Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.866
Filtrar
1.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958209

RESUMO

As the world warms, it will be tempting to relate the biological responses of terrestrial animals to air temperature. But air temperature typically plays a lesser role in the heat exchange of those animals than does radiant heat. Under radiant load, animals can gain heat even when body surface temperature exceeds air temperature. However, animals can buffer the impacts of radiant heat exposure: burrows and other refuges may block solar radiant heat fully, but trees and agricultural shelters provide only partial relief. For animals that can do so effectively, evaporative cooling will be used to dissipate body heat. Evaporative cooling is dependent directly on the water vapour pressure difference between the body surface and immediate surroundings, but only indirectly on relative humidity. High relative humidity at high air temperature implies a high water vapour pressure, but evaporation into air with 100% relative humidity is not impossible. Evaporation is enhanced by wind, but the wind speed reported by meteorological services is not that experienced by animals; instead, the wind, air temperature, humidity and radiation experienced is that of the animal's microclimate. In this Commentary, we discuss how microclimate should be quantified to ensure accurate assessment of an animal's thermal environment. We propose that the microclimate metric of dry heat load to which the biological responses of animals should be related is black-globe temperature measured on or near the animal, and not air temperature. Finally, when analysing those responses, the metric of humidity should be water vapour pressure, not relative humidity.


Assuntos
Microclima , Animais , Aquecimento Global , Regulação da Temperatura Corporal , Umidade , Temperatura
2.
Nat Commun ; 15(1): 5457, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951524

RESUMO

The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.


Assuntos
Recifes de Corais , Animais , Tamanho Corporal/fisiologia , Aquecimento Global , Oceanos e Mares , Peixes/fisiologia , Oceano Índico , Oxigênio/metabolismo , Temperatura , Temperatura Alta , Pesqueiros
3.
Sci Rep ; 14(1): 14985, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951669

RESUMO

Climate change is known to affect the distribution and composition of species, but concomitant alterations to functionally important aspects of behaviour and species-environment relations are poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment-dwelling invertebrate bioturbation behaviour-a key process mediating nutrient cycling-associated with near-future environmental conditions (+ 1.5 °C, 550 ppm [pCO2]) for species from polar regions experiencing rapid rates of climate change. We find that responses to warming and acidification vary between species and lead to a reduction in intra-specific variability in behavioural trait expression that adjusts the magnitude and direction of nutrient concentrations. Our analyses also indicate that species behaviour is not predetermined, but can be dependent on local variations in environmental history that set population capacities for phenotypic plasticity. We provide evidence that certain, but subtle, aspects of inter- and intra-specific variation in behavioural trait expression, rather than the presence or proportional representation of species per se, is an important and under-appreciated determinant of benthic biogeochemical responses to climate change. Such changes in species behaviour may act as an early warning for impending ecological transitions associated with progressive climate forcing.


Assuntos
Mudança Climática , Invertebrados , Oceanos e Mares , Animais , Invertebrados/fisiologia , Ecossistema , Água do Mar , Concentração de Íons de Hidrogênio , Aquecimento Global , Dióxido de Carbono/metabolismo
4.
Glob Chang Biol ; 30(7): e17406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982862

RESUMO

Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.


Assuntos
Aquecimento Global , Ecossistema , Desenvolvimento Vegetal , Temperatura , Estações do Ano , Temperatura Alta , Modelos Climáticos , Plantas , Mudança Climática
5.
Glob Chang Biol ; 30(7): e17416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994730

RESUMO

Climate change is exposing subarctic ecosystems to higher temperatures, increased nutrient availability, and increasing cloud cover. In this study, we assessed how these factors affect the fluxes of greenhouse gases (GHGs) (i.e., methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)), and biogenic volatile organic compounds (BVOCs) in a subarctic mesic heath subjected to 34 years of climate change related manipulations of temperature, nutrient availability, and light. GHGs were sampled from static chambers and gases analyzed with gas chromatograph. BVOCs were measured using the push-pull method and gases analyzed with chromatography-mass spectrometry. The soil temperature and moisture content in the warmed and shaded plots did not differ significantly from that in the controls during GHG and BVOC measurements. Also, the enclosure temperatures during BVOC measurements in the warmed and shaded plots did not differ significantly from temperatures in the controls. Hence, this allowed for assessment of long-term effects of the climate treatment manipulations without interference of temperature and moisture differences at the time of measurements. Warming enhanced CH4 uptake and the emissions of CO2, N2O, and isoprene. Increased nutrient availability increased the emissions of CO2 and N2O but caused no significant changes in the fluxes of CH4 and BVOCs. Shading (simulating increased cloudiness) enhanced CH4 uptake but caused no significant changes in the fluxes of other gases compared to the controls. The results show that climate warming and increased cloudiness will enhance CH4 sink strength of subarctic mesic heath ecosystems, providing negative climate feedback, while climate warming and enhanced nutrient availability will provide positive climate feedback through increased emissions of CO2 and N2O. Climate warming will also indirectly, through vegetation changes, increase the amount of carbon lost as isoprene from subarctic ecosystems.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Nutrientes , Compostos Orgânicos Voláteis , Gases de Efeito Estufa/análise , Compostos Orgânicos Voláteis/análise , Nutrientes/análise , Tundra , Metano/análise , Dióxido de Carbono/análise , Aquecimento Global , Temperatura , Butadienos , Hemiterpenos
7.
J Environ Manage ; 365: 121624, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968888

RESUMO

In the context of global warming, the occurrence and severity of extreme events like atmospheric drought (AD) and warm spell duration index (WSDI) have increased, causing significant impacts on terrestrial ecosystems in Central Asia's arid regions. Previous research has focused on single extreme events such as AD and WSDI, but the effect of compound hot and dry events (CHWE) on grassland phenology in the arid regions of Central Asia remains unclear. This study utilized structural equation modeling (SEM) and the Pettitt breakpoint test to quantify the direct and indirect responses of grassland phenology (start of season - SOS, length of season - LOS, and end of season - EOS) to AD, WSDI, and CHWE. Furthermore, this research investigated the threshold of grassland phenology response to compound hot and dry events. The research findings indicate a significant increasing trend in AD, WSDI, and CHWE in the arid regions of Central Asia from 1982 to 2022 (0.51 day/year, P < 0.01; 0.25 day/year, P < 0.01; 0.26 day/year, P < 0.01). SOS in the arid regions of Central Asia showed a significant advancement trend, while EOS exhibited a significant advance. LOS demonstrated an increasing trend (-0.23 day/year, P < 0.01; -0.12 day/year, P < 0.01; 0.56 day/year). The temperature primarily governs the variation in SOS. While higher temperatures promote an earlier SOS, they also offset the delaying effect of CHWE on SOS. AD, temperature, and CHWE have negative impacts on EOS, whereas WSDI has a positive effect on EOS. AD exhibits the strongest negative effect on EOS, with an increase in AD leading to an earlier EOS. Temperature and WSDI are positively correlated with LOS, indicating that higher temperatures and increased WSDI contribute to a longer LOS. The threshold values for the response of SOS, EOS, and LOS to CHWE are 16.14, 18.49, and 16.61 days, respectively. When CHWE exceeds these critical thresholds, there are significant changes in the response of SOS, EOS, and LOS to CHWE. These findings deepen our understanding of the mechanisms by which extreme climate events influence grassland phenology dynamics in Central Asia. They can contribute to better protection and management of grassland ecosystems and help in addressing the impacts of global warming and climate change in practice.


Assuntos
Secas , Pradaria , Estações do Ano , Ecossistema , Mudança Climática , Ásia , Aquecimento Global
8.
Proc Biol Sci ; 291(2027): 20240675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045693

RESUMO

Greenhouse gas (GHG) emissions from livestock production must be urgently tackled to substantially reduce their contribution to global warming. Simply reducing livestock numbers to this end risks impacting negatively on food security, rural livelihoods and climate change adaptation. We argue that significant mitigation of livestock emissions can be delivered immediately by improving animal health and hence production efficiency, but this route is not prioritized because its benefits, although intuitive, are poorly quantified. Rigorous methodology must be developed to estimate emissions from animal disease and hence achievable benefits from improved health through interventions. If, as expected, climate change is to affect the distribution and severity of health conditions, such quantification becomes of even greater importance. We have therefore developed a framework and identified data sources for robust quantification of the relationship between animal health and greenhouse gas emissions, which could be applied to drive and account for positive action. This will not only help mitigate climate change but at the same time promote cost-effective food production and enhanced animal welfare, a rare win-win in the search for a sustainable planetary future.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Gado , Animais , Gases de Efeito Estufa/análise , Criação de Animais Domésticos/métodos , Aquecimento Global , Bem-Estar do Animal
9.
Sci Rep ; 14(1): 16793, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039156

RESUMO

Global warming and increased atmospheric nitrogen (N) deposition can adversely impact Sphagnum moss populations and ecological functions in peatlands. Based on the anticipated increases in temperature and N levels at global scale, we investigated the effects of simultaneous warming and N treatment on growth and ecophysiological activity of Sphagnum papillosum, a predominant moss at mid-latitudes, utilizing a growth chamber experiment. Warming treatments increased the maximum yield of photosystem II (Fv/Fm) of S. papillosum while decreasing the stable carbon isotope ratio. However, warming treatment alone did not cause significant changes in the biomass increase from that of the control. Regarding N treatment, the low N treatment decreased Fv/Fm under the current temperature but did not affect the biomass increase. In contrast to these results, a simultaneous warming and high N treatment significantly enhanced the biomass production compared to that of the control, exhibiting additive effect of warming and high N treatment on Sphagnum biomass production. These responses were attributed to the improved photosynthetic performances by warming and N treatment. The results of this study contribute to the prediction of Sphagnum responses to warming and changes in N deposition.


Assuntos
Biomassa , Aquecimento Global , Nitrogênio , Fotossíntese , Sphagnopsida , Nitrogênio/metabolismo , Sphagnopsida/metabolismo , Sphagnopsida/crescimento & desenvolvimento , Temperatura , Isótopos de Carbono , Complexo de Proteína do Fotossistema II/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(28): e2402689121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954550

RESUMO

Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.


Assuntos
Carbono , Fungos , Camada de Gelo , Microbiologia do Solo , Solo , Regiões Árticas , Carbono/metabolismo , Solo/química , Fungos/metabolismo , Camada de Gelo/microbiologia , Aquecimento Global , Aminoácidos/metabolismo , Ecossistema
11.
Sci Rep ; 14(1): 16445, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014022

RESUMO

Climate change elevates the threat of compound heat and drought events, with their ecological and socioeconomic impacts exacerbated by human ecosystem alterations such as eutrophication, salinization, and river engineering. Here, we study how multiple stressors produced an environmental disaster in a large European river, the Oder River, where a toxic bloom of the brackish-water planktonic haptophyte Prymnesium parvum (the "golden algae") killed approximately 1000 metric tons of fish and most mussels and snails. We uncovered the complexity of this event using hydroclimatic data, remote sensing, cell counts, hydrochemical and toxin analyses, and genetics. After incubation in impounded upstream channels with drastically elevated concentrations of salts and nutrients, only a critical combination of chronic salt and nutrient pollution, acute high water temperatures, and low river discharge during a heatwave enabled the riverine mass proliferation of B-type P. parvum along a 500 km river section. The dramatic losses of large filter feeders and the spreading of vegetative cells and resting stages make the system more susceptible to new harmful algal blooms. Our findings show that global warming, water use intensification, and chronic ecosystem pollution could increase likelihood and severity of such compound ecoclimatic events, necessitating consideration in future impact models.


Assuntos
Mudança Climática , Ecossistema , Rios , Humanos , Haptófitas/efeitos dos fármacos , Animais , Europa (Continente) , Eutrofização , Proliferação Nociva de Algas , Aquecimento Global
12.
Sci Rep ; 14(1): 16414, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014072

RESUMO

We present a methodology designed to study the spatial heterogeneity of climate change. Our approach involves decomposing the observed changes in temperature patterns into multiple trend, cycle, and seasonal components within a spatio-temporal model. We apply this method to test the hypothesis of a global long-term temperature trend against multiple trends in distinct biomes. Applying this methodology, we delve into the examination of heterogeneity of climate change in Brazil-a country characterized by a spectrum of climate zones. The findings challenge the notion of a global trend, revealing the presence of distinct trends in warming effects, and more accelerated trends for the Amazon and Cerrado biomes, indicating a composition between global warming and deforestation in determining changes in permanent temperature patterns.


Assuntos
Mudança Climática , Ecossistema , Brasil , Temperatura , Estações do Ano , Conservação dos Recursos Naturais , Aquecimento Global
13.
Glob Chang Biol ; 30(6): e17379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031669

RESUMO

Microbial necromass carbon (MNC) accounts for a large fraction of soil organic carbon (SOC) in terrestrial ecosystems. Yet our understanding of the fate of this large carbon pool under long-term warming is uncertain. Here, we show that 14 years of soil warming (+4°C) in a temperate forest resulted in a reduction in MNC by 11% (0-10 cm) and 33% (10-20 cm). Warming caused a decrease in the content of MNC due to a decline in microbial biomass carbon and reduced microbial carbon use efficiency. This reduction was primarily caused by warming-induced limitations in available soil phosphorus, which, in turn, constrained the production of microbial biomass. Conversely, warming increased the activity of soil extracellular enzymes, specifically N-acetylglucosaminidase and leucine aminopeptidase, which accelerated the decomposition of MNC. These findings collectively demonstrate that decoupling of MNC formation and decomposition underlie the observed MNC loss under climate warming, which could affect SOC content in temperate forest ecosystems more widespread.


Assuntos
Carbono , Florestas , Microbiologia do Solo , Solo , Solo/química , Carbono/metabolismo , Carbono/análise , Biomassa , Mudança Climática , Fósforo/metabolismo , Fósforo/análise , Aquecimento Global
14.
Environ Monit Assess ; 196(8): 738, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009752

RESUMO

Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Imagens de Satélites , Estações do Ano , Temperatura , Monitoramento Ambiental/métodos , Aquecimento Global
16.
Nat Commun ; 15(1): 5637, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965212

RESUMO

Climate warming is one of the facets of anthropogenic global change predicted to increase in the future, its magnitude depending on present-day decisions. The north Atlantic and Arctic Oceans are already undergoing community changes, with warmer-water species expanding northwards, and colder-water species retracting. However, the future extent and implications of these shifts remain unclear. Here, we fitted a joint species distribution model to occurrence data of 107, and biomass data of 61 marine fish species from 16,345 fishery independent trawls sampled between 2004 and 2022 in the northeast Atlantic Ocean, including the Barents Sea. We project overall increases in richness and declines in relative dominance in the community, and generalised increases in species' ranges and biomass across three different future scenarios in 2050 and 2100. The projected decline of capelin and the practical extirpation of polar cod from the system, the two most abundant species in the Barents Sea, drove an overall reduction in fish biomass at Arctic latitudes that is not replaced by expanding species. Furthermore, our projections suggest that Arctic demersal fish will be at high risk of extinction by the end of the century if no climate refugia is available at eastern latitudes.


Assuntos
Biomassa , Mudança Climática , Peixes , Animais , Regiões Árticas , Oceano Atlântico , Mar do Norte , Biodiversidade , Ecossistema , Oceanos e Mares , Aquecimento Global , Dinâmica Populacional
18.
Multimedia | Recursos Multimídia, MULTIMEDIA-SMS-SP | ID: multimedia-13330

RESUMO

O Programa em Saúde Ambiental relacionado a populações expostas à poluição do ar do Município de São Paulo (VIGIAR) tem por objetivo desenvolver ações de vigilância em saúde ambiental, para populações expostas aos poluentes atmosféricos, de forma a orientar medidas de prevenção, promoção da saúde e de atenção integral, conforme preconizado pelo Sistema Único de Saúde (SUS).


Assuntos
Aquecimento Global , Saúde Pública
19.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1205-1213, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886418

RESUMO

Global warming would significantly impact tree growth in the Tibetan Plateau. However, the specific effects of climate change on the radial growth of Pinus wallichiana in Mount Qomolangma are still uncertain. To investigate the responses of radial growth of P. wallichiana to climate change, we analyzed tree-ring samples in Mount Qomolangma. We removed the age-related growth trends and established three chronologies by using the modified negative exponential curve, basal area index, and regional curve standardization, and conducted Pearson correlation and moving correlation analyses to examine the association between radial growth of P. wallichiana and climatic factors. The results showed that this region had experienced a significant upward trend in temperature and that the Palmer drought severity index (PDSI) indicated a decreasing trend since 1980s, while the relative humi-dity changed from a significant upward to a downward trend around 2004, implying the climate shifted toward warmer and drier. Results of Pearson correlation analysis indicated a significant and positive relationship between the radial growth of P. wallichiana and the minimum temperature of April-June and July-September, and precipitation of January-April in the current year. The radial growth of P. wallichiana was significantly and negatively associated with the relative humidity of June, July, and August in the current year. As temperature rose after 1983, the relationship between radial growth of P. wallichiana and the minimum temperature in July and September of the current year increased from a non-significant association to a significant and positive association, while the relationship between radial growth of P. wallichiana and relative humidity in August and precipitation in September of the current year changed from non-significant correlation to a significant and negative correlation. Results of the moving correlation analysis suggested that the radial growth of P. wallichiana showed a significant and stable correlation with the July-September minimum temperature of the current year. Under the background of climate warming, the rapid increases of temperature would accelerate the radial growth of P. wallichiana in Mount Qomolangma.


Assuntos
Mudança Climática , Tibet , Pinus/crescimento & desenvolvimento , Ecossistema , Temperatura , Caules de Planta/crescimento & desenvolvimento , Aquecimento Global
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA