Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
1.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957087

RESUMO

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Assuntos
Arabidopsis , Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Rizosfera , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Microbiota , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiologia do Solo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adaptação Fisiológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955187

RESUMO

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autoimunidade , Resistência à Doença , Fusarium , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fusarium/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Proteínas de Transporte
3.
Elife ; 122024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046447

RESUMO

The Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2), a typical receptor kinase, recognizes the conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways, which was intensively studied in the past decades. However, the dynamic regulation of FLS2 phosphorylation at the plasma membrane after flg22 recognition needs further elucidation. Through single-particle tracking, we demonstrated that upon flg22 treatment the phosphorylation of Ser-938 in FLS2 impacts its spatiotemporal dynamics and lifetime. Following Förster resonance energy transfer-fluorescence lifetime imaging microscopy and protein proximity indexes assays revealed that flg22 treatment increased the co-localization of GFP-tagged FLS2/FLS2S938D but not FLS2S938A with AtRem1.3-mCherry, a sterol-rich lipid marker, indicating that the phosphorylation of FLS2S938 affects FLS2 sorting efficiency to AtRem1.3-associated nanodomains. Importantly, we found that the phosphorylation of Ser-938 enhanced flg22-induced FLS2 internalization and immune responses, demonstrating that the phosphorylation may activate flg22-triggered immunity through partitioning FLS2 into functional AtRem1.3-associated nanodomains, which fills the gap between the FLS2S938 phosphorylation and FLS2-mediated immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flagelina , Proteínas Quinases , Imagem Individual de Molécula , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Flagelina/metabolismo , Flagelina/farmacologia , Imunidade Vegetal , Transferência Ressonante de Energia de Fluorescência , Membrana Celular/metabolismo
4.
Annu Rev Plant Biol ; 75(1): 551-577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038249

RESUMO

Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.


Assuntos
Imunidade Vegetal , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
5.
J Agric Food Chem ; 72(29): 16368-16377, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979948

RESUMO

In planta expression of recombinant antibodies has been proposed as a strategy for herbicide resistance but is not well advanced yet. Here, an atrazine nanobody gene fused with a green fluorescent protein tag was transformed to Arabidopsis thaliana, which was confirmed with PCR, ELISA, and immunoblotting. High levels of nanobody accumulation were observed in the nucleus, cytoderm, and cytosol. The nanobody expressed in the plant had similar affinity, sensitivity, and selectivity as that expressed in Escherichia coli. The T3 homozygous line showed resistance in a dose-dependent manner up to 380 g ai/ha of atrazine, which is approximately one-third of the recommended field application rate. This is the first report of utilizing a nanobody in plants against herbicides. The results suggest that utilizing a high-affinity herbicide nanobody gene rather than increasing the expression of nanobodies in plants may be a technically viable approach to acquire commercial herbicide-resistant crops and could be a useful tool to study plant physiology.


Assuntos
Arabidopsis , Atrazina , Resistência a Herbicidas , Herbicidas , Plantas Geneticamente Modificadas , Anticorpos de Domínio Único , Atrazina/farmacologia , Herbicidas/farmacologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia
6.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Imunidade Vegetal/genética , Arabidopsis/genética , Arabidopsis/imunologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Spliceossomos/metabolismo , Spliceossomos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia
7.
Nat Commun ; 15(1): 5102, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877009

RESUMO

Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Plantas/imunologia , Virulência , Regulação da Expressão Gênica de Plantas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia
8.
Proc Natl Acad Sci U S A ; 121(25): e2312415121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875149

RESUMO

Plants rely on immune receptor complexes at the cell surface to perceive microbial molecules and transduce these signals into the cell to regulate immunity. Various immune receptors and associated proteins are often dynamically distributed in specific nanodomains on the plasma membrane (PM). However, the exact molecular mechanism and functional relevance of this nanodomain targeting in plant immunity regulation remain largely unknown. By utilizing high spatiotemporal resolution imaging and single-particle tracking analysis, we show that myosin XIK interacts with remorin to recruit and stabilize PM-associated kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) within immune receptor FLAGELLIN SENSING 2 (FLS2)-containing nanodomains. This recruitment facilitates FLS2/BIK1 complex formation, leading to the full activation of BIK1-dependent defense responses upon ligand perception. Collectively, our findings provide compelling evidence that myosin XI functions as a molecular scaffold to enable a spatially confined complex assembly within nanodomains. This ensures the presence of a sufficient quantity of preformed immune receptor complex for efficient signaling transduction from the cell surface.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Inata , Miosinas , Imunidade Vegetal , Proteínas Serina-Treonina Quinases , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Miosinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
Plant Mol Biol ; 114(3): 68, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842571

RESUMO

Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.


Assuntos
Alternaria , Arabidopsis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Transcriptoma , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Escopoletina/metabolismo , Perfilação da Expressão Gênica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
10.
Elife ; 122024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896460

RESUMO

The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo
11.
PLoS One ; 19(6): e0297124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833485

RESUMO

In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA-Seq/métodos , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica , Reconhecimento da Imunidade Inata
12.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829344

RESUMO

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Assuntos
Cálcio , Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Gossypium/microbiologia , Gossypium/genética , Gossypium/metabolismo , Gossypium/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Calmodulina/metabolismo , Calmodulina/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Plantas Geneticamente Modificadas , Verticillium/fisiologia , Verticillium/patogenicidade
13.
Gene ; 923: 148588, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763363

RESUMO

Polygalacturonase inhibitor protein (PGIP) restricts fungal growth and colonization and functions in plant immunity. Gray mold in cucumber is a common fungal disease caused by Botrytis cinerea, and is widespread and difficult to control in cucumber (Cucumis sativus L.) production. In this study, Cucumis sativus polygalacturonase-inhibiting protein 2 (CsPGIP2) was found to be upregulated in response to gray mold in cucumber. CsPGIP2 was detected in the endoplasmic reticulum, cell membrane, and cell wall after transient transformation of protoplasts and tobacco. A possible interaction between Botrytis cinerea polygalacturonase 3 (BcPG3) and CsPGIP2 was supported by protein interaction prediction and BiFC analysis. Transgenic Arabidopsis plants expressing CsPGIP2 were constructed and exhibited smaller areas of gray mold infection compared to wild type (WT) plants after simultaneous inoculation. Evans blue dye (EBD) confirmed greater damage for WT plants, with more intense dyeing than for the transgenic Arabidopsis. Interestingly, compared to WT, transgenic Arabidopsis exhibited higher superoxide dismutase (AtSOD1) expression, antioxidant enzyme activities, lignin content, net photosynthetic rate (Pn), and photochemical activity. Our results suggest that CsPGIP2 stimulates a variety of plant defense mechanisms to enhance transgenic Arabidopsis resistance against gray mold disease.


Assuntos
Arabidopsis , Botrytis , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Botrytis/patogenicidade , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814867

RESUMO

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Assuntos
Arabidopsis , Epitopos , Solanum lycopersicum , Epitopos/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/genética , Genoma Bacteriano , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Bactérias/imunologia , Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/imunologia , Proteínas e Peptídeos de Choque Frio/metabolismo
15.
Plant J ; 119(2): 828-843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804074

RESUMO

Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.


Assuntos
Ácido Abscísico , Arabidopsis , Botrytis , Fosfatos , Doenças das Plantas , Transdução de Sinais , Botrytis/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fosfatos/metabolismo , Fosfatos/deficiência , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Etilenos/metabolismo , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Esporos Fúngicos/fisiologia , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Suscetibilidade a Doenças
16.
J Integr Plant Biol ; 66(7): 1263-1265, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818976

RESUMO

Reactive oxygen species (ROS) and phosphatidic acid (PA) are important second messengers in plant immunity. PA binding to RBOHD, an NADPH oxidase responsible for ROS production, enhances RBOHD stability and promotes ROS production. Distinct phosphorylation of the lipid kinase DGK5 optimizes the PA burst in regulating ROS production.


Assuntos
Homeostase , Ácidos Fosfatídicos , Imunidade Vegetal , Espécies Reativas de Oxigênio , Ácidos Fosfatídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Vegetal/fisiologia , NADPH Oxidases/metabolismo , Arabidopsis/metabolismo , Arabidopsis/imunologia , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinase/metabolismo , Fosforilação
17.
C R Biol ; 347: 35-44, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771313

RESUMO

In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities' systems.


Dans la nature, les plantes se défendent contre les attaques pathogènes en activant tout un arsenal de mécanismes de défense. Au cours des décennies passées, la recherche s'est principalement focalisée sur la compréhension de la résistance qualitative médiée par quelques gènes majeurs conférant une résistance quasi complète, alors que la résistance quantitative (QDR) demeure peu comprise bien qu'elle représente la forme de résistance prédominante et la plus durable dans les populations naturelles ou les cultures. Nous donnons ici une revue de nos travaux passés et présents sur la dissection des mécanismes complexes qui sous-tendent la QDR chez Arabidopsis thaliana. Les stratégies, étapes clés et défis de nos études concernant un gène QDR atypique, RKS1 (Resistance related KinaSe 1), sont rapportés. En premier lieu, à partir d'analyses génétiques par cartographie de QTL et GWA, l'identification, le clonage et l'analyse fonctionnelle de ce gène ont été utilisés comme point de départ à l'exploration des voies multiples et coordonnées agissant ensemble pour le développement de la réponse QDR dépendante de RKS1. L'identification des interacteurs et complexes protéiques impliquant RKS1 a été une première étape, la biologie des systèmes et la reconstruction de réseaux d'interactions protéines-protéines ont ensuite été mises en œuvre pour décoder les voies moléculaires conduisant aux réponses immunitaires contrôlées par RKS1. Finalement, l'exploration de l'impact potentiel de composantes clés du réseau de gènes dépendant de RKS1 sur le microbiote, offre des perspectives intéressantes et ambitieuses pour comprendre comment le système immunitaire de la plante interagit avec le système des communautés microbiennes.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Biologia de Sistemas , Resistência à Doença/genética , Arabidopsis/genética , Arabidopsis/imunologia , Imunidade Vegetal/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/imunologia , Estudo de Associação Genômica Ampla , Proteínas de Arabidopsis/genética
18.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742296

RESUMO

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidade , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Sequência de Aminoácidos , Alelos
19.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695733

RESUMO

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Assuntos
Arabidopsis , Ascomicetos , Proteínas Fúngicas , Doenças das Plantas , Imunidade Vegetal , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Virulência , Arabidopsis/microbiologia , Arabidopsis/imunologia , Imunidade Vegetal/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Peroxidases/metabolismo , Peroxidases/genética
20.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693568

RESUMO

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Assuntos
Arabidopsis , Complexo III da Cadeia de Transporte de Elétrons , Imunidade Vegetal , Plastídeos , Espécies Reativas de Oxigênio , Tylenchoidea , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/parasitologia , Arabidopsis/imunologia , Arabidopsis/genética , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Animais , Plastídeos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Proteica , Mutação/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA