Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.782
Filtrar
1.
Acta Cir Bras ; 34(8): e201900802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618402

RESUMO

PURPOSE: To reveal the function of miR-134 in myocardial ischemia. METHODS: Real-time PCR and western blotting were performed to measure the expression of miR-134, nitric oxide synthase 3 (NOS3) and apoptotic-associated proteins. Lactic dehydrogenase (LDH) assay, cell counting kit-8 (CCK-8), Hoechst 33342/PI double staining and flow cytometry assay were implemented in H9c2 cells, respectively. MiR-134 mimic/inhibitor was used to regulate miR-134 expression. Bioinformatic analysis and luciferase reporter assay were utilized to identify the interrelation between miR-134 and NOS3. Rescue experiments exhibited the role of NOS3. The involvement of PI3K/AKT was assessed by western blot analysis. RESULTS: MiR-134 was high regulated in the myocardial ischemia model, and miR-134 mimic/inhibitor transfection accelerated/impaired the speed of cell apoptosis and attenuated/exerted the cell proliferative prosperity induced by H/R regulating active status of PI3K/AKT signaling. LDH activity was also changed due to the different treatments. Moreover, miR-134 could target NOS3 directly and simultaneously attenuated the expression of NOS3. Co-transfection miR-134 inhibitor and pcDNA3.1-NOS3 highlighted the inhibitory effects of miR-134 on myocardial H/R injury. CONCLUSION: This present work puts insights into the crucial effects of the miR-134/NOS3 axis in myocardial H/R injury, delivering a potential therapeutic technology in future.


Assuntos
Hipóxia/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
2.
Biol Res ; 52(1): 47, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455418

RESUMO

Rubella or German measles is an infection caused by rubella virus (RV). Infection of children and adults is usually characterized by a mild exanthematous febrile illness. However, RV is a major cause of birth defects and fetal death following infection in pregnant women. RV is a teratogen and is a major cause of public health concern as there are more than 100,000 cases of congenital rubella syndrome (CRS) estimated to occur every year. Several lines of evidence in the field of molecular biology of RV have provided deeper insights into the teratogenesis process. The damage to the growing fetus in infected mothers is multifactorial, arising from a combination of cellular damage, as well as its effect on the dividing cells. This review focuses on the findings in the molecular biology of RV, with special emphasis on the mitochondrial, cytoskeleton and the gene expression changes. Further, the review addresses in detail, the role of apoptosis in the teratogenesis process.


Assuntos
Anormalidades Congênitas/virologia , Complicações Infecciosas na Gravidez/virologia , Síndrome da Rubéola Congênita/virologia , Vírus da Rubéola/fisiologia , Rubéola (Sarampo Alemão)/complicações , Teratogênese , Apoptose/fisiologia , Feminino , Humanos , Mitocôndrias/virologia , Gravidez , Rubéola (Sarampo Alemão)/virologia , Transdução de Sinais , Replicação Viral/fisiologia
3.
Life Sci ; 232: 116611, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260683

RESUMO

PURPOSE: To observe the effect of dexmedetomidine (DEX) on mitochondrial apoptosis of hippocampal neurons in hypoxia/reoxygenation (H/R) brain injury in developing rats, and to investigate its regulatory mechanism on HIF-1α/p53 signaling pathway. METHODS: Hypoxia/reoxygenation model was used in this study. TUNEL assay was performed to detect cell apoptosis. Immunohistochemical analysis and Western-blotting analysis were conducted to detect Cytochrome-C (Cyt-c), APAF-1, Caspase-3, Neuroglobin (Ngb), HIF-1α and p53 expression. After 28 days, Morris water maze (MWM) was performed. RESULTS: 50 µg/kg DEX improved H/R-induced brain injury and inhibited mitochondrial apoptosis in rats. Western-blotting and Immunohistochemical results demonstrated that DEX could up-regulate Ngb through α2 receptor to inhibit H/R-induced mitochondrial apoptosis. In addition, by adding inhibitors yohimbine and 2-methoxyestradiol (2ME2), we found that DEX could activate HIF-1α/p53 signaling pathway. MWM test showed that DEX could enhance long-term learning and memory of H/R brain injury rats. CONCLUSION: DEX alleviates H/R-induced brain injury and mitochondrial apoptosis in developing rats through α2 receptor, which may be related to activation of HIF-1α/p53 signaling pathway to up-regulate the expression of Ngb.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Dexmedetomidina/farmacologia , Hipocampo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/efeitos dos fármacos
4.
Gut ; 68(9): 1676-1687, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315892

