RESUMO
Studies have found that neutrophil extracellular traps (NETs) which are the specific dying form of neutrophil upon activation have fundamental role in the rheumatoid arthritis onset and progression. The purpose of this study was to explore the therapeutic effect of Sinomenine on adjuvant-induced arthritis in mice, and the neutrophil activities regulated by Sinomenine. The rheumatoid arthritis model was established by local injection of adjuvant and the Sinomenine treatment was administered orally for 30 days, during which, arthritic scores were evaluated and the joint diameter was measured to determine disease progression. The joint tissues and serum were acquired for further tests after sacrifice. Cytometric beads assay was performed to measure the concentration of cytokines. For paraffin-embedded ankle tissues, hematoxylin and erosin staining and Safranin O-fast staining were adopted to monitor the tissue changes of joint. In order to analyze the inflammation, NETs and autophagy of neutrophils in vivo, immunohistochemistry assays were applied to detect the protein expression levels in the local joints. To describe the effect brought by Sinomenine on inflammation, autophagy and NETs in vitro, the western blotting and the immunofluorescence assays were performed. The joint symptoms of the adjuvant induced arthritis were alleviated by the Sinomenine treatment significantly in terms of the ankle diameter and scores. The improvement of local histopathology changes and decrease of inflammatory cytokines in the serum also confirmed the efficacy. The expression levels of interleukin-6, P65 and p-P65 in the ankle areas of mice were remarkably reduced by Sinomenine. Compared with the model group, the decreased expression levels of lymphocyte antigen 6 complex and myeloperoxidase in the Sinomenine treating group showed the inhibitory effect of Sinomenine on the neutrophil migration. The expression of protein arginine deiminase type 4 (PAD4), ctrullinated histone H3 (CitH3) and microtubule-associated protein 1 light chain 3B (LC3B) had the similar tendency. Upon activation of lipopolysaccharide (LPS) in vitro, Sinomenine suppressed the phosphorylation of P65, extracellular signal-regulated kinase (ERK) and P38 of neutrophil. Meanwhile, Sinomenine inhibited NETs formation induced by phorbol 12-myristate 13-acetate (PMA), which were demonstrated by the decreased expression of neutrophil elastase (NE), PAD4 and CitH3. Sinomenine also inhibited PMA-induced autophagy in vitro based on the changes of Beclin-1 and LC3B. Sinomenine has good efficacy in treating adjuvant induced arthritis via regulating neutrophil activities. Apart from inhibiting activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the mechanism includes suppression of NETs formation via autophagy inhibition.
Assuntos
Artrite Experimental , Artrite Reumatoide , Armadilhas Extracelulares , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citocinas/metabolismo , Histonas/metabolismo , AutofagiaRESUMO
BACKGROUND: Connective tissue growth factor (CTGF) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA) by facilitating angiogenesis and is a promising therapeutic target for RA treatment. Herein, we generated a fully human CTGF blocking monoclonal antibody (mAb) through phage display technology. RESULTS: A single-chain fragment variable (scFv) with a high affinity to human CTGF was isolated through screening a fully human phage display library. We carried out affinity maturation to elevate its affinity for CTGF and reconstructed it into a full-length IgG1 format for further optimization. Surface plasmon resonance (SPR) data showed that full-length antibody IgG mut-B2 bound to CTGF with a dissociation constant (KD) as low as 0.782 nM. In the collagen-induced arthritis (CIA) mice, IgG mut-B2 alleviated arthritis and decreased the level of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, we confirmed that the TSP-1 domain of CTGF is essential for the interaction. Additionally, the results of Transwell assays, tube formation experiments, and chorioallantoic membrane (CAM) assays showed that IgG mut-B2 could effectively inhibit angiogenesis. CONCLUSION: The fully human mAb that antagonizes CTGF could effectively alleviate arthritis in CIA mice, and its mechanism is tightly associated with the TSP-1 domain of CTGF.
Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Fator de Crescimento do Tecido Conjuntivo , Trombospondina 1 , Anticorpos Monoclonais , Imunoglobulina GRESUMO
OBJECTIVE: To observe the effects of moxibustion on the ultrastructure of synovial cells of knee joint and serum cytokines in adjuvant arthritis (AA) rats, and to explore the potential mechanism of moxibustion in treatment of rheumatoid arthritis. METHODS: Forty-five Wistar male rats were randomly divided into a normal group, a model group and a moxibustion group, with 15 rats in each group. In the model group and the moxibustion group, the AA model was replicated under wind, cold and humid environment and by injection with complete freund's adjuvant. In the moxibustion group, moxibustion at "Zusanli" (ST 36) and "Shenshu" (BL 23) was used, 20 min each time, once daily, for consecutive 21 days. In the normal group and the model group, no intervention was processed. The scores of the knee joint swelling degree (JSD) and arthritis index (AI) were compared among groups. The ultrastructure of synovial cells of knee joint were observed under transmission electron microscope (TEM). The levels of serum cytokines such as tumor necrosis factor-α (TNF-α), interieukin (IL)-1ß, IL-6 and IL-10 were detected using ELISA method. RESULTS: Compared with the normal group, JSD and AI scores, the levels of TNF-α, IL-1ß and IL-6 were increased (P<0.01), while IL-10 was reduced (P<0.01) in the model group after intervention. JSD and AI scores, and the levels of TNF-α, IL-1ß and IL-6 were lower (P<0.05, P<0.01), while the level of IL-10 was higher (P<0.01) in the moxibustion group compared with the model group. Compared with the normal group, the ultrastructure of synovial cell was obviously damaged in the model group, and the damage was attenuated in the moxibustion group compared with the model group. CONCLUSION: Moxibustion can reduce the symptoms of arthritis in AA rats, which may be related to the improvement of the ultrastructure of synovial cells and the regulation of cytokines.
Assuntos
Artrite Experimental , Moxibustão , Masculino , Ratos , Animais , Citocinas , Interleucina-10 , Fator de Necrose Tumoral alfa , Interleucina-6 , Ratos Wistar , Articulação do JoelhoRESUMO
Anemone flaccida Fr. Schmidt, a Traditional Chinese Medicine, has been used in the treatment of rheumatoid arthritis (RA) for numerous years. However, the specific mechanisms remain to be elucidated. Thus, the present study aimed to investigate the main chemical constituents and potential mechanisms of Anemone flaccida Fr. Schmidt. The ethanol extract obtained from Anemone flaccida Fr. Schmidt (EAF) was analyzed using mass spectrometry to determine the main components and the therapeutic effects of EAF on RA were verified using a collageninduced arthritis (CIA) rat model. Results of the present study demonstrated that synovial hyperplasia and pannus of the model rats were significantly improved following EAF treatment. Moreover, the protein expression levels of VEGF and CD31labeled neovascularization were significantly reduced in the synovium of CIA rats following treatment with EAF, compared with those of the untreated model group. Subsequently, in vitro experiments were carried out to verify the impact of EAF on synovial proliferation and angiogenesis. Results of the western blot analysis revealed that EAF inhibited the PI3K signaling pathway in endothelial cells, which is associated with antiangiogenesis. In conclusion, results of the present study demonstrated the therapeutic effects of Anemone flaccida Fr. Schmidt on RA and preliminarily revealed the mechanisms of this drug in the treatment of RA.
Assuntos
Anemone , Artrite Experimental , Artrite Reumatoide , Animais , Ratos , Anemone/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Células Endoteliais , Etanol/farmacologia , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Fosfatidilinositol 3-Quinases , Membrana Sinovial/patologia , Extratos Vegetais/farmacologiaRESUMO
Lettuce (Lactuca sativa L.) contains various bioactive compounds that can reduce the severity of inflammatory diseases. This study aimed to identify therapeutic effects and underlying mechanisms of fermented lettuce extract (FLE) containing stable nitric oxide (NO) on collagen-induced arthritis (CIA) in mice and fibroblast-like synoviocytes (MH7A line) from patients with rheumatoid arthritis (RA). DBA/1 mice were immunized with bovine type II collagen and orally administered FLE for 14 days. On day 36, mouse sera and ankle joints were collected for serological and histological analysis, respectively. Consuming FLE inhibited RA development, suppressing pro-inflammatory cytokine productions, synovial inflammation, and cartilage degradation. The therapeutic effects of FLE in CIA mice were similar to those of methotrexate (MTX), which is typically used to treat RA. In vitro, FLE suppressed the transforming growth factor-ß (TGF-ß)/Smad signaling pathway in MH7A cells. We also demonstrated that FLE inhibited TGF-ß-induced cell migration, suppressed MMP-2/9 expression, inhibited MH7A cell proliferation, and increased the expression of autophagy markers LC3B and p62 in a dose-dependent manner. Our data suggest that FLE could induce autophagosome formations in the early of stages of autophagy while inhibiting their degradation in the later stages. In conclusion, FLE is a potential therapeutic agent for RA.
Assuntos
Artrite Experimental , Artrite Reumatoide , Extratos Vegetais , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos , Alface , Camundongos Endogâmicos DBA , Óxido Nítrico/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Crescimento Transformador beta/metabolismo , Extratos Vegetais/farmacologiaRESUMO
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joints associated with systemic comorbidities. Sinomenium acutum is regarded as an effective traditional Chinese medicine (TCM) for the treatment of RA. Materials and Methods: Based on network pharmacology and Gene Expression Omnibus (GEO) database, 33 RA-related differentially-expressed genes (DEGs) targeting active compounds of Sinomenium acutum were initially screened in our investigation. Results: Gene Ontology (GO) and Kyoto encyclopaedia of genes and genome (KEGG) analyses found the important involvement of these DEGs in osteoclast differentiation, and finally 5 core DEGs, including NCF4, NFKB1, CYBA, IL-1ß and NCF1 were determined through protein-protein interaction (PPI) network. We also identified the related active component of Sinomenium acutum include Stigmasterol. Finally, in order to experimentally verify these results, a rat model of collagen-induced arthritis (CIA) was established, and subsequently treated with Stigmasterol solution. Conclusion: Similar to the healing effect of Indomethacin, Stigmasterol was observed to reduce the levels of inflammatory factors (IL-6 and IL-1ß) and osteoclast differentiation-related factors (RANKL, ACP5 and Cathepsin K), which can also reduce the arthritis index score and alleviate the degree of pathological injury of rat ankle joints. The predictions and experimental data uncover the involvement of Stigmasterol, an active component of Sinomenium acutum, in regulation of osteoclast differentiation, exerting great medicinal potential in the treatment of RA.
Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Ratos , Animais , Estigmasterol , Farmacologia em Rede , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêuticoRESUMO
Background: α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods: Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results: SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion: MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.
Assuntos
Artrite Experimental , Monócitos , Animais , Camundongos , Proliferadores de Peroxissomos , PPAR gama , Sirtuína 1 , Macrófagos , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológicoRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) induces inflammation, autoantibody production, and thrombosis, which are common symptoms of autoimmune diseases, including rheumatoid arthritis (RA). However, the effect of COVID-19 on autoimmune disease is not yet fully understood. METHODS: This study was performed to investigate the effects of COVID-19 on the development and progression of RA using a collagen-induced arthritis (CIA) animal model. Human fibroblast-like synoviocytes (FLS) were transduced with lentivirus carrying the SARS-CoV-2 spike protein gene in vitro, and the levels of inflammatory cytokine and chemokine expression were measured. For in vivo experiments, CIA mice were injected with the gene encoding SARS-CoV-2 spike protein, and disease severity, levels of autoantibodies, thrombotic factors, and inflammatory cytokine and chemokine expression were assessed. In the in vitro experiments, the levels of inflammatory cytokine and chemokine expression were significantly increased by overexpression of SARS-CoV-2 spike protein in human FLS. RESULTS: The incidence and severity of RA in CIA mice were slightly increased by SARS-CoV-2 spike protein in vivo. In addition, the levels of autoantibodies and thrombotic factors, such as anti-CXC chemokine ligand 4 (CXCL4, also called PF4) antibodies and anti-phospholipid antibodies were significantly increased by SARS-CoV-2 spike protein. Furthermore, tissue destruction and inflammatory cytokine level in joint tissue were markedly increased in CIA mice by SARS-CoV-