Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.774
Filtrar
1.
J Environ Manage ; 359: 121002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696847

RESUMO

The heavy rainfall induced by global warming has increased the risk of landslides. Eco-friendly approaches, such as employing vegetation, prove effective in satisfying the requirements of both engineering and environmental considerations in slope engineering. The research aims to comprehensively assess and compare the environmental, economic, and slope stability of new stabilization methods, including vegetation cover, in comparison to conventional approaches such as anchorage and nailing. The research initially explored the stability of slopes in various geometries, identifying areas prone to slope failure. Subsequently, slope stabilization designs were implemented using three methods: vegetation, nailing, and anchoring. To enable a comprehensive comparison from environmental and economic perspectives, both life cycle assessment and life cost assessment were conducted. According to the results, employing vegetation proves effective in stabilizing slopes at lower heights, particularly up to 8 m, leading to a negative carbon emission attributed to photosynthesis, reaching up to -249 kg CO2. In the mid-angle range (30°≤ θ ≤ 60°), anchoring emits less carbon dioxide than nailing due to fewer elements. As the slope angle is increased, the nailing method becomes preferable to the anchoring method due to its use of materials and equipment with lower carbon emissions. During slope stabilization through nailing and anchoring, cement and steel emerge as the primary contributors to carbon emissions. Vegetation stands out as the most cost-effective slope stabilization option, with costs potentially reduced by 250% compared to conventional methods. Based on this research, vegetation emerges as an eco-friendly and cost-effective alternative for slope stabilization in particular conditions where plants effectively ensure stability. Decisions regarding the use of anchoring or nailing can be made based on environmental and economic aspects, considering the slope geometry.


Assuntos
Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Aquecimento Global
2.
J Environ Manage ; 359: 121055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701585

RESUMO

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , China
3.
PeerJ ; 12: e17148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708360

RESUMO

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Assuntos
Lotus , Pólen , Termotolerância , Pólen/fisiologia , Termotolerância/fisiologia , Lotus/fisiologia , Lotus/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Aquecimento Global , Germinação/fisiologia , Altitude , Mudança Climática , Temperatura , Aclimatação/fisiologia
7.
Glob Chang Biol ; 30(5): e17337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771026

RESUMO

Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass-microorganism interactions is needed to leverage knowledge on host-microbe interactions in seagrasses.


Assuntos
Microbiota , Zosteraceae , Zosteraceae/microbiologia , Raízes de Plantas/microbiologia , Sedimentos Geológicos/microbiologia , Temperatura Alta , Aquecimento Global , Oceanos e Mares , Bactérias/classificação , Bactérias/isolamento & purificação , Estações do Ano , Mudança Climática
8.
Proc Natl Acad Sci U S A ; 121(21): e2316497121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739807

RESUMO

Decreased production of crops due to climate change has been predicted scientifically. While climate-resilient crops are necessary to ensure food security and support sustainable agriculture, predicting crop growth under future global warming is challenging. Therefore, we aimed to assess the impact of realistic global warming conditions on rice cultivation. We developed a crop evaluation platform, the agro-environment (AE) emulator, which generates diverse environments by implementing the complexity of natural environmental fluctuations in customized, fully artificial lighting growth chambers. We confirmed that the environmental responsiveness of rice obtained in the fluctuation of artificial environments is similar to those exhibited in natural environments by validating our AE emulator using publicly available meteorological data from multiple years at the same location and multiple locations in the same year. Based on the representative concentration pathway, real-time emulation of severe global warming unveiled dramatic advances in the rice life cycle, accompanied by a 35% decrease in grain yield and an 85% increase in quality deterioration, which is higher than the recently reported projections. The transcriptome dynamism showed that increasing temperature and CO2 concentrations synergistically changed the expression of various genes and strengthened the induction of flowering, heat stress adaptation, and CO2 response genes. The predicted severe global warming greatly alters rice environmental adaptability and negatively impacts rice production. Our findings offer innovative applications of artificial environments and insights for enhancing varietal potential and cultivation methods in the future.


Assuntos
Aquecimento Global , Oryza , Oryza/crescimento & desenvolvimento , Oryza/genética , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Agricultura/métodos , Regulação da Expressão Gênica de Plantas , Temperatura , Transcriptoma
9.
Proc Biol Sci ; 291(2023): 20232207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772423

RESUMO

Population and species persistence in a rapidly warming world will be determined by an organism's ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unknown. We aimed to disentangle the effects of two critical ontogenetic stages (juvenile development and reproduction) to the new-generation acclimation potential, by exposing the spiny chromis damselfish Acanthochromis polyacanthus to simulated ocean warming across two generations. By using hepatic transcriptomics, we discovered that the post-hatching developmental environment of the offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the developmental experience of parents increased regulatory RNA production and protein synthesis, which could improve the offspring's response to warming. Conversely, parental reproduction and offspring embryogenesis in warmer water elicited stress response mechanisms in the offspring, with suppression of translation and mitochondrial respiration. Mismatches between parental developmental and reproductive temperatures deeply affected offspring gene expression profiles, and detrimental effects were evident when warming occurred both during parents' development and reproduction. This study reveals that the previous generation's developmental temperature contributes substantially to thermal acclimation potential during early life; however, exposure at reproduction as well as prolonged heat stress will likely have adverse effects on the species' persistence.


Assuntos
Aclimatação , Recifes de Corais , Animais , Reprodução , Aquecimento Global , Perciformes/fisiologia , Transcriptoma , Oceanos e Mares , Peixes/fisiologia , Temperatura
10.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771091

RESUMO

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Assuntos
Aclimatação , Anfíbios , Peixes , Água Doce , Aquecimento Global , Animais , Aclimatação/fisiologia , Peixes/fisiologia , Anfíbios/fisiologia , Anfíbios/crescimento & desenvolvimento , Filogenia , Mudança Climática , Temperatura
11.
Sci Adv ; 10(20): eadl5904, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758795

RESUMO

Marine heatwaves are increasing in frequency and intensity as climate change progresses, especially in the highly productive Arctic regions. Although their effects on primary producers will largely determine the impacts on ecosystem services, mechanistic understanding on phytoplankton responses to these extreme events is still very limited. We experimentally exposed Arctic phytoplankton assemblages to stable warming, as well as to repeated heatwaves, and measured temporally resolved productivity, physiology, and composition. Our results show that even extreme stable warming increases productivity, while the response to heatwaves depends on the specific scenario applied and is not predictable from stable warming responses. This appears to be largely due to the underestimated impact of the cool phase following a heatwave, which can be at least as important as the warm phase for the overall response. We show that physiological and compositional adjustments to both warm and cool phases drive overall phytoplankton productivity and need to be considered mechanistically to predict overall ecosystem impacts.


Assuntos
Mudança Climática , Ecossistema , Fitoplâncton , Fitoplâncton/fisiologia , Regiões Árticas , Temperatura Alta , Aquecimento Global
12.
Animal ; 18(5): 101155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703757

RESUMO

Providing bedding or access to an outdoor run are husbandry aspects intended to improve pig welfare, which is currently financially supported through animal welfare schemes in several European countries. However, they may significantly affect the environment through changes in feed efficiency and manure management. Therefore, the aim of this paper was to compare farms differing in animal welfare relevant husbandry aspects regarding (1) the welfare of growing-finishing pigs and (2) environmental impact categories such as global warming (GW), acidification (AC), and freshwater (FE) and marine eutrophication (ME), by employing an attributional Life Cycle Assessment. We collected data on 50 farms with growing-finishing pigs in seven European countries. Ten animal-based welfare indicators were aggregated into three pig welfare indices using principal component analysis. Cluster analysis of farms based on husbandry aspects resulted in three clusters: NOBED (31 farms without bedding or outdoor run), BED (11 farms with bedding only) and BEDOUT (eight farms with bedding and outdoor run). Pigs on farms with bedding (BED and BEDOUT) manipulated enrichment more often (P < 0.001), pen fixtures less frequently (P = 0.003) and showed fewer oral stereotypies (P < 0.001) than pigs on NOBED farms. There were fewer pigs with a short(er) tail on farms with than without bedding (P < 0.001). Acidification of BEDOUT and BED farms was significantly higher (compared to NOBED farms P = 0.002) due to higher ammonia emissions related to farmyard manure. Also, BEDOUT farms had higher ME than NOBED farms (P = 0.035). There were no significant differences regarding GW and FE between husbandry clusters, due to the large variability within clusters regarding feed composition and conversion. Therefore, both husbandry aspects associated with improved animal welfare have a significant influence on some environmental impacts, such as acidification and marine eutrophication. Nevertheless, the large variation within clusters suggests that trade-offs may be minimised through e.g. AC and ME.


Assuntos
Criação de Animais Domésticos , Bem-Estar do Animal , Abrigo para Animais , Animais , Criação de Animais Domésticos/métodos , Suínos/fisiologia , Suínos/crescimento & desenvolvimento , Meio Ambiente , Europa (Continente) , Aquecimento Global , Eutrofização , Fazendas , Roupas de Cama, Mesa e Banho/veterinária
13.
PLoS One ; 19(5): e0300967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748669

RESUMO

Can exposure to extreme weather change political opinion and preferences about climate change? There is a growing literature on both the effects of extreme weather events and the factors explaining attitudes toward global warming, though there remains no clear consensus about whether being exposed to extreme weather influences public opinion about climate change. We contribute to this literature by studying the impact of a variety of extreme weather events associated with climate variability, including severe storms, floods, fires, and hurricanes, on attitudes toward climate change. Specifically, we use a three-wave panel survey and a dynamic difference-in-differences design to analyze public opinion data at the individual level in the US. We find that exposure to only one extreme weather type-fires-has a small but significant effect on acknowledging the existence of climate change and supporting the need for action. However, that impact quickly vanishes, and other types of extreme weather do not appear to have any effect on opinion.


Assuntos
Atitude , Mudança Climática , Clima Extremo , Opinião Pública , Humanos , Inquéritos e Questionários , Feminino , Masculino , Tempo (Meteorologia) , Adulto , Pessoa de Meia-Idade , Aquecimento Global , Estados Unidos
14.
Sci Adv ; 10(20): eadl6717, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748800

RESUMO

Documenting the seasonal temperature cycle constitutes an essential step toward mitigating risks associated with extreme weather events in a future warmer world. The mid-Piacenzian Warm Period (mPWP), 3.3 to 3.0 million years ago, featured global temperatures approximately 3°C above preindustrial levels. It represents an ideal period for directed paleoclimate reconstructions equivalent to model projections for 2100 under moderate Shared Socioeconomic Pathway SSP2-4.5. Here, seasonal clumped isotope analyses of fossil mollusk shells from the North Sea are presented to test Pliocene Model Intercomparison Project 2 outcomes. Joint data and model evidence reveals enhanced summer warming (+4.3° ± 1.0°C) compared to winter (+2.5° ± 1.5°C) during the mPWP, equivalent to SSP2-4.5 outcomes for future climate. We show that Arctic amplification of global warming weakens mid-latitude summer circulation while intensifying seasonal contrast in temperature and precipitation, leading to an increased risk of summer heat waves and other extreme weather events in Europe's future.


Assuntos
Aquecimento Global , Estações do Ano , Europa (Continente) , Temperatura , Animais , Mudança Climática , Fósseis , Modelos Climáticos
15.
Sci Total Environ ; 932: 172914, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697525

RESUMO

Recent research has provided crucial insights on regional heatwaves, including their causal mechanisms and changes under global warming. However, detailed research on global-scale spatially compound heatwaves (SCHs) (concurrent heatwaves over multiple regions) is lacking. Here, we find statistically significant teleconnections in heatwaves and show that the frequency of global-scale SCHs and their areal extent have increased significantly, which has led to 50 % increase in the population exposed to extreme heat stresses in the two most recent decades. Crop yields were reduced in most of the years of anomalous heatwaves, which often happen during El-Niños. The internal climate variability appears to significantly influence the inter-annual variability of regional and global heatwave extents. Insights gained here are critical in better quantifying heat stress risks inflicted on socioecological systems.


Assuntos
Calor Extremo , Aquecimento Global , Mudança Climática , Produção Agrícola/métodos , Humanos , Temperatura Alta , Produtos Agrícolas/crescimento & desenvolvimento
16.
Sci Total Environ ; 932: 173000, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719050

RESUMO

Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 µatm, 1052 µatm, 2066 µatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.


Assuntos
Água do Mar , Estrelas-do-Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Estrelas-do-Mar/fisiologia , Aquecimento Global , Dióxido de Carbono , Oceanos e Mares , Mudança Climática , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Acidificação dos Oceanos
18.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570485

RESUMO

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Assuntos
Ecossistema , Água do Mar , Animais , Água do Mar/química , Invertebrados/fisiologia , Mudança Climática , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Aquecimento Global
19.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572638

RESUMO

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Assuntos
Octopodiformes , Animais , Temperatura , Mudança Climática , Aquecimento Global , Oceanos e Mares
20.
Sci Rep ; 14(1): 7660, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561430

RESUMO

Thermal tolerance is a critical factor influencing the survival of living organisms. This study focuses on the thermal resistance of copepod species, Thermocyclops crassus (Fischer, 1853) and T. oithonoides (Sars G.O., 1863), with overlapping distribution ranges in Europe. Short-term heat shock experiments were conducted to assess the thermal resistance of these copepods, considering various temperature increments and exposure durations. Additionally, the study explored the influence of heat shock on egg sac shedding, a vital indicator of population dynamics. Results indicate that widely distributed T. crassus exhibits higher thermal tolerance compared to narrowly distributed T. oithonoides, with survival rates varying under different heat shock conditions. Furthermore, T. crassus demonstrated a quicker response in dropping egg sacs in response to thermal stress, suggesting a potential adaptive mechanism for the survival of adults. However, rapid egg sac droppings pose high risks for eggs facing unfavorable conditions. T. crassus, inhabiting environments with greater temperature fluctuations such as the littoral and pelagial zones, exhibited better survival mechanisms compared to T. oithonoides, which predominantly resides in the pelagic zone. The findings have implications for understanding copepod responses to global warming and thermal pollution. This research contributes insights into the adaptive strategies of thermophilic copepod species and their ecological consequences.


Assuntos
Copépodes , Animais , Copépodes/fisiologia , Resposta ao Choque Térmico , Aquecimento Global , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...