RESUMO

BACKGROUND & OBJECTIVES: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Several types of chronic liver disease predispose to HCC, and several different signalling pathways have been implicated in its pathogenesis, but no common molecular event has been identified. Ca2+ signalling regulates the proliferation of both normal hepatocytes and liver cancer cells, so we investigated the role of intracellular Ca2+ release channels in HCC. DESIGN: Expression analyses of the type 3 isoform of the inositol 1, 4, 5-trisphosphate receptor (ITPR3) in human liver samples, liver cancer cells and mouse liver were combined with an evaluation of DNA methylation profiles of ITPR3 promoter in HCC and characterisation of the effects of ITPR3 expression on cellular proliferation and apoptosis. The effects of de novo ITPR3 expression on hepatocyte calcium signalling and liver growth were evaluated in mice. RESULTS: ITPR3 was absent or expressed in low amounts in hepatocytes from normal liver, but was expressed in HCC specimens from three independent patient cohorts, regardless of the underlying cause of chronic liver disease, and its increased expression level was associated with poorer survival. The ITPR3 gene was heavily methylated in control liver specimens but was demethylated at multiple sites in specimens of patient with HCC. Administration of a demethylating agent in a mouse model resulted in ITPR3 expression in discrete areas of the liver, and Ca2+ signalling was enhanced in these regions. In addition, cell proliferation and liver regeneration were enhanced in the mouse model, and deletion of ITPR3 from human HCC cells enhanced apoptosis. CONCLUSIONS: These results provide evidence that de novo expression of ITPR3 typically occurs in HCC and may play a role in its pathogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Animais , Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Células Cultivadas , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática/fisiologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Análise de Sobrevida
5.
Life Sci ; 232: 116639, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295472

RESUMO

AIMS: Sirtuins have been implicated in the aging process, however, the functions of SIRT2 in post-maturation aging of oocytes are not fully understood. The purpose of the present investigation was to assess the roles of SIRT2 in aged oocytes and mechanisms involved. MAIN METHODS: The fresh MII oocytes were aging in vitro, and treated with SIRT2 inhibitor (SirReal2), autophagy activator (Rapamycin), and autophagy inhibitor (3-Ma) for 24 h, respectively. Oocyte activation, cytoplasmic fragmentation, and spindle defects, mitochondrial distribution, ROS levels, ATP production, mitochondrial membrane potential, and early apoptosis were investigated. Western blotting was performed to determine LC3-II accumulation, SQSTM1 degradation, and caspase-3 activity. KEY FINDINGS: SIRT2 expression gradually decreased in a time-dependent manner during oocyte aging. Treatment with SirReal2 significantly increased the rates of oocyte activation, cytoplasmic fragmentation, and spindle defects. In particular, the high ROS levels, abnormal mitochondrial distribution, low ATP production, and lost ΔΨm were observed in SirReal2-exposed oocytes. Further analysis revealed that LC3-II accumulation and SQSTM1 degradation were induced by SIRT2 inhibition. By performing early apoptosis analysis showed that oocyte aging was accompanied with cellular apoptosis, and SIRT2 inhibition increased apoptosis rates of aged oocytes. Importantly, upregulating autophagy with Rapamycin could mimic the effects of SIRT2 inhibition on apoptosis by increasing caspase-3 activation, whereas downregulating autophagy with 3-MA could abolish those effects by blocking caspase-3 activation. SIGNIFICANCE: Our results suggest that SIRT2 inactivation is a key mechanism underlying of cellular aging, and SIRT2 inhibition contributes to autophagy-dependent cellular apoptosis in post-maturation oocytes.


Assuntos
Oócitos/fisiologia , Sirtuína 2/fisiologia , Acetamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Bovinos , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oócitos/classificação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Sirolimo/farmacologia , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/metabolismo , Tiazóis/farmacologia
6.
BMC Plant Biol ; 19(1): 310, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307401

RESUMO

BACKGROUND: The hypersensitive defense response (HR) in plants is a fast, localized necrotic response around the point of pathogen ingress. HR is usually triggered by a pathogen recognition event mediated by a nucleotide-binding site, leucine-rich repeat (NLR) protein. The autoactive maize NLR gene Rp1-D21 confers a spontaneous HR response in the absence of pathogen recognition. Previous work identified a set of loci associated with variation in the strength of Rp1-D21-induced HR. A polygalacturonase gene homolog, here termed ZmPGH1, was identified as a possible causal gene at one of these loci on chromosome 7. RESULTS: Expression of ZmPGH1 inhibited the HR-inducing activity of both Rp1-D21 and that of another autoactive NLR, RPM1(D505V), in a Nicotiana benthamiana transient expression assay system. Overexpression of ZmPGH1 in a transposon insertion line of maize was associated with suppression of chemically-induced programmed cell death and with suppression of HR induced by Rp1-D21 in maize plants grown in the field. CONCLUSIONS: ZmPGH1 functions as a suppressor of programmed cell death induced by at least two autoactive NLR proteins and by two chemical inducers. These findings deepen our understanding of the control of the HR in plants.


Assuntos
Apoptose/fisiologia , Proteínas de Plantas/fisiologia , Poligalacturonase/fisiologia , Zea mays/fisiologia , Apoptose/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Leucina , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poligalacturonase/química , Poligalacturonase/genética , Recombinação Genética , Sequências Repetitivas de Aminoácidos , Tabaco/genética , Zea mays/enzimologia , Zea mays/genética , Zea mays/imunologia
7.
Zhonghua Zhong Liu Za Zhi ; 41(7): 516-521, 2019 Jul 23.
Artigo em Chinês | MEDLINE | ID: mdl-31357838

RESUMO

Objective: To investigate the effects and mechanisms of miR-144 on proliferation, apoptosis and cisplatin (DDP) resistance of neuroblastoma cells. Methods: Real-time fluorescence quantitative PCR (RT-qPCR) was used to detect the mRNA expressions of miR-144 and MYCN in neuroblastoma cell lines, including SH-SY5Y and SK-N-SH, and human umbilical vein endothelial cells HUVEC. The miR-negative control, miR-144 mimics, si-negative control, si-MYCN, miR-144 mimics and pcDNA, miR-144 mimics and pcDNA-MYCN co-transfected SH-SY5Y cells were described as miR-NC, miR-144, si-NC, si-MYCN, miR-144+ pcDNA and miR-144+ pcDNA-MYCN group, respectively. The half maximal inhibitory concentration (IC(50)) and cell proliferation were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H tetrazolium bromide (MTT) assay. The protein expressions of MYCN, p21, cyclin D1, Bax, Bcl-2 were analyzed by western blot. Cell apoptosis was detected by flow cytometry. The cell fluorescence activity was detected by double luciferase reporter gene assay. Results: Compared with HUVEC cells, the expressions of miR-144 in neuroblastoma cells SH-SY5Y and SK-N-SH significantly decreased, while the mRNA and protein expression of MYCN significantly increased. The IC(50) of DDP was 9.16 µg/ml in SH-SY5Y cells. The absorbance value in 490nm (A(490) value) of miR-144 group was 0.30±0.03, significantly lower than 0.46±0.03 of miR-NC group. The cell apoptotic rate of miR-144 group was 26.94%±2.01%, significantly higher than 9.68%±0.52% of miR-NC group. The IC(50) value of DDP in miR-144 group was 2.95±0.26, significantly lower than 9.23±0.61 of miR-NC group. The expressions of p21, cyclin D1, Bax, Bcl-2 in miR-NC and miR-144 group were 2.67±0.19, 0.41±0.04, 2.12±0.21, 0.18±0.01 and 1.01±0.07, 1.00±0.06, 1.00±0.05, 1.00±0.06, respectively, with statistical significance (all P<0.05). Knockdown of MYCN showed the similar effects with those of miR-144 overexpression in SH-SYSY cells. MiR-144 significantly inhibited the fluorescence activity of ectopic MYCN expressing cells and negatively regulated the expression of MYCN. Overexpression of MYCN can reverse the effects of miR-144 on proliferation inhibition, apoptosis promotion and sensitization of SH-SY5Y cells to DDP. Conclusion: MiR-144 inhibits proliferation, promotes apoptosis and enhances the sensitivity of neuroblastoma cells to DDP through targeting MYCN, which provides a potential treatment for neuroblastoma.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Antineoplásicos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Artigo em Chinês | MEDLINE | ID: mdl-31315362

RESUMO

Objective: To investigate the diagnostic value of serum miRNAlet-7a in laryngeal carcinoma and the effect of let-7a on proliferation and apoptosis of laryngeal carcinoma cells. Methods: Real-time quantitative PCR was used to determine the expression level of serum miRNAlet-7a. The miRNA let-7a mimetic was synthesized and transiently transfected into the laryngeal carcinoma Hep-2 cell line by cationic liposome method. The effects of up-regulation of let-7a expression on laryngeal cancer Hep-2 cells were detected by FCM and MTT assays,respectively. The association of let-7a levels with laryngeal cancer and the diagnostic value for laryngeal cancer were analyzed. Measurement data were taken by t test or analysis of variance; Counting data were analyzed by χ(2) test and Fisher exact probability method. The receiver operating characteristic curve was used to analyze the diagnostic value of let-7a for laryngeal cancer. Results: The relative expression of serum let-7a in healthy subjects was significantly higher than that in patients with laryngeal cancer (0.931±0.094) vs (0.380±0.113) (t=26.507,P<0.01). The relative expressions of serum let-7a in patients with laryngeal cancer before and after surgery were (0.380±0.113) vs(0.493±0.164),with significant difference (t=3.848,P<0.01).The relative expression of serum let-7a was related to lymph node metastasis (t=2.946, P<0.01). There was a positive correlation between the relative expression of let-7a in laryngeal carcinoma and that in serum (r=0.466,P=0.003). After transfection of let-7a mimics, Hep-2 cells showed an increased significant increase in the expression of let-7a (P<0.01), proliferation (P<0.01) and apoptosis (P<0.01). ROC curve analysis showed that the best critical value for relative expression of let-7a in the diagnosis of laryngeal carcinoma was 0.557 with a sensitivity of 0.794,a specificity of 0.727,an area under curve(AUC) of 0.859,and a 95%CI of 0.773-0.926. Conclusions: miRNA let-7a can inhibit the proliferation of laryngeal carcinoma Hep-2 cells and promote apoptosis. Serum let-7a is down-regulated in patients with laryngeal cancer and the level of let-7a is related to lymph node metastasis,which would help early diagnosis and postoperative disease monitoring of laryngeal cancer,but further research is needed.


Assuntos
Neoplasias Laríngeas/diagnóstico , MicroRNAs/sangue , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/cirurgia , Metástase Linfática/fisiopatologia , MicroRNAs/biossíntese
9.
DNA Cell Biol ; 38(8): 773-785, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31339741

RESUMO

Pierisin-5 protein (pie-5) belongs to a family of proteins possessing DNA-dependent ADP-ribosyltransferase activity, which can induce apoptotic cell death. The baculovirus-mediated expression vector system (BEVS) has been commonly used for in vitro expression of heterologous protein subunits for basic scientific research, in addition to the development and production of diagnostics and vaccines. In this study, a new method for the in vitro expression of the cytotoxic protein was established using the baculovirus expression system. The antiproliferative and apoptotic effect of the novel recombinant pierisin-5 protein (rpie-5) was investigated in different human cancer cell lines, such as HeLa, HepG2, and AGS. Cloning, in vitro overexpression, and purification of the rpie-5 protein were performed by using BEVS in Sf21 (Spodoptera frugiperda) insect cell line. The rpie-5 protein exhibits cytotoxicity in all the cell lines, but HeLa (IC50 0.6 µg/mL) was more sensitive when compared with HepG2 (IC50 1.9 µg/mL) and AGS (IC50 3.7 µg/mL) cell lines. The cytotoxic effects of rpie-5 lead to apoptotic cell death in cancer cells and resulted in nuclear fragmentation, enlargement of the nucleus, loss of mitochondrial membrane potential, and finally release of lactose dehydrogenase (LDH) enzyme from the cell membrane. This study reports the molecular mechanism of apoptotic cell death through the upregulation of Bax (Bcl-2 family activating protein-X), Bad, APAF-1 (apoptotic protease activating factor-1), Cyt-c, and caspase-3/9 and the downregulation of Bcl-2 (B-cell lymphoma 2) in rpie-5-treated cancer cells. The study concludes that rpie-5 has p53-independent apoptosis in HepG2 cells and p53-dependent apoptosis in HeLa and AGS cell lines. In the future, this study helps to understand the molecular mechanism of rpie-5 to induction of apoptosis and cell death.


Assuntos
ADP Ribose Transferases/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Proteínas Recombinantes/farmacologia , ADP Ribose Transferases/genética , Animais , Apoptose/fisiologia , Baculoviridae/genética , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , Proteínas de Insetos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Recombinantes/genética , Células Sf9 , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética
10.
Biol Res ; 52(1): 36, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300048

RESUMO

BACKGROUND: Recent evidences indicated that some local anaesthetic agents played a role in inhibiting the proliferation of cancer cells; Whether ropivacaine is able to promote apoptosis of hepatocellular carcinoma (HCC) cells is still unclear. The aim of this study was to investigate the effect of ropivacaine on the apoptosis of HCC cells. METHODS: In the present study, we treated the HCC cell lines, Bel7402 and HLE with ropivacaine. MTT, DAPI stain, trypan blue exclusion dye assay, flow cytometry, electron microscopy, computational simulation, laser confocal microscope, Western blotting, and enzyme activity analysis of caspase-3 were applied to detect the growth and apoptosis of HCC cells and to explore the role mechanism of ropivacaine. RESULTS: Ropivacaine was able to inhibit proliferation and promote apoptosis of HCC cells in a dose- and time-dependent manner. Ropivacaine also has a trait to inhibit the migration of HCC cells; ropivacaine damaged the mitochondria of HCC cells. The results also indicated that ropivacaine was able to interact with caspase-3, promote cytoplasmic caspase-3 migration into the nucleus, stimulate cleavage of caspase-3 and PARP-1, caspase-9 proteins, inhibit the expression of Bcl-2, promote expression of Apaf-1 and mitochondria release cytochrome C, and activate the activity of caspase-3. CONCLUSIONS: Ropivacaine has a novel role in promoting apoptosis of HCC cells; The role mechanism of ropivacaine maybe involve in damaging the function of mitochondria and activating the caspase-3 signalling pathway in HCC cells. Our findings provide novel insights into the local anaesthetic agents in the therapy of HCC patients.


Assuntos
Anestésicos Locais/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Neoplasias Hepáticas/patologia , Ropivacaina/farmacologia , Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Mol Immunol ; 112: 387-393, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288148

RESUMO

Programmed cell death 4 (Pdcd4) was found to be related to apoptosis upon first discovery. It was later found to play the role of tumor suppressor gene in a variety of tumors by inhibiting transcription and translation. Recently, it has been proposed that it may play an important role in some inflammatory diseases and in the immune response. In our previous study, deficiency of Pdcd4 was found to attenuate the formation of atherosclerotic plaques. This might be because deficiency of Pdcd4 may increase IL-10 expression and lipoautophagy by macrophages and attenuate the formation of foam cells. However, the effect of Pdcd4 on the subsets of T cells in hyperlipidemic mice still remained unclear. In the present study, results showed that Pdcd4 deficiency decreased the percentage of CD8+ T cells and increased that of regulatory T cells (Tregs) under hyperlipidemic conditions both in vitro and in vivo, which may be due to the reduced expression of co-stimulatory molecules CD28 and CD137, and the enhancive expression of co-inhibitory molecules CTLA-4. These results indicated that endogenous Pdcd4 promotes immune response mediated by T cells through regulation of the co-stimulatory molecules expression, which may contribute to the development of advanced atherosclerotic plaques. The current work provides new data to understand the role of Pdcd4 in different T cell subsets under hyperlipidemic microenvironment.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/metabolismo , Hiperlipidemias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subpopulações de Linfócitos T/metabolismo , Animais , Apoptose/fisiologia , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Espumosas/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
12.
Folia Histochem Cytobiol ; 57(2): 64-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31246264

RESUMO

INTRODUCTION: This study endeavors to analyze the effects of miR-1204 on the expression of DEK oncogene in non-small cell lung cancer (NSCLC) cell lines and to study the molecular mechanisms of these effects. MATERIAL AND METHODS: The miR-1204 mimics and inhibitors were transfected into the (A549 and SPC) NSCLC cells. Then the mRNA levels, cell viability, apoptosis rate, morphology and caspase activity were determined. The expression of apoptosis-related proteins Bcl-2 and Bax was also analyzed. RESULTS: In NSCLC cell lines (A549 and SPC), DEK mRNA levels were down-regulated in miR-1204 overex-pression group. In miR-1204 inhibition group, the expression of DEK mRNA showed an opposite trend. The overexpression of miR-1204 increases the apoptosis rate in NSCLC cells. The Bcl-2 levels in the miR-1204 over-expression group were decreased, while the Bax level was increased. In the miR-1204 inhibition group, expression of Bcl-2 and Bax showed opposite trends. Cell staining revealed cell's morphological changes; the apoptosis in the miR-1204 overexpression group revealed significant morphological features, such as brighter nuclei and nu-clear condensation. Results indicated a typical characteristic of apoptosis in the miR-1204 overexpression group. Caspase-9 and Caspase-3 were involved in the apoptosis pathway, which was mediated by miR-1204 and DEK. CONCLUSIONS: The miR-1204 induces apoptosis of NSCLC cells by inhibiting the expression of DEK. The mech-anism of apoptosis involves down-regulation of Bcl-2 and up-regulation of Bax expression. Moreover, the apoptosis was mediated by mitochondria-related caspase 9/3 pathway.


Assuntos
Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Cromossômicas não Histona/genética , Neoplasias Pulmonares/genética , MicroRNAs/fisiologia , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Mensageiro/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
13.
Life Sci ; 231: 116539, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176779

RESUMO

OBJECTIVE: Although SET(I2PP2A) and miRNAs are reported to play a pivotal role in lung cancer, the underlying mechanisms have remained obscure. To address this issue, we investigated how miRNAs and SET participate in the progression of lung cancer. METHODS: miRNAs that target SET were predicted from multiple miRNA databases. Three human NSCLC cell lines and two normal lung cell lines were used to evaluate aberrant miRNA and SET expressions. A dual luciferase reporter assay system was employed to verify the interaction between miRNA and SET. Stable miRNA knockdown and SET overexpression in A549 cells were achieved through lentivirus transfection; the corresponding influences on lung cancer progression were also examined. RESULTS: In this study, A549 was the sole cell line to lack SET/TAF-Iα expression, which was inversely correlated with the up-regulation of miR-21-5p. SET was subsequently revealed as the direct target site of miR-21-5p in A549 cells. The stable miR-21-5p knockdown and SET/TAF-Iα overexpression were shown to markedly enhance the expression of SET/TAF-Iα and to inhibit the migration, invasion, proliferation as well as the in vivo tumorigenicity of A549 cells. CONCLUSION: We suggest that SET/TAF-Iα might be a tumor suppressing factor regulated by miR-21-5p in lung adenocarcinoma. This might provide a target for lung adenocarcinoma therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Chaperonas de Histonas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica
14.
Life Sci ; 231: 116542, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176781

RESUMO

AIM: To compare the effect of 150 min vs. 300 min of weekly moderate intensity exercise training on the activation of the opioid system and apoptosis in the hearts of a diet-induced obesity model. METHODS: Male Wistar rats were fed with either control (CON) or high fat (HF) diet for 32 weeks. At the 20th week, HF group was subdivided into sedentary, low (LEV, 150 min·week-1) or high (HEV, 300 min·week-1) exercise volume. After 12 weeks of exercise, body mass gain, adiposity index, systolic blood pressure, cardiac morphometry, apoptosis biomarkers and opioid system expression were evaluated. RESULTS: Sedentary animals fed with HF presented pathological cardiac hypertrophy and higher body mass gain, systolic blood pressure and adiposity index than control group. Both exercise volumes induced physiological cardiac hypertrophy, restored systolic blood pressure and improved adiposity index, but only 300 min·week-1 reduced body mass gain. HF group exhibited lower proenkephalin, PI3K, ERK and GSK-3ß expression, and greater activated caspase-3 expression than control group. Compared to HF, no changes in the cardiac opioid system were observed in the 150 min·week-1 of exercise training, while 300 min·week-1 showed greater proenkephalin, DOR, KOR, MOR, Akt, ERK and GSK-3ß expression, and lower activated caspase-3 expression. CONCLUSION: 300 min·week-1 of exercise training triggered opioid system activation and provided greater cardioprotection against obesity than 150 min·week-1. Our findings provide translational aspect with clinical relevance about the critical dose of exercise training necessary to reduce cardiovascular risk factors caused by obesity.


Assuntos
Cardiomegalia/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores Opioides/fisiologia , Adiposidade , Animais , Apoptose/fisiologia , Pressão Sanguínea , Peso Corporal , Dieta Hiperlipídica , Encefalinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Coração/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosfatidilinositol 3-Quinase/metabolismo , Condicionamento Físico Animal/métodos , Precursores de Proteínas/metabolismo , Ratos , Ratos Wistar
15.
Life Sci ; 231: 116554, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31194992

RESUMO

AIMS: Several adipokines have been proven to improve the therapeutic efficacy of mesenchymal stromal cells (MSCs) when used to treat ischemic heart disease. Asprosin (ASP) is a newly-discovered adipokine. ASP might also predict the severity of coronary pathology. We investigated the role of ASP on MSCs and the effects of ASP-pretreated MSCs on myocardial infarction (MI). MAIN METHODS: MSCs were labelled with a lentivirus carrying green fluorescent protein (GFP). For in vivo study, after pretreatment with vehicle or ASP, MSCs were injected into infarcted hearts. Cardiac function and fibrosis were then evaluated 4 weeks after the induction of MI and survival of MSCs evaluated after 1 week. MSCs proliferation and migration were investigated after ASP treatment in vitro. MSCs apoptosis induced by hydrogen peroxide (H2O2) was assessed using flow cytometry. KEY FINDINGS: Compared to vehicle-pretreated MSCs, ASP-pretreated MSCs significantly improved the left ventricular ejection fraction (LVEF), and inhibited myocardial fibrosis 4 weeks after MI. ASP pretreatment may have promoted homing of transplanted MSCs. In vitro results showed that ASP had no significant effect on MSC proliferation and migration, but protected these cells from H2O2-induced apoptosis. Among 21 molecules associated with antioxidation and cell death, the antioxidant enzyme SOD2 was significantly upregulated by ASP. Furthermore, ASP treatment inhibited H2O2-induced ROS generation and apoptosis via the activated ERK1/2-SOD2 pathway. SIGNIFICANCE: This is the first evidence that ASP can regulate MSCs function and enhance MSCs therapy for ischemic heart disease. Furthermore, we demonstrate that ASP protects MSCs from oxidative stress-induced apoptosis via the ERK1/2-SOD2 pathway.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Infarto do Miocárdio/terapia , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Superóxido Dismutase/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Coração/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda
16.
Life Sci ; 231: 116593, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228512

RESUMO

Inflammasomes are the major mechanistic complexes that include members of the NOD-like receptor (NLRs) or AIM2-like receptors (ALRs) families, which are affiliated with the innate immune system. Once NLRs or ALRs are activated by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), the caspase-1 or -11 is activated by binding with NLRs or ALRs via its own unique cytosolic domains. As a result, caspase-1 or -11 enhances the production of IL-1ß and IL-18, which results in inflammation via the recruitment of immune cells, such as macrophages, and the promotion of programmed cell death mechanisms such as pyroptosis. In addition, the consistent cascades of inflammasomes would precede both minor and severe autoimmune diseases and cancers. The clinical relevance of inflammasomes in multiple forms of cancer highlights their therapeutic promise as molecular targets. To closely analyze the physiological roles of inflammasomes in cancers, here, we describe the fundamental knowledge regarding the current issues of inflammasomes in relevant cancers, and discuss possible therapeutic values in targeting these inflammasomes for the prevention and treatment of cancer.


Assuntos
Inflamassomos/metabolismo , Inflamassomos/fisiologia , Neoplasias/terapia , Alarminas/metabolismo , Animais , Apoptose/fisiologia , Doenças Autoimunes/imunologia , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteínas NLR/fisiologia , Padrões Moleculares Associados a Patógenos/metabolismo , Transdução de Sinais
17.
Life Sci ; 232: 116590, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228514

RESUMO

Endothelial cell (EC) apoptosis is fundamental for the pathophysiology of atherosclerosis, in which microRNAs (miRNAs) emerge as critical regulators. miR-122 has been shown to regulate the apoptosis of various cell types, however, whether miR-122 is associated with atherosclerosis and EC apoptosis remains unknown. In this study, we found that miR-122 expression was increased in the aortic ECs of ApoE-/- mice fed with a high-fat diet (HFD), as compared to normal-diet (ND), implying a potential association between miR-122 elevation and atherogenesis. In addition, in vitro, miR-122 expression was also induced in human aortic ECs (HAECs) by the treatment of oxidized low-density lipoprotein (ox-LDL), a common atherogenic factor. Functionally, miR-122 knockdown suppressed ox-LDL-induced apoptosis of HAECs, suggesting a pro-apoptotic role of miR-122 in HAECs under this pro-atherogenic condition. Further evidence revealed that the X-linked inhibitor-of-apoptosis protein (XIAP) was directly targeted and suppressed by miR-122 in HAECs, and more importantly, XIAP knockdown diminished miR-122 effect on apoptosis, thus establishing XIAP as a prominent target that mediates miR-122 regulation of the apoptosis of HAECs. Together, these results may identify miR-122 as a novel regulator in EC apoptosis, which offers it as a possible target for therapeutic interventions of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , MicroRNAs/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Apoptose/fisiologia , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
18.
Int J Oncol ; 55(1): 267-276, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180557

RESUMO

We previously reported that cystatin B (CSTB) is a progression marker of human ovarian cancer (OC); however, the regulatory mechanism of CSTB and its function in OC remain unclear. The present study aimed to explore the mechanism underlying transforming growth factor-ß (TGF­ß) 1­mediated CSTB regulation, and to examine the function of CSTB on OC cell proliferation and apoptosis. Using the online program, miRWalk, a microRNA (miR)­143­3p was detected, which contains a homologous sequence of the potential binding site to the 3'­untranslated region (3'­UTR) of CSTB. A dual­luciferase reporter assay confirmed the interaction between miR­143­3p and CSTB 3'­UTR. Treating OC cells with miR­143­3p mimics or inhibitors resulted in a decrease or an increase of CSTB expression at mRNA and protein levels, respectively. Additionally, CSTB was significantly overexpressed, whereas miR­143­3p was downregulated in human OC tissues compared with normal ovarian tissues. A negative correlation between miR­143­3p and CSTB mRNA expression was observed in ovarian malignant tumors. The levels of primary and mature miR­143­3p expression were upregulated in OC cells after TGF­ß1 treatment; the action of TGF­ß1 was abolished in the presence of an inhibitor of TGF­ß type I receptor. These results indicated an axis between TGF­ß, miR­143­3p and CSTB in OC cells. Furthermore, high levels of CSTB expression were associated with the poor overall survival of patients with OC. Knockdown of CSTB resulted in a decrease in OC cell proliferation and arrested cells in G2/M phase. In addition, suppression of CSTB induced cell apoptosis. In conclusion, CSTB was overexpressed and miR­143­3p was downregulated in ovarian malignant tumors. Mature miR­143­3p directly bound CSTB 3'­UTR, leading to a decrease in CSTB expression in OC cells, which was regulated by TGF­ß1. Our findings suggest the potential therapeutic application of targeting the TGF­ß/miR­143­3p/CSTB axis for treating patients with OC.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Cistatina B/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regiões 3' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/fisiologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cistatina B/biossíntese , Cistatina B/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Regulação para Cima , Adulto Jovem
19.
Int J Oncol ; 55(1): 21-34, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180559

RESUMO

Emerging studies have indicated that leucine­rich repeat kinase 2 (LRRK2) is associated with thyroid cancer (TC). The present study investigated the effect of LRRK2 on the cell cycle and apoptosis in TC, and examined the underlying mechanisms in vitro. To screen TC­associated differentially expressed genes, gene expression microarray analysis was conducted. Retrieval of pathways associated with TC from the Kyoto Encyclopedia of Genes and Genomes database indicated that the c­Jun N­terminal kinase (JNK) signaling pathway serves an essential role in TC. SW579, IHH­4, TFC­133, TPC­1 and Nthy­ori3­1 cell lines were used to screen cell lines with the highest and lowest LRRK2 expression for subsequent experiments. The two selected cell lines were transfected with pcDNA­LRRK2, or small interfering RNA against LRRK2 or SP600125 (a JNK inhibitor). Subsequently, flow cytometry, terminal deoxynucleotidyl transferase­mediated dUTP­biotin nick end labeling, a 5­ethynyl­2'­deoxyuridine assay and a scratch test was conducted to detect the cell cycle distribution, apoptosis, proliferation and migration, respectively, in each group. The LRRK2 gene was determined to be elevated in TC based on the microarray data of the GSE3678 dataset. The SW579 cell line was identified to exhibit the highest LRRK2 expression, while IHH­4 cells exhibited the lowest LRRK2 expression. LRRK2 silencing, through inhibiting the activation of the JNK signaling pathway, increased the expression levels of genes and proteins associated with cell cycle arrest and apoptosis in TC cells, promoted cell cycle arrest and apoptosis, and inhibited cell migration and proliferation in TC cells, indicating that LRRK2 repression could exert beneficial effects through the JNK signaling pathway on TC cells. These observations demonstrate that LRRK2 silencing promotes TC cell growth inhibition, and facilitates apoptosis and cell cycle arrest. The JNK signaling pathway may serve a crucial role in mediating the anti­carcinogenic activities of downregulated LRRK2 in TC.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Sistema de Sinalização das MAP Quinases , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/genética , Antracenos/farmacologia , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação para Baixo , Ativação Enzimática , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Neoplasias da Glândula Tireoide/patologia , Transfecção
20.
Cancer Sci ; 110(8): 2471-2484, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187548

RESUMO

Endoplasmic reticulum stress (ERS) plays a key role in the pathogenesis and development of tumors and protects tumor cells from radiation damage and drug-induced stress. We previously demonstrated that EGFR confers radioresistance in human papillomavirus (HPV)-negative human oropharyngeal carcinoma by activating ERS signaling through PERK and IRE1α. In addition, PERK confers radioresistance by activating the inflammatory cytokine NF-κB. However, the effect of IRE1 on radiosensitivity has not yet been fully elucidated. Here, we clarified that IRE1 overexpression was associated with poor outcome in HPV-negative patients treated with radiotherapy (P = 0.0001). In addition, a significantly higher percentage of radioresistant HPV-negative patients than radiosensitive HPV-negative patients exhibited high IRE expression (66.7% vs 27.8%, respectively; P = 0.001). Silencing IRE1 and XBP1 increased DNA double-strand break (DSB) and radiation-induced apoptosis, thereby increasing the radiosensitivity of HPV-negative oropharyngeal carcinoma cells. IRE1-XBP1 silencing also inhibited radiation-induced IL-6 expression at both the RNA and protein levels. The regulatory effect of IRE1-XBP1 silencing on DNA DSB-induced and radiation-induced apoptosis was inhibited by pretreatment with IL-6. These data indicate that IRE1 regulates radioresistance in HPV-negative oropharyngeal carcinoma through IL-6 activation, enhancing X-ray-induced DNA DSB and cell apoptosis.


Assuntos
Endorribonucleases/metabolismo , Interleucina-6/metabolismo , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Radiação/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo , Apoptose/fisiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , NF-kappa B/metabolismo , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA