IRs and RsTT8-IRs showed substantially higher anthocyanin accumulation than those co-expressing their spliced forms. Consistently, co-expression of constructs encoding truncated proteins with spliced or IR forms of their interaction partner in tobacco leaves did not result in anthocyanin accumulation. Compared with RsMYB1, the overexpression of RsMYB1-IRs in Arabidopsis pap1 mutant increased anthocyanin accumulation by > sevenfold and upregulated the expression of Arabidopsis flavonoid biosynthesis genes including AtTT8. Our results suggest that the stable co-expression of RsMYB1-IRs in fruit trees and vegetable crops could be used to increase their anthocyanin contents.


Assuntos
Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Raphanus/genética , Processamento Alternativo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Íntrons , Pigmentação/genética , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tabaco/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-34266377

RESUMO

The effect of the anthocyanin cyanidin-3-O-glucoside (C3G) and its main gastrointestinal metabolites (PCA and PGA) on the binding of AFB1 and HSA were studied via spectrometry. C3G is relatively stable in the gastric environment, and the intestinal environment promotes its metabolism into PCA and PGA. Binary fluorescence experiments showed that both AFB1 and C3G, including PCA and PGA, can react with HSA. AFB1, C3G and PCA can bind at site I and site II of HSA; PGA binds at site II. The presence of C3G/PCA/PGA inhibits the degree of quenching. C3G/PCA does not change the quenching mechanism; it is still static quenching; however, dynamic quenching occurs in the (AFB1-HSA)-PGA system. In addition, the apparent binding constant and number of binding sites of AFB1-HSA also diminish to different degrees. C3G and its metabolites (PCA and PGA) interfere with the interaction between AFB1 and HSA, and can reduce AFB1 transport at pH 7.4 in vitro.Abbreviations: C3G: cyanidin-3-O-glucoside; M: metabolite; PCA: protocatechuic acid; PGA: phloroglucinol aldehyde; AFB1: aflatoxin B1; HSA: human serum albumin.


Assuntos
Aflatoxina B1/química , Antocianinas/isolamento & purificação , Análise de Alimentos , Contaminação de Alimentos/análise , Albumina Sérica Humana/química , Soja/química , Antocianinas/química , Antocianinas/metabolismo , Sítios de Ligação , Humanos , Soja/metabolismo
13.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067635

RESUMO

The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), 'Triple Crown' and 'Qinghai 444', with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for 'Qinghai 444'. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in 'Triple Crown' and 'Qinghai 444' bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of 'Qinghai 444' bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with 'Triple Crown'. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.


Assuntos
Avena/metabolismo , Flores/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Clorofila/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Tilacoides/metabolismo
14.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071973

RESUMO

Recommendations towards increased consumption of fresh fruit and vegetables are well supported by epidemiological and clinical trials. However, in some specific cases, it is difficult to follow these recommendations and the use of nutraceuticals or, in the present work, a freeze-dried fruits mixture can be recommended in order to afford the optimal consumption of dietary polyphenols naturally present in fruits and vegetables. In this work we have carefully characterized a red-berry mixture in terms of polyphenol composition, encountering mainly anthocyanins, which account for a total of 2.8 mg/g as cyanidin-3-glucoside equivalents. Additionally, we have assayed the red-berry blend in a cell model of neurological damage by differentiating the cells and measuring the effect of red-berry polyphenols on cell viability and redox state by flow cytometry. The berry-fruit extract showed an inhibitory effect on differentiated SH-SY5Y ROS formation at a concentration as low as 250 µg/mL (33% inhibition). The results show the potential of this berry-fruit blend for its nutraceutical use in the prevention of the neurodegeneration associated with age or environmental agents.


Assuntos
Suplementos Nutricionais , Frutas/química , Neurônios/metabolismo , Aminoácidos/análise , Animais , Antocianinas/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Flavonóis/química , Humanos , Espectrometria de Massas , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Polifenóis/análise , Espécies Reativas de Oxigênio
15.
J Agric Food Chem ; 69(28): 7841-7850, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34139848

RESUMO

The present study is aimed to clarify the absorption and metabolism properties of pelargonidin-based anthocyanins. Results showed that pelargonidin-3-O-rutinoside (Pg3R) was absorbed in its intact form after oral administration and reached a maximum plasma concentration of 175.38 ± 55.95 nM at 60 min. Three main metabolites were identified in plasma, including Pg3R-monoglucuronide (m/z 755.2046), Pg3R-hydroxylated (m/z 595.1644), and Pg3R-demethylated (m/z 565.1569) metabolites. The plasma concentration of the Pg3R-demethylated metabolite (57.04 ± 23.15 nM) was much higher than that of other two metabolites, indicating that demethylation was the main metabolic pathway for Pg3R, while the glucuronide conjugate was detected as the dominant metabolic form of pelargonidin-3-O-glucoside (Pg3G). The bioavailability of Pg3R (1.13%) was fourfold higher than that of Pg3G (0.28%), demonstrating that anthocyanins linked to the rutinoside may exhibit higher bioavailability than that of glucoside. In vitro transport study unveiled that passive diffusion and active efflux were involved in the absorption of Pg3R and Pg3G.


Assuntos
Antocianinas , Animais , Antocianinas/metabolismo , Disponibilidade Biológica , Células CACO-2 , Humanos , Ratos , Ratos Sprague-Dawley
16.
Int J Biol Macromol ; 183: 2100-2108, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34102235

RESUMO

Effect of edible coatings of gum Arabic, carrageenan and xanthan gum containing lemon grass essential oil 1% w/v on postharvest quality of strawberry was studied under refrigeration for a period of 12 days. Results showed all the three coatings maintained fruit quality parameters during storage compared to control. Among all the coatings, carrageenan coated fruits showed delayed weight loss (10.1 to 8%), decay percentage (78.42 to 14.29%), retained ascorbic acid (0.15 to 0.27 g kg-1), antioxidant activity (18.17 to 25.85%), firmness (9.07 to 12.43 N), L* (32.38 to 40.42), a* (16.08 to 17.22) and b* (27.36 to 33.54). Carrageenan gum also showed lowest cellulase activity (0.03 units h-1 mg protein-1), pectin methylesterase activity (1.13 A620 min-1 mg protein-1) and ß-galactosidase activity (0.51 µmol min-1 mg protein-1), while showed maximum reduction in polygalacturonase activity (0.07 units h-1 mg protein-1) at the end of storage. Carrageenan gum was found effective in retention of anthocyanins and phenolic compounds during storage. Coatings loaded with antimicrobial agent inhibited psychrophilic bacteria, yeast and mold growth. It is concluded that carrageenan gum could better retain strawberry quality up to 12 days under refrigeration.


Assuntos
Anti-Infecciosos/química , Carragenina/química , Filmes Comestíveis , Embalagem de Alimentos , Conservação de Alimentos , Fragaria/enzimologia , Frutas/enzimologia , Goma Arábica/química , Óleos Vegetais/química , Polissacarídeos Bacterianos/química , Antocianinas/metabolismo , Anti-Infecciosos/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Celulase/metabolismo , Cymbopogon , Microbiologia de Alimentos , Armazenamento de Alimentos , Fragaria/microbiologia , Frutas/microbiologia , Fenóis/química , Óleos Vegetais/isolamento & purificação , Óleos Vegetais/farmacologia , Poligalacturonase/metabolismo , Refrigeração , Fatores de Tempo , beta-Galactosidase/metabolismo
17.
BMC Plant Biol ; 21(1): 301, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187365

RESUMO

BACKGROUND: Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT: In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS: Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


Assuntos
Genes de Plantas/genética , Mutação com Perda de Função/genética , Mostardeira/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Alelos , Antocianinas/metabolismo , Arabidopsis , Clonagem Molecular , Cor , Genes de Plantas/fisiologia , Mostardeira/anatomia & histologia , Mostardeira/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/fisiologia
18.
BMC Plant Biol ; 21(1): 279, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147088

RESUMO

BACKGROUND: 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS: Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION: This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.


Assuntos
Genes de Plantas , Hidroximetilglutaril-CoA Redutases/genética , Vitis/enzimologia , Vitis/genética , Antocianinas/metabolismo , Evolução Molecular , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Perfilação da Expressão Gênica , Variação Genética , Genótipo , Família Multigênica , Pressão Osmótica , Reguladores de Crescimento de Plantas/fisiologia , Terpenos/metabolismo , Vitis/crescimento & desenvolvimento
19.
Plant Mol Biol ; 106(6): 491-503, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165673

RESUMO

KEY MESSAGE: Anthocyanin was highly accumulated in the leaves of red-leaved poplars; Many structural genes involved in anthocyanin synthesis were significantly up-regulated in 'Quanhong' and 'Xuanhong'; TTG2, HYH, and HY5 may be directly involved in the regulation of anthocyanin synthesis in both red-leaved poplars. The red-leaved poplar cultivars 'Quanhong' and 'Xuanhong' are bud mutations of Populus deltoides cv. 'Zhonglin 2025'. These cultivars are valued for their beautiful shape, lack of flying catkins, and ornamental leaf colors. However, the understanding of the molecular mechanism of anthocyanin accumulation in the leaves of red-leaved poplars is still unclear. Here, we profiled the changes of pigment content, transcriptome and proteome expression in the leaves of three poplar cultivars and the results showed that the ratios of anthocyanin to total chlorophyll in both red-leaved poplars were higher than that in 'Zhonglin 2025', indicating that the anthocyanin was highly accumulated in the leaves of red-leaved poplars. Based on the results of combined transcriptome and proteome analysis, 15 and 11 differentially expressed genes/proteins involved in anthocyanin synthesis were screened in 'Quanhong' and 'Xuanhong', respectively, indicating that the two red-leaved poplar cultivars have slightly different patterns of regulating anthocyanin biosynthesis. Among the 120 transcription factors, 3 (HY5, HYH, and TTG2), may be directly involved in the regulation of anthocyanin synthesis in both red-leaved poplars. This study screens the candidate genes involved in anthocyanin accumulation in the leaves of red-leaved poplars and lays a foundation for further exploring the molecular mechanism of leaf red coloration in red-leaved poplars.


Assuntos
Antocianinas/metabolismo , Folhas de Planta/genética , Populus/genética , Proteoma/análise , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/classificação , Populus/metabolismo , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Biomolecules ; 11(6)2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070757

RESUMO

Cardiovascular disorders are leading mortality causes worldwide, often with a latent evolution. Vascular health depends on endothelial function, arterial stiffness, and the presence of atherosclerotic plaques. Preventive medicine deserves special attention, focusing on modifiable cardiovascular risk factors, including diet. A diet rich in fruits and vegetables has well-known health benefits, especially due to its polyphenolic components. Anthocyanins, water-soluble flavonoid species, responsible for the red-blue color in plants and commonly found in berries, exert favorable effects on the endothelial function, oxidative stress, inhibit COX-1, and COX-2 enzymes, exert antiatherogenic, antihypertensive, antiglycation, antithrombotic, and anti-inflammatory activity, ameliorate dyslipidemia and arterial stiffness. The present review aims to give a current overview of the mechanisms involved in the vascular protective effect of anthocyanins from the human diet, considering epidemiological data, in vitro and in vivo preclinical research, clinical observational, retrospective, intervention and randomized studies, dietary and biomarker studies, and discussing preventive benefits of anthocyanins and future research directions.


Assuntos
Antocianinas/uso terapêutico , Aterosclerose/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Endotélio Vascular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Rigidez Vascular/efeitos dos fármacos , Antocianinas/química , Antocianinas/metabolismo , Aterosclerose/metabolismo , Aterosclerose/mortalidade , Dislipidemias/metabolismo , Dislipidemias/mortalidade , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...