Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.067
Filtrar
1.
Environ Geochem Health ; 46(8): 267, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954229

RESUMO

This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Animais , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Paquistão , Ecossistema , Carpas/metabolismo , Peixes/metabolismo , Análise de Componente Principal , Aquicultura
2.
Front Cell Infect Microbiol ; 14: 1420995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962321

RESUMO

Introduction: Due to the high-density farming of Larimichthys crocea over the years, diseases caused by pathogens such as bacteria, viruses, and parasites frequently occur in Ningbo, posing a huge threat and challenge to the sustainable and healthy development of the L. crocea's bay farming industry. In order to understand the diseases occurrence in L. crocea farming in Ningbo area, an epidemiological investigation of L. crocea diseases was carried out through regular sampling in 2023. Methods: From April to October 2023, routine sampling of L. crocea was conducted monthly in various farming areas in Ningbo. Each time, live or dying L. crocea with obvious clinical symptoms were sampled, with a total number of 55 L. crocea collected. The samples were preserved in ice bags and transported to the laboratory for pathogen detection(including bacterial isolation and identification,virus identification, and parasites detection). Results: A total of fifty-five fish dying L. crocea with obvious clinical symptoms were collected in this study, of which 78.18% (43/55) were detected with symptoms caused by pathogenic infection, while 21.82% (12/55) did not have identified pathogens, which were presumed to be breeding abrasions, nutritional metabolic disorders, unconventional pathogens infection or other reasons. A total of twenty-five pathogenic bacteria strains were isolated, which mainly were Pseudomonas plecoglossicida and Vibrio harveyi, accounting for 52% (13/25) and 32% (8/25) of the pathogenic bacteria strains, respectively. Among them, both V. harveyi and Streptococcus. iniae co-infected one fish. Additionally, three other bacterial strains including Nocardia seriolae, Staphylococcus Saprophyticus, and Photobacterium damselae subsp.damselae were isolated. Microscopic examination mainly observed two parasites, Cryptocaryon irritans and Neobenedenia girellae. In virus detection, the red sea bream iridovirus (RSIV) was mainly detected in L. crocea. Statistical analysis showed that among the fish with detected pathogens, 55.81% (24/43) had bacterial infections, 37.21% (16/43) had parasitic infections, and 37.21% (16/43) had RSIV infections. Among them, five fish had mixed infections of bacteria and parasites, three had mixed infections of bacteria and viruses, three had mixed infections of parasites and viruses, and one L. crocea had mixed infections of viruses, bacteria, and parasites. Discussion: These findings indicate that these three major types of diseases are very common in the L. crocea farming area in Ningbo, implying the complexity of mixed infections of multiple diseases.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/microbiologia , Perciformes/microbiologia , Perciformes/parasitologia , China/epidemiologia , Aquicultura , Vibrio/isolamento & purificação , Vibrio/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética
3.
BMC Vet Res ; 20(1): 290, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965554

RESUMO

Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.


Assuntos
Ração Animal , Ciclídeos , Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Spirulina , Animais , Ciclídeos/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Ração Animal/análise , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/prevenção & controle , Aquicultura , Dieta/veterinária
4.
Methods Mol Biol ; 2827: 99-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985265

RESUMO

Marine macro-algae, commonly known as "seaweed," are used in everyday commodity products worldwide for food, feed, and biostimulant for plants and animals and continue to be one of the conspicuous components of world aquaculture production. However, the application of ANN in seaweeds remains limited. Here, we described how to perform ANN-based machine learning modeling and GA-based optimization to enhance seedling production for implications on commercial farming. The critical steps from seaweed seedling explant preparation, selection of independent variables for laboratory culture, formulating experimental design, executing ANN Modelling, and implementing optimization algorithm are described.


Assuntos
Algoritmos , Redes Neurais de Computação , Alga Marinha , Plântula , Alga Marinha/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Regeneração , Aquicultura/métodos , Aprendizado de Máquina , Modelos Genéticos
5.
PLoS One ; 19(7): e0299997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985803

RESUMO

The selection of water temperature regulation equipment plays a crucial role in the design of workshops. At present, the choice of water temperature control equipment is usually based on the volume of the fish pond and thermal parameter calculation, combined with aquaculture experience. Empirical formulas only work in specific conditions due to factors like the environment, climate, and fish types,resulting in inaccurate equipment selection outcomes. Recognizing this limitation, this paper proposes to apply CFD simulation of the temperature field to accurately calculate the heat exchange value between indoor air and water, thereby predicting the heat exchange values during aquaculture activities in the aquaculture workshop. providing a new approach for equipment selection. This paper selects a puffer fish breeding workshop in Dalian as the simulation object, establishing a 3D unsteady-state Computational Fluid Dynamics model. The model considers outdoor temperature, solar radiation, and phase-change heat transfer in water. Comparison with experimental data reveals a root mean square error of 0.46°C for the simulated results. During summer, the highest cooling load occurs at 16:00, reaching 94.6 kW. It is recommended to employ the Daikin GCHP-40MAH ground source heat pump as the water temperature control equipment. CFD simulation validates its effectiveness in shaping the indoor temperature field post-installation. the investment in water temperature control equipment can be reduced to a certain degree. This provides a reference value for the selection of water temperature equipment in aquaculture workshops.


Assuntos
Aquicultura , Hidrodinâmica , Aquicultura/métodos , Animais , Simulação por Computador , Temperatura Alta , Temperatura
6.
Environ Geochem Health ; 46(9): 310, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001928

RESUMO

Yancheng coastal wetland, the largest coastal wetland in the west coast of the Pacific Ocean and the margin of the Asian continent, has significant environmental, economic and social effects on local human beings. The extensive contamination and potential risk of quinolone antibiotics (QNs) on local aquaculture and human health are still not clear until now. In this study, 52 surface sediment samples were collected to investigate the contamination status and polluted sources, and evaluate ecological risks of QNs in the south of Yancheng coastal wetland. The total contents of QNs ranged from 0.33 to 21.60 ng/g dw (mean value of 4.51 ng/g dw), following the detection frequencies of QNs ranging from 19.23 to 94.23%. The highest content of QNs occurred around an aquaculture pond dominated by flumequine. The total organic carbon contents of sediment were positively correlated with sarafloxacin and lomefloxacin (p < 0.05), indicating the enhanced absorption of these QNs onto sediments. Partial QNs, such as lomefloxacin, enrofloxacin, sarafloxacin and flumequine, presented the homology features originating from the emission of medical treatment and aquaculture. There was no potential risk of QNs to human beings but a potential risk to aquatic organisms (algae > plant > invertebrate). Totally, the management and protection of Yancheng coastal wetland should be of concern with aquaculture as the important industry.


Assuntos
Antibacterianos , Monitoramento Ambiental , Sedimentos Geológicos , Quinolonas , Poluentes Químicos da Água , Áreas Alagadas , Quinolonas/análise , China , Antibacterianos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Humanos , Medição de Risco , Exposição Ambiental , Aquicultura
7.
Trop Anim Health Prod ; 56(6): 208, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001991

RESUMO

The biofloc system is a biotechnology available for fish farming. Feeding rate is an important factor as it influences production costs and fish performance. The aim og this study was to evaluate the effects of feeding rates (2, 4, 6 and 8%) on growth, body composition, biochemical parameters and thiobarbituric acid-reactive-substances in tilapia. An experiment was conducted for 4 weeks, using 144 tilapias juvenile (initial weight = 12.06 ± 0.16 g), in triplicate for feeding rate tested. Fish fed three times a day, with comercial extrude diet (36%CP). After the end of the experiment, measurements were carried out and samples were collected for analysis. The feeding rate of 6% increased fish growth parameters, not differing between 4 and 8%. Since apparent feed conversion increased proportionally to increase in feed supply. Body protein of fish was higher at 8% feeding rate and the dry matter raised according to the rate. The feeding rates affected the body lipids in fish. Fish that fed 6% and 8% showed more lipid in the whole body. The biochemical parameters presented a lower amount of protein, amino acids, and hepatic glucose when employing a feed rate of 6%. Higher levels of ammonia were observed in the muscle of fish reared at 4% of feeding rate. There was no difference in amino acids and ammonia regarding the gills. Fish reared at lower feeding rates (2% and 4%) showed better oxidative parameters, which may be due to the consumption of the biofloc phenolic compounds. We recommend the use of a 4% feeding rate for juvenile tilapia in a Biofloc Technology system.


Assuntos
Ração Animal , Aquicultura , Composição Corporal , Ciclídeos , Animais , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Aquicultura/métodos , Ração Animal/análise , Dieta/veterinária , Estresse Oxidativo
8.
Environ Geochem Health ; 46(8): 300, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990399

RESUMO

This study investigated microplastic (MP) contamination in conventional sea salt farming systems. Various crude sea salt samples (n = 22) that were traditionally produced were collected from salt farms and local vendors. Salt water (n = 15), macroalgae (n = 6), and clay of pond floors (n = 6) were collected from ponds subjected to different production (stabilization, evaporation, and concentration and crystallization concentration) processes. All samples were analyzed for MP abundance and characteristics. The potential sources of MP contamination in the salt were also investigated. The mean abundance of MPs in the salt water and clay of pond floor increased progressively throughout the production process and reached its highest level in the concentration and crystallization ponds (7400 MP particles/m3 in salt water and 19,336 MP particles/m2 in the clay of the pond floor). A maximum of 26,500 MP particles/kg of macroalgal material indicated the potential sink of MPs on the surface of the algae. Approximately 34-2377 MP particles/kg salt were found in the crude sea salt samples. However, the mean abundance (378 MP particles/kg of salt) indicated nonsignificant impacts of different harvesting processes on MP contamination. Most MP size distributions, shapes and polymer types in the salts were similar to those found in the salt water, macroalgae and clay of the pond floor. Approximately 99% of the MPs were fragments that were suspected to be decomposed from larger plastic debris and plastic machinery and tools used at the salt farm. Similar patterns of polymer distribution, in which PP > PE > PET > PS, were found for all samples studied.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Água do Mar/química , Monitoramento Ambiental/métodos , Aquicultura , Alga Marinha/química , Cloreto de Sódio/química , Cloreto de Sódio/análise , Tamanho da Partícula
9.
J Environ Manage ; 365: 121681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963966

RESUMO

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.


Assuntos
Aquicultura , Clorofila A , Desnitrificação , Lagoas , Clorofila A/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Clorofila/metabolismo
11.
Front Cell Infect Microbiol ; 14: 1354736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045133

RESUMO

The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that ß-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.


Assuntos
Aeromonas hydrophila , Bacillus , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Aeromonas hydrophila/patogenicidade , Aeromonas hydrophila/crescimento & desenvolvimento , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Ração Animal , Probióticos/administração & dosagem , Glycine max/microbiologia , Aquicultura
12.
Sci Rep ; 14(1): 16802, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039114

RESUMO

Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.


Assuntos
Aquicultura , Coinfecção , Doenças dos Peixes , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/virologia , Oncorhynchus mykiss/microbiologia , Aquicultura/métodos , Coinfecção/microbiologia , Coinfecção/veterinária , Coinfecção/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Ribossômico 16S/genética , Brânquias/virologia , Brânquias/microbiologia , Microbiota/genética
13.
PLoS One ; 19(7): e0301674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042608

RESUMO

Lactococcus garvieae has recently been identified and listed as one of the causative agents of hyperacute hemorrhagic sepsis in fish. In intensive recirculating aquaculture systems where there are high fish densities and minimal water changes, not only will it be conducive to the growth of bacteria, but Cryptocaryon irritans as a marine protozoan fish parasite is also prone to appear. This study reports the disease status of Trachinotus ovatus in an aquaculture area in Yangjiang City, Guangdong Province. Through the diagnosis of clinical symptoms of the diseased fish, identification of specific primers, 16s rRNA sequences phylogenetic tree analysis, physiological and biochemical identification, and observation of histopathological sections, the result of the experiment is that the mass death of T. ovatus is caused by a mixture of L. garvieae and C. irritants infections. Subsequently, regression infection experiments were performed to verify Koch's law. It was confirmed that the pathogen had strong virulence to T. ovatus. This is the first time that the co-infection of L. garvieae and C. irritans to T. ovatus was found in South China. The research results of this experiment have certain enlightenment significance for the epidemic trend of fish diseases in relevant sea areas.


Assuntos
Doenças dos Peixes , Lactococcus , Filogenia , Animais , Lactococcus/genética , Lactococcus/isolamento & purificação , Lactococcus/classificação , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , China , Cilióforos/genética , Cilióforos/classificação , Cilióforos/isolamento & purificação , Aquicultura , RNA Ribossômico 16S/genética , Coinfecção/microbiologia , Coinfecção/parasitologia , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Peixes/parasitologia , Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária
14.
Environ Sci Pollut Res Int ; 31(33): 46073-46086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980488

RESUMO

The rapid increase in aquaculture over the last several decades has led to concerns about the environmental impact of fish feeds relying on marine resources for fishmeal (FM). We aim to assess Nannochloropsis sp. QH25 co-product as a viable and sustainable replacement for FM in juvenile rainbow trout, Oncorhynchus mykiss, feeds. We formulated four experimental diets: a reference (FM based), 33N, 66N, and 100N diet (33%, 66%, and 100% co-product replacement). Rainbow trout were randomly assigned to one of 16 tanks and randomly assigned an experimental diet to consume throughout the experiment (64 days total), with four replicate tanks per diet. We compared the phosphorus (P) and nitrogen (N) digestibility, emissions, and growth between diets and, compared six environmental impacts (biotic resource use (BRU), global warming potential (GWP), water use, land use, marine eutrophication potential (MEP), and freshwater eutrophication potential (FEP)) of each diet. Our results indicate that replacing FM with co-product did not significantly alter growth. P digestibility of the experimental and reference diets was comparable. BRU conversion ratio was significantly lower in the experimental diets. However, there were significantly higher water and land use conversion ratios but insignificantly higher results in GWP, MEP, and FEP between the reference and 100N diet.


Assuntos
Ração Animal , Aquicultura , Microalgas , Oncorhynchus mykiss , Animais , Reciclagem , Nitrogênio
15.
BMC Vet Res ; 20(1): 307, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987775

RESUMO

In low- and middle-income countries, data on antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture are scarce. Therefore, summarizing documented data on AMU, antimicrobial residue (AR), and AMR in aquaculture in Africa is key to understanding the risk to public health. Google Scholar, PubMed, African Journals online, and Medline were searched for articles published in English and French following the PRISMA guidelines. A structured search string was used with strict inclusion and exclusion criteria to retrieve and screen the articles. The pooled prevalence and 95% confidence intervals were calculated for each pathogen-antimicrobial pair using random effects models. Among the 113 full-text articles reviewed, 41 met the eligibility criteria. The majority of the articles reported AMR (35; 85.4%), while a few were on AMU (3; 7.3%) and AR (3; 7.3%) in fish. The articles originated from West Africa (23; 56.1%), North Africa (8; 19.7%), and East Africa (7; 17.1%). Concerning the antimicrobial agents used in fish farming, tetracycline was the most common antimicrobial class used, which justified the high prevalence of residues (up to 56.7%) observed in fish. For AMR, a total of 69 antimicrobial agents were tested against 24 types of bacteria isolated. Bacteria were resistant to all classes of antimicrobial agents and exhibited high levels of multidrug resistance. Escherichia coli, Salmonella spp., and Staphylococcus spp. were reported in 16, 10, and 8 studies, respectively, with multidrug resistance rates of 43.1% [95% CI (32.0-55.0)], 40.3% [95% CI (24.1-58.1)] and 31.3% [95% CI (17.5-49.4)], respectively. This review highlights the high multidrug resistance rate of bacteria from aquaculture to commonly used antimicrobial agents, such as tetracycline, ampicillin, cotrimoxazole, gentamicin, and amoxicillin, in Africa. These findings also highlighted the lack of data on AMU and residue in the aquaculture sector, and additional efforts should be made to fill these gaps and mitigate the burden of AMR on public health in Africa.


Assuntos
Aquicultura , Peixes , Animais , África , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resíduos de Drogas , Farmacorresistência Bacteriana
16.
PLoS Pathog ; 20(7): e1012321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990823

RESUMO

Vibriosis is one of the most serious diseases that commonly occurs in aquatic animals, thus, shaping a steady inherited resistance trait in organisms has received the highest priority in aquaculture. Whereas, the mechanisms underlying the development of such a resistance trait are mostly elusive. In this study, we constructed vibriosis-resistant and susceptible families of the Pacific white shrimp Litopenaeus vannamei after four generations of artificial selection. Microbiome sequencing indicated that shrimp can successfully develop a colonization resistance trait against Vibrio infections. This trait was characterized by a microbial community structure with specific enrichment of a single probiotic species (namely Shewanella algae), and notably, its formation was inheritable and might be memorized by host epigenetic remodeling. Regardless of the infection status, a group of genes was specifically activated in the resistant family through disruption of complete methylation. Specifically, hypo-methylation and hyper-expression of genes related to lactate dehydrogenase (LDH) and iron homeostasis might provide rich sources of specific carbon (lactate) and ions for the colonization of S. algae, which directly results in the reduction of Vibrio load in shrimp. Lactate feeding increased the survival of shrimp, while knockdown of LDH gene decreased the survival when shrimp was infected by Vibrio pathogens. In addition, treatment of shrimp with the methyltransferase inhibitor 5-azacytidine resulted in upregulations of LDH and some protein processing genes, significant enrichment of S. algae, and simultaneous reduction of Vibrio in shrimp. Our results suggest that the colonization resistance can be memorized as epigenetic information by the host, which has played a pivotal role in vibriosis resistance. The findings of this study will aid in disease control and the selection of superior lines of shrimp with high disease resistance.


Assuntos
Resistência à Doença , Microbioma Gastrointestinal , Penaeidae , Vibrioses , Vibrio , Animais , Penaeidae/microbiologia , Penaeidae/imunologia , Vibrioses/imunologia , Resistência à Doença/genética , Aquicultura
17.
Front Cell Infect Microbiol ; 14: 1424669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006747

RESUMO

Cryptocaryon irritans is a highly detrimental parasite in mariculture, causing significant economic losses to the aquaculture industry of Larimichthys crocea. In recent years, copper and copper alloy materials have been used to kill parasites. In this study, the effect of copper plates on the tomont period of C. irritans was explored. The findings indicated that copper plates effectively eradicated tomonts, resulting in a hatching rate of 0. The metabolomic analysis revealed that a total of 2,663 differentially expressed metabolites (1,032 up-regulated and 1,631 down-regulated) were screened in the positive ion mode, and 2,199 differentially expressed metabolites (840 up-regulated and 1,359 down-regulated) were screened in the negative ion mode. L-arginine and L-aspartic acid could be used as potential biomarkers. Copper plate treatment affected 25 metabolic pathways in the tomont, most notably influencing histidine metabolism, retinol metabolism, the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as arginine and proline metabolism. It was shown that high concentrations of copper ions caused a certain degree of disruption to the metabolome of tomonts in C. irritans, thereby impacting their metabolic processes. Consequently, this disturbance ultimately leads to the rapid demise of tomonts upon exposure to copper plates. The metabolomic changes observed in this study elucidate the lethal impact of copper on C. irritans tomonts, providing valuable reference data for the prevention and control of C. irritans in aquaculture.


Assuntos
Cobre , Doenças dos Peixes , Metabolômica , Animais , Cobre/metabolismo , Doenças dos Peixes/parasitologia , Metaboloma , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Redes e Vias Metabólicas , Aquicultura , Arginina/metabolismo
18.
Mar Pollut Bull ; 205: 116636, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964189

RESUMO

The establishment of marine ranching demonstration areas is crucial for restoring offshore fishery resources, fostering ecosystem harmony, and creating blue "carbon sinks" in China. While their ecological benefits are evident, their impact on surrounding areas remains uncertain. This study takes the first batch of national marine ranching demonstration areas established in 2015 as a quasi-natural experiment and uses synthetic control methods to empirically evaluate the effects and mechanisms of their construction on regional ecological efficiency. Results show heterogeneous impacts, with positive effects in Jiangsu and Liaoning but negligible elsewhere. Mechanism analysis reveals that marine ranching demonstration areas enhance ecological efficiency through economic growth, and industrial structure optimization. Differences in marine ranching types and regulations influence their impact, with public welfare-oriented marine ranching showing greater positive effects compared to aquaculture-oriented ones. Overall, these findings hold theoretical and practical implications for advancing modern marine ranching construction.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , China , Conservação dos Recursos Naturais/métodos , Aquicultura
19.
Environ Sci Technol ; 58(29): 12921-12932, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38965053

RESUMO

Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.


Assuntos
Cadeia Alimentar , Fígado , Oryzias , Animais , Oryzias/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Intestinos , Microalgas , Aquicultura
20.
Gen Comp Endocrinol ; 356: 114578, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971237

RESUMO

Crustaceans, which represent a significant subset of arthropods, are classified into three major classes: Ostracoda, Malacostraca, and Branchiopoda. Among them, sex manipulation in decapod species from the Malacostraca class has been extensively researched for aquaculture purposes and to study reproductive physiology and sexual plasticity. Some decapods exhibit sexual dimorphism that influences their biological and economic value. Monosex culture, in which only one sex is cultivated, increases production yields while reducing the risk of invasiveness, as genetic leakage into natural waters is less likely to occur. Differences in yield are also observed when cultivating different sexes, with all-male cultures of Macrobrachium rosenbergii being more profitable than both mixed and all-female cultures. Research on decapod sexual differentiation has led to a better understanding of sex determination and sexual differentiation processes in arthropods. Similar to most mammals and other vertebrate classes, Malacostraca crustaceans, including decapods, exhibit a cell-non-autonomous mode of sexual development. Genetic factors (e.g., sex chromosomes) and endocrine factors (e.g., insulin-like androgenic gland factor and crustacean female sex hormone) play pivotal roles in the development of sexually dimorphic traits. This review synthesizes the existing understanding of sex determination mechanisms and the role of sex hormones in decapod species. Additionally, it provides an overview of the methyl farnesoate, which has been suggested to be involved in male sex differentiation in some crab species, as well as the phenomenon of male-to-female sex reversal in host decapods caused by parasitic crustaceans.


Assuntos
Aquicultura , Crustáceos , Diferenciação Sexual , Animais , Diferenciação Sexual/fisiologia , Crustáceos/fisiologia , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA