Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.793
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 65, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602593

RESUMO

Dynamics of microbiomes through time are fundamental regarding survival and resilience of their hosts when facing environmental alterations. As for marine species with commercial applications, such as marine sponges, assessing the temporal change of prokaryotic communities allows us to better consider the adaptation of sponges to aquaculture designs. The present study aims to investigate the factors shaping the microbiome of the sponge Dactylospongia metachromia, in a context of aquaculture development in French Polynesia, Rangiroa, Tuamotu archipelago. A temporal approach targeting explants collected during farming trials revealed a relative high stability of the prokaryotic diversity, meanwhile a complementary biogeographical study confirmed a spatial specificity amongst samples at different longitudinal scales. Results from this additional spatial analysis confirmed that differences in prokaryotic communities might first be explained by environmental changes (mainly temperature and salinity), while no significant effect of the host phylogeny was observed. The core community of D. metachromia is thus characterized by a high spatiotemporal constancy, which is a good prospect for the sustainable exploitation of this species towards drug development. Indeed, a microbiome stability across locations and throughout the farming process, as evidenced by our results, should go against a negative influence of sponge translocation during in situ aquaculture.


Assuntos
Microbiota , Poríferos , Animais , Aquicultura , Agricultura , Polinésia
2.
Dis Aquat Organ ; 158: 1-20, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602294

RESUMO

Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.


Assuntos
Coinfecção , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Aquicultura , Bactérias , Mudança Climática
3.
Environ Monit Assess ; 196(5): 445, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607460

RESUMO

Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content ( NO 2 - - N , NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.


Assuntos
Diatomáceas , Microbiota , Oligoquetos , Perifíton , Animais , Monitoramento Ambiental , Aquicultura , Bacteroidetes
4.
PeerJ ; 12: e17092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563012

RESUMO

Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.


Assuntos
Anfípodes , Rotíferos , Animais , Ecossistema , Aquicultura/métodos , Peixes , Larva , Artemia
5.
Zoolog Sci ; 41(2): 192-200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587914

RESUMO

Assessing the impacts of parasites on wild fish populations is a fundamental and challenging aspect of the study of host-parasite relationships. Salmincola, a genus of ectoparasitic copepods, mainly infects salmonid species. This genus, which is notorious in aquaculture, damages host fishes, but its impacts under natural conditions remain largely unknown or are often considered negligible. In this study, we investigated the potential impacts of mouth-attaching Salmincola markewitschi on white-spotted charr (Salvelinus leucomaenis) through intensive field surveys across four seasons using host body condition as an indicator of harmful effects. The prevalence and parasite abundance were highest in winter and gradually decreased in summer and autumn, which might be due to host breeding and/or wintering aggregations that help parasite transmissions. Despite seasonal differences in prevalence and parasite abundance, consistent negative correlations between parasite abundance and host body condition were observed across all seasons, indicating that the mouth-attaching copepods could reduce the body condition of the host fish. This provides field evidence suggesting that S. markewitschi has a potential negative impact on wild white-spotted charr.


Assuntos
Copépodes , Doenças dos Peixes , Doenças Parasitárias , Animais , Truta , Estações do Ano , Aquicultura , Doenças dos Peixes/parasitologia
6.
Sci Total Environ ; 926: 171757, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513856

RESUMO

Antibiotics, widely used in the fields of medicine, animal husbandry, aquaculture, and agriculture, pose a serious threat to the ecological environment and human health. To prevent antibiotic pollution, efforts have been made in recent years to explore alternative options for antibiotics in animal feed, but the effectiveness of these alternatives in replacing antibiotics is not thoroughly understood due to the variation from case to case. Furthermore, a systematic summary of the specific applications and limitations of antibiotic removal techniques in the environment is crucial for developing effective strategies to address antibiotic contamination. This comprehensive review summarized the current development and potential issues on different types of antibiotic substitutes, such as enzyme preparations, probiotics, and plant extracts. Meanwhile, the existing technologies for antibiotic residue removal were discussed under the scope of application and limitation. The present work aims to highlight the strategy of controlling antibiotics from the source and provide valuable insights for green and efficient antibiotic treatment.


Assuntos
Antibacterianos , Probióticos , Animais , Humanos , Criação de Animais Domésticos/métodos , Poluição Ambiental , Aquicultura
7.
Sci Total Environ ; 926: 172108, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556013

RESUMO

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 µmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 µmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + â–³N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + â–³N2) caused by increased nitrogen loading.


Assuntos
Gases de Efeito Estufa , Animais , Lagoas , Dióxido de Carbono/análise , Nitrogênio , Monitoramento Ambiental , Aquicultura/métodos , Água , Metano/análise , Óxido Nitroso/análise , Solo
8.
Microb Ecol ; 87(1): 51, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488929

RESUMO

In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.


Assuntos
Cianobactérias , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animais , Lagoas , Água , Aquicultura , Penaeidae/microbiologia
9.
Environ Pollut ; 346: 123672, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428796

RESUMO

Dredging wastewater (DW) from aquaculture ponds is a major disturbance factor in mangrove management, and its effects on the greenhouse gas (GHG) fluxes from mangrove sediment remain controversial. In this study, we investigated GHG (N2O, CH4, and CO2) fluxes from mangrove sediment at typical aquaculture pond-mangrove sites that were stimulated by DW discharged for different input histories and from different farm types. The GHG fluxes exhibited differing cumulative effects with increasing periods of DW input. The N2O and CH4 fluxes from mangrove sediment that received DW inputs for 17 y increased by ∼10 and ∼1.5 times, respectively, whereas the CO2 flux from mangrove sediment that received DW inputs for 11 y increased by ∼1 time. The effect of DW from shrimp ponds on the N2O flux was significantly larger than those of DW from fish/crab ponds and razor clam ponds. Moreover, the total global warming potentials (GWPs) at the field sites with DW inputs increased by 29-129% of which the CO2 flux was the main contributor to the GWP (85-96%). N2O as a proportion of CO2-equivalent flux increased from 2% to 12%, indicating that N2O was an important contributor to the increase in GWP. Overall, DW increased the GHG fluxes from mangrove sediments, indicating that the contribution of mangroves to climate warming was enhanced under DW input. It also implies that the carbon sequestration potential of mangrove sediments may be threatened to some extent. Therefore, future assessments of the carbon sequestration capacity of mangroves at regional or global scales should consider this phenomenon.


Assuntos
Braquiúros , Gases de Efeito Estufa , Animais , Estuários , Águas Residuárias , Rios , Dióxido de Carbono/análise , Monitoramento Ambiental , Aquicultura , China , Metano/análise , Óxido Nitroso/análise , Áreas Alagadas
10.
Mar Genomics ; 74: 101084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485292

RESUMO

The Annelida phylum is composed of a myriad of species exhibiting key phenotypic adaptations. They occupy key ecological niches in a variety of marine, freshwater and terrestrial ecosystems. Importantly, the increment of omic resources is rapidly modifying the taxonomic landscape and knowledge of species belonging to this phylum. Here, we comprehensively characterised and annotated a transcriptome of the common ragworm, Hediste diversicolor (OF Müller). This species belongs to the family Nereididae and inhabits estuarine and lagoon areas on the Atlantic coasts of Europe and North America. Ecologically, H. diversicolor plays an important role in benthic food webs. Given its commercial value, H. diversicolor is a promising candidate for aquaculture development and production in farming facilities, under a circular economy framework. We used Illumina next-generation sequencing technology, to produce a total of 105 million (M) paired-end (PE) raw reads and generate the first whole-body transcriptome assembly of H. diversicolor species. This high-quality transcriptome contains 69,335 transcripts with an N50 transcript length of 2313 bp and achieved a BUSCO gene completeness of 97.7% and 96% in Eukaryota and Metazoa lineage-specific profile libraries. Our findings offer a valuable resource for multiple biological applications using this species.


Assuntos
Ecossistema , Poliquetos , Animais , Transcriptoma , Poliquetos/genética , Aquicultura , Europa (Continente)
11.
Appl Opt ; 63(6): A7-A15, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437352

RESUMO

Accurate and efficient counting of shrimp larvae is crucial for monitoring reproduction patterns, assessing growth rates, and evaluating the performance of aquaculture. Traditional methods via density estimation are ineffective in the case of high density. In addition, the image contains bright spots utilizing the point light source or the line light source. Therefore, in this paper an automated shrimp counting platform based on optics and image processing is designed to complete the task of counting shrimp larvae. First, an area light source ensures a uniformly illuminated environment, which helps to obtain shrimp images with high resolution. Then, a counting algorithm based on improved k-means and a side window filter (SWF) is designed to achieve an accurate number of shrimp in the lamp house. Specifically, the SWF technique is introduced to preserve the body contour of shrimp larvae, and eliminate noise, such as water impurities and eyes of shrimp larvae. Finally, shrimp larvae are divided into two groups, independent and interdependent, and counted separately. Experimental results show that the designed optical counting system is excellent in terms of visual effect and objective evaluation.


Assuntos
Algoritmos , Aquicultura , Animais , Olho , Processamento de Imagem Assistida por Computador , Larva
12.
Pak J Biol Sci ; 27(2): 90-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516750

RESUMO

<b>Background and Objective:</b> Vaname shrimp (<i>Litopenaeus vannamei</i>) is one of the main economic commodities in aquaculture in the world. Biofloc is a cultivation technology that effectively improves the growth and health status of vaname shrimp. This research aimed to analyze the use of bagasse as a carbon source in the biofloc system for white shrimp cultivation. <b>Materials and Methods:</b> The shrimp used were 18 g/individual shrimp obtained from the Bone Marine and Fisheries Polytechnic Pond. Sugarcane bagasse processed from sugar factory waste was dried in an oven at 60°C and ground using a flouring machine. The research treatments included biofloc application where sugarcane bagasse played a role as a carbon source (L), biofloc application where wheat flour's role was as a carbon source (T) and control or no biofloc application (K). <b>Results:</b> This research showed that sugarcane bagasse could be used as a carbon source for white shrimp biofloc cultivation where the growth value tended to be the same as wheat flour. Total hemolytic count (THC) and shrimp survival in sugarcane bagasse biofloc were as good as wheat flour biofloc. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. The application of bagasse had no effect on temperature, pH, dissolved oxygen and salinity of the rearing media because this treatment was in the optimal range for the growth of vaname shrimp. <b>Conclusion:</b> Sugarcane bagasse has the potential to be a carbon source in biofloc systems because it could improve growth, health status, survival and water quality.


Assuntos
Penaeidae , Saccharum , Animais , Celulose , Carbono , Amônia , Farinha , Triticum , Aquicultura
13.
PLoS One ; 19(3): e0300472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517901

RESUMO

Gilthead seabream (Sparus aurata) is an important species in Mediterranean aquaculture. Rapid intensification of its production and sub-optimal husbandry practices can cause stress, impairing overall fish performance and raising issues related to sustainability, animal welfare, and food safety. The advent of next-generation sequencing technologies has greatly revolutionized the study of fish stress biology, allowing a deeper understanding of the molecular stress responses. Here, we characterized for the first time, using RNA-seq, the different hepatic transcriptome responses of gilthead seabream to common aquaculture challenges, namely overcrowding, net handling, and hypoxia, further integrating them with the liver proteome and metabolome responses. After reference-guided transcriptome assembly, annotation, and differential gene expression analysis, 7, 343, and 654 genes were differentially expressed (adjusted p-value < 0.01, log2|fold-change| >1) in the fish from the overcrowding, net handling, and hypoxia challenged groups, respectively. Gene set enrichment analysis (FDR < 0.05) suggested a scenario of challenge-specific responses, that is, net handling induced ribosomal assembly stress, whereas hypoxia induced DNA replication stress in gilthead seabream hepatocytes, consistent with proteomics and metabolomics' results. However, both responses converged upon the downregulation of insulin growth factor signalling and induction of endoplasmic reticulum stress. These results demonstrate the high phenotypic plasticity of this species and its differential responses to distinct challenging environments at the transcriptomic level. Furthermore, it provides significant resources for characterizing and identifying potentially novel genes that are important for gilthead seabream resilience and aquaculture production efficiency with regard to fish welfare.


Assuntos
Dourada , Animais , Dourada/metabolismo , Transcriptoma , RNA-Seq , Multiômica , Perfilação da Expressão Gênica/métodos , Fígado , Aquicultura , Hipóxia
14.
Fish Shellfish Immunol ; 148: 109512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499216

RESUMO

The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.


Assuntos
Anti-Infecciosos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Bactérias , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Aquicultura
15.
Mar Pollut Bull ; 201: 116244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489909

RESUMO

The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Antioxidantes/análise , Esgotos/análise , Poluentes Químicos da Água/análise , Aquicultura , Monitoramento Ambiental/métodos
16.
Environ Pollut ; 347: 123709, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447655

RESUMO

Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC ß-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.


Assuntos
Antagonistas de Receptores de Angiotensina , Lagos , Humanos , Lagos/microbiologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Aquicultura , China , Antibacterianos/farmacologia , Antibacterianos/análise
17.
Mar Pollut Bull ; 201: 116213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460434

RESUMO

We have updated and reviewed toxicity data for Emamectin benzoate (EMB) and Ivermectin (IVER), two in-feed drugs used to treat sea lice in farmed Atlantic salmon, and inferred new Environmental Quality Standards (EQS) using a deterministic approach or Species Sensitivity Distributions (SSDs) based on available data. We used a SSD model averaging approach and inferred a water acute EQS value of 24.9 ng/L (SSD) for EMB, while previously established chronic water EQS of 0.17 ng/L and sediment benthic EQS of 131 ng/kg dry weight remained unchanged. For IVER, both a water acute EQS of 8.04 ng/L and a chronic water EQS of 3.98 ng/L were inferred using SSDs as well as a benthic EQS of 290 ng/kg dry weight using a deterministic approach. In light of the lack of solubility and tendency of both avermectins to sorb to material benthic EQSs remain the most relevant value to consider for regulators.


Assuntos
Copépodes , Doenças dos Peixes , Ivermectina/análogos & derivados , Salmo salar , Animais , Ivermectina/toxicidade , Aquicultura , Água
18.
Waste Manag ; 180: 55-66, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520898

RESUMO

Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.


Assuntos
Compostagem , Mangifera , Esgotos , Amônia/análise , Solo , Aquicultura , Nutrientes , Nitrogênio/análise
19.
Bioresour Technol ; 399: 130578, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479627

RESUMO

This life cycle assessment (LCA) study analyzed the environmental consequences of integrating microalgae-based wastewater treatment into a shrimp farm with recirculating aquaculture systems (RAS). Microalgae treatment produced <10 % of the system's freshwater eutrophication potential (FEP), marine eutrophication potential (MEP) and global warming potential, which was dominantly contributed by electricity use. Microalgae treatment performed comparably to activated sludge treatment for FEP reduction, and was more effective in remediating marine eutrophication. Replacing coal in electricity mix, particularly with renewables, reduced the system's impacts by up to 90-99 %. Performing the LCA based on system expansion generally obtained higher impacts compared to allocation. Utilizing algal biomass for biogas production reduced the MEP; however, production of feed ingredient and biodiesel were not environmentally beneficial. This study proved the use of microalgae for aquaculture wastewater treatment to be environmentally feasible, the results can guide more sustainable RAS operations and design of full-scale microalgae treatment.


Assuntos
Microalgas , Purificação da Água , Animais , Águas Residuárias , Estudos de Viabilidade , Aquicultura/métodos , Purificação da Água/métodos , Crustáceos , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida
20.
Sci Rep ; 14(1): 3763, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453975

RESUMO

Globally, salmon aquaculture promises to contribute to sustainable sources of animal protein for a growing human population. However, the growth of the industry also includes increased reports of mass mortality events-disaster events where large numbers of fish die in short periods of time. As salmon production increases in scale and more technology is used to grow salmon in contexts otherwise not suited for them, there is a possibility for more frequent and more severe mortality events. Despite investigations into specific cases of mass mortality events-no global study has been conducted to see if large scale mortality is increasing in frequency and scale. Using a global dataset of publicly available and government-collated data on salmon mortality events including nations responsible for the majority of salmon aquaculture, we document trends in mortality events, showing that in some of the major salmon producing nations of the world (in particular Norway, Canada, and the UK), mass mortality events have increased in frequency from 2012 to 2022. We also show that the scope of mass mortality events has increased over time-that is, the upper bound of how many fish were killed in a specific mortality event has increased over time. Finally, the expected maximum size of a mass mortality event differs from country to country, but is likely much larger than site and jurisdictional thresholds of concern for animal welfare, early warning thresholds, and capacity to respond to mortality events. The consequences of the increased scale and scope of mass mortality events extend past aquaculture production to include severe consequences to aquaculture companies and to coastal communities who depend on aquaculture. Our results agree with predictions of the concept of "manufactured risk", which suggests that risk emerges from the aggressive use of technology to optimize production in variable environments, and we argue that there is a need for more fine-scale and standard data collection on salmon mortality events, and that future investigations into salmon aquaculture should increase focus on disaster potential and realization.


Assuntos
Doenças dos Peixes , Salmo salar , Animais , Humanos , Salmão , Aquicultura/métodos , Peixes , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...