Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.024
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(8): 889-893, 2021 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34565735

RESUMO

The prevalence of abnormal glucose and lipid metabolism and its relevant diseases has increased year by year, and it has become a problem that threatens human health. Therefore, finding a more effective way to prevent and treat diseases related to abnormal glucose and lipid metabolism has become an urgent public problem. Agmatine is a polyamine substance which widely presents in mammals.It is a metabolite produced by decarboxylation of L-arginine under the action of arginine decarboxylase, hence also known as decarboxylated arginine. Its biological effects have been confirmed. Previous studies have shown that agmatine possesses anti-diabetic effects in diabetic animals. Agmatine not only increases the insulin secretion form ß-pancreatic cells to inhibit the hyperglycemia, but also attenuates insulin resistance in rats. Agmatine also plays a positive role in lipid metabolism disorders and related diseases by modulating lipid metabolism and fatty acid oxidation.


Assuntos
Agmatina , Agmatina/farmacologia , Animais , Arginina/metabolismo , Glicolipídeos , Metabolismo dos Lipídeos , Ratos
2.
Nat Commun ; 12(1): 5293, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489448

RESUMO

The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31P,1H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19F and 27Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , DNA Bacteriano/química , DnaB Helicases/química , Helicobacter pylori/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fluoretos/química , Fluoretos/metabolismo , Expressão Gênica , Helicobacter pylori/genética , Hidrólise , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
3.
Nat Commun ; 12(1): 4845, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381036

RESUMO

The human gut microbiota is increasingly recognized as an important factor in modulating innate and adaptive immunity through release of ligands and metabolites that translocate into circulation. Urbanizing African populations harbor large intestinal diversity due to a range of lifestyles, providing the necessary variation to gauge immunomodulatory factors. Here, we uncover a gradient of intestinal microbial compositions from rural through urban Tanzanian, towards European samples, manifested both in relative abundance and genomic variation observed in stool metagenomics. The rural population shows increased Bacteroidetes, led by Prevotella copri, but also presence of fungi. Measured ex vivo cytokine responses were significantly associated with 34 immunomodulatory microbes, which have a larger impact on circulating metabolites than non-significant microbes. Pathway effects on cytokines, notably TNF-α and IFN-γ, differential metabolome analysis and enzyme copy number enrichment converge on histidine and arginine metabolism as potential immunomodulatory pathways mediated by Bifidobacterium longum and Akkermansia muciniphila.


Assuntos
Citocinas/imunologia , Microbioma Gastrointestinal/fisiologia , População Rural , População Urbana , Adulto , Arginina/metabolismo , Bactérias/imunologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta , Feminino , Microbioma Gastrointestinal/imunologia , Histidina/metabolismo , Humanos , Imunomodulação , Masculino , Redes e Vias Metabólicas , Metaboloma/imunologia , Fatores Socioeconômicos , Tanzânia , Urbanização
4.
J Vis Exp ; (174)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34424246

RESUMO

Protein methyltransferases (PRMTs) catalyze the transfer of a methyl group to arginine residues of substrate proteins. The PRMT family consists of nine members that can monomethylate or symmetrically/asymmetrically dimethylate arginine residues. Several antibodies recognizing different types of arginine methylation of various proteins are available; thus, providing tools for the development of PRMT activity biomarker assays. PRMT antibody-based assays are challenging due to overlapping substrates and motif-based antibody specificities. These issues and the experimental setup to investigate the arginine methylation contributed by individual PRMTs are discussed. Through the careful selection of the representative substrates that are biomarkers for eight out of nine PRMTs, a panel of PRMT activity assays were designed. Here, the protocols for cellular assays quantitatively measuring the enzymatic activity of individual members of the PRMT family in cells are reported. The advantage of the described methods is their straightforward performance in any lab with cell culture and fluorescent western blot capabilities. The substrate specificity and chosen antibody reliability were fully validated with knockdown and overexpression approaches. In addition to detailed guidelines of the assay biomarkers and antibodies, information on the use of an inhibitor tool compound collection for PRMTs is also provided.


Assuntos
Arginina , Proteína-Arginina N-Metiltransferases , Arginina/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato
5.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361774

RESUMO

Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Composição de Medicamentos/métodos , Hipertensão/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Polifenóis/farmacologia , Elementos de Resposta Antioxidante , Antioxidantes/química , Antioxidantes/farmacocinética , Arginina/análogos & derivados , Arginina/antagonistas & inibidores , Arginina/metabolismo , Cardiotônicos/química , Cardiotônicos/farmacocinética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Portadores de Fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacocinética , Transdução de Sinais
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360722

RESUMO

Biological aging research is expected to reveal modifiable molecular mechanisms that can be harnessed to slow or possibly reverse unhealthy trajectories. However, there is first an urgent need to define consensus molecular markers of healthy and unhealthy aging. Established aging hallmarks are all linked to metabolism, and a 'rewired' metabolic circuitry has been shown to accelerate or delay biological aging. To identify metabolic signatures distinguishing healthy from unhealthy aging trajectories, we performed nontargeted metabolomics on skeletal muscles from 2-month-old and 21-month-old mice, and after dietary and lifestyle interventions known to impact biological aging. We hypothesized that common metabolic signatures would highlight specific pathways and processes promoting healthy aging, while revealing the molecular underpinnings of unhealthy aging. Here, we report 50 metabolites that commonly distinguished aging trajectories in all cohorts, including 18 commonly reduced under unhealthy aging and 32 increased. We stratified these metabolites according to known relationships with various aging hallmarks and found the greatest associations with oxidative stress and nutrient sensing. Collectively, our data suggest interventions aimed at maintaining skeletal muscle arginine and lysine may be useful therapeutic strategies to minimize biological aging and maintain skeletal muscle health, function, and regenerative capacity in old age.


Assuntos
Envelhecimento/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Transdução de Sinais , Envelhecimento/patologia , Animais , Masculino , Camundongos , Músculo Esquelético/patologia
7.
Front Immunol ; 12: 695972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34341659

RESUMO

COVID-19 ranges from asymptomatic in 35% of cases to severe in 20% of patients. Differences in the type and degree of inflammation appear to determine the severity of the disease. Recent reports show an increase in circulating monocytic-myeloid-derived suppressor cells (M-MDSC) in severe COVID 19 that deplete arginine but are not associated with respiratory complications. Our data shows that differences in the type, function and transcriptome of granulocytic-MDSC (G-MDSC) may in part explain the severity COVID-19, in particular the association with pulmonary complications. Large infiltrates by Arginase 1+ G-MDSC (Arg+G-MDSC), expressing NOX-1 and NOX-2 (important for production of reactive oxygen species) were found in the lungs of patients who died from COVID-19 complications. Increased circulating Arg+G-MDSC depleted arginine, which impaired T cell receptor and endothelial cell function. Transcriptomic signatures of G-MDSC from patients with different stages of COVID-19, revealed that asymptomatic patients had increased expression of pathways and genes associated with type I interferon (IFN), while patients with severe COVID-19 had increased expression of genes associated with arginase production, and granulocyte degranulation and function. These results suggest that asymptomatic patients develop a protective type I IFN response, while patients with severe COVID-19 have an increased inflammatory response that depletes arginine, impairs T cell and endothelial cell function, and causes extensive pulmonary damage. Therefore, inhibition of arginase-1 and/or replenishment of arginine may be important in preventing/treating severe COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , Células Supressoras Mieloides/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/administração & dosagem , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/sangue , Arginina/metabolismo , Infecções Assintomáticas , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/tratamento farmacológico , Estudos de Casos e Controles , Quimioterapia Combinada/métodos , Inibidores Enzimáticos/administração & dosagem , Feminino , Granulócitos/metabolismo , Voluntários Saudáveis , Humanos , Interferon Tipo I/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Linfócitos T/imunologia
8.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206365

RESUMO

Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.


Assuntos
Biopterina/análogos & derivados , Córtex Cerebral/enzimologia , Encefalopatia Hepática/enzimologia , Falência Hepática Aguda/enzimologia , Óxido Nítrico Sintase Tipo III/genética , Animais , Arginina/metabolismo , Biopterina/análise , Biopterina/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Regulação da Expressão Gênica , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/genética , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/complicações , Falência Hepática Aguda/genética , Masculino , Ratos , Ratos Sprague-Dawley , Tioacetamida/toxicidade
9.
Nat Commun ; 12(1): 4212, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244496

RESUMO

CSR-1 is an essential Argonaute protein that binds to a subclass of 22G-RNAs targeting most germline-expressed genes. Here we show that the two isoforms of CSR-1 have distinct expression patterns; CSR-1B is ubiquitously expressed throughout the germline and during all stages of development while CSR-1A expression is restricted to germ cells undergoing spermatogenesis. Furthermore, CSR-1A associates preferentially with 22G-RNAs mapping to spermatogenesis-specific genes whereas CSR-1B-bound small RNAs map predominantly to oogenesis-specific genes. Interestingly, the exon unique to CSR-1A contains multiple dimethylarginine modifications, which are necessary for the preferential binding of CSR-1A to spermatogenesis-specific 22G-RNAs. Thus, we have discovered a regulatory mechanism for C. elegans Argonaute proteins that allows for specificity of small RNA binding between similar Argonaute proteins with overlapping temporal and spatial localization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Interferência de RNA , Espermatogênese/genética , Animais , Animais Geneticamente Modificados , Arginina/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Éxons/genética , Feminino , Masculino , Metilação , Oogênese/genética , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Processos de Determinação Sexual/genética
10.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299249

RESUMO

Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.


Assuntos
Hidrolases/farmacologia , Melanoma/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Arginina/deficiência , Arginina/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Hidrolases/metabolismo , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
11.
Nutrients ; 13(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204342

RESUMO

The aim of our study was to evaluate if endothelial-dysfunction (ED) occurs in patients with primary Sjogren syndrome (pSS) and whether it is associated with the disease characteristics and activity. A total of 46 patients with pSS and 30 controls, without known cardiovascular disease, were enrolled in this study. A flow-mediated-dilation (FMD) of the brachial artery, plasma concentrations of the nitric oxide (NO) metabolic pathway (ADMA, L-arginine, SDMA, cGMP), and markers of endothelial inflammatory function (PAI-1, sE-selectin) and angiogenesis (angiostatin, VEGF) were analyzed. The FMD was significantly lower in pSS patients (7.56 ± 3.08 vs. 10.91 ± 1.02%, p = 0.043) and positively correlated with the Ro/SS-A-antibodies (r = 0.34, p = 0.03), pulmonary involvement (r = 0.52, p = 0.001) and inversely with ADMA (r = -0.35, p = 0.04). Plasma ADMA, L-arginine and angiostatin levels were significantly higher in pSS patients (0.39 ± 0.08 vs. 0.36 ± 0.06 µmol/L, p = 0.05; 29.07 ± 6.7 vs. 25.4 ± 5.23 µmol/L, p = 0.01; 152.25 ± 60.99 vs. 120.07 ± 38.7 pg/mL, p = 0.0, respectively). ADMA was associated with ESSDAI (r = 0.33, p = 0.02), SCORE (r = 0.57, p = 0.00003) and focus score (r = 0.38, p = 0.04). In the multiple regression analysis, the ESSDAI was significantly and independently associated with plasma ADMA levels (ß = 0.24, p = 0.04). Moreover, plasma cGMP concentrations were negatively correlated with the disease duration (r = -0.31, p = 0.03). Endothelial function is impaired in patients with pSS and associated with the measures of disease activity, which supports the key-role of inflammation in developing and maintaining accelerated atherosclerosis.


Assuntos
Doenças Cardiovasculares/complicações , Endotélio Vascular , Fatores de Risco de Doenças Cardíacas , Síndrome de Sjogren/complicações , Doenças Vasculares/complicações , Adulto , Arginina/metabolismo , Biomarcadores/sangue , Artéria Braquial , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Regressão
12.
Adv Exp Med Biol ; 1332: 167-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251644

RESUMO

As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.


Assuntos
COVID-19 , Óxido Nítrico , Animais , Arginina/metabolismo , Feminino , Humanos , Masculino , Gravidez , Biossíntese de Proteínas , SARS-CoV-2
13.
PLoS Pathog ; 17(6): e1009658, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133469

RESUMO

During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.


Assuntos
Arginina/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Glicosiltransferases/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Humanos
14.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171297

RESUMO

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/metabolismo , Fibroblastos/virologia , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Metilação , Camundongos , Camundongos Knockout , Alcamidas Poli-Insaturadas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Receptores Imunológicos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069497

RESUMO

The epidemiological success of Staphylococcus aureus as a versatile pathogen in mammals is largely attributed to its virulence factor repertoire and the sophisticated regulatory network controlling this virulon. Here we demonstrate that the low-molecular-weight protein arginine phosphatase PtpB contributes to this regulatory network by affecting the growth phase-dependent transcription of the virulence factor encoding genes/operons aur, nuc, and psmα, and that of the small regulatory RNA RNAIII. Inactivation of ptpB in S. aureus SA564 also significantly decreased the capacity of the mutant to degrade extracellular DNA, to hydrolyze proteins in the extracellular milieu, and to withstand Triton X-100 induced autolysis. SA564 ΔptpB mutant cells were additionally ingested faster by polymorphonuclear leukocytes in a whole blood phagocytosis assay, suggesting that PtpB contributes by several ways positively to the ability of S. aureus to evade host innate immunity.


Assuntos
Neutrófilos/metabolismo , Neutrófilos/microbiologia , Infecções Estafilocócicas/imunologia , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Peso Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA Bacteriano/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo
16.
Commun Biol ; 4(1): 714, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112944

RESUMO

Mysteriously neurons maintain ATP concentrations of ~3 mM but whether ATP modulates TDP-43 LLPS remains completely unexplored. Here we characterized the effect of ATP on LLPS of TDP-43 PLD and seven mutants by DIC and NMR. The results revealed: 1) ATP induces and subsequently dissolves LLPS of TDP-43 PLD by specifically binding Arg saturated at 1:100. 2) ATP modifies the conformation-specific electrostatic property beyond just imposing screening effect. 3) Reversibility of LLPS of TDP-43 PLD and further exaggeration into aggregation appear to be controlled by a delicate network composed of both attractive and inhibitory interactions. Results together establish that ATP might be a universal but specific regulator for most, if not all, R-containing intrinsically-disordered regions by altering physicochemical properties, conformations, dynamics, LLPS and aggregation. Under physiological conditions, TDP-43 is highly bound with ATP and thus inhibited for LLPS, highlighting a central role of ATP in cell physiology, pathology and aging.


Assuntos
Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Humanos , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transição de Fase , Agregados Proteicos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Nat Commun ; 12(1): 3780, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145242

RESUMO

RNA N6-methyladenosine (m6A), the most abundant internal modification of mRNAs, plays key roles in human development and health. Post-translational methylation of proteins is often critical for the dynamic regulation of enzymatic activity. However, the role of methylation of the core methyltransferase METTL3/METTL14 in m6A regulation remains elusive. We find by mass spectrometry that METTL14 arginine 255 (R255) is methylated (R255me). Global mRNA m6A levels are greatly decreased in METTL14 R255K mutant mouse embryonic stem cells (mESCs). We further find that R255me greatly enhances the interaction of METTL3/METTL14 with WTAP and promotes the binding of the complex to substrate RNA. We show that protein arginine N-methyltransferases 1 (PRMT1) interacts with and methylates METTL14 at R255, and consistent with this, loss of PRMT1 reduces mRNA m6A modification globally. Lastly, we find that loss of R255me preferentially affects endoderm differentiation in mESCs. Collectively, our findings show that arginine methylation of METTL14 stabilizes the binding of the m6A methyltransferase complex to its substrate RNA, thereby promoting global m6A modification and mESC endoderm differentiation. This work highlights the crosstalk between protein methylation and RNA methylation in gene expression.


Assuntos
Adenosina/análogos & derivados , Arginina/metabolismo , Endoderma/citologia , Metiltransferases/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Adenosina/genética , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Camundongos , Processamento de Proteína Pós-Traducional/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
18.
Nat Commun ; 12(1): 3444, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103528

RESUMO

AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.


Assuntos
Arginina/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/farmacologia , Biocatálise/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos Nus , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/deficiência , Proteínas Proto-Oncogênicas c-akt/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Nat Commun ; 12(1): 3396, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099711

RESUMO

Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Peptidilprolil Isomerase/metabolismo , Esclerose Amiotrófica Lateral/genética , Arginina/genética , Arginina/metabolismo , Biopolímeros/metabolismo , Encéfalo/patologia , Domínio Catalítico , Cristalografia por Raios X , Expansão das Repetições de DNA , Dipeptídeos/genética , Demência Frontotemporal/genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptidilprolil Isomerase/isolamento & purificação , Peptidilprolil Isomerase/ultraestrutura , Prolina/genética , Prolina/metabolismo , Agregados Proteicos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Sequências Repetitivas de Aminoácidos/genética
20.
Nat Commun ; 12(1): 3316, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083524

RESUMO

The methylglyoxal-derived hydroimidazolone isomer, MGH-1, is an abundant advanced glycation end-product (AGE) associated with disease and age-related disorders. As AGE formation occurs spontaneously and without an enzyme, it remains unknown why certain sites on distinct proteins become modified with specific AGEs. Here, we use a combinatorial peptide library to determine the chemical features that favor MGH-1. When properly positioned, tyrosine is found to play an active mechanistic role that facilitates MGH-1 formation. This work offers mechanistic insight connecting multiple AGEs, including MGH-1 and carboxyethylarginine (CEA), and reconciles the role of negative charge in influencing glycation outcomes. Further, this study provides clear evidence that glycation outcomes can be influenced through long- or medium-range cooperative interactions. This work demonstrates that these chemical features also predictably template selective glycation on full-length protein targets expressed in mammalian cells. This information is vital for developing methods that control glycation in living cells and will enable the study of glycation as a functional post-translational modification.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Produtos Finais de Glicação Avançada/química , Glicosilação , Células HEK293 , Humanos , Imidazóis/química , Imidazóis/metabolismo , Isomerismo , Biblioteca de Peptídeos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/genética , Aldeído Pirúvico/análogos & derivados , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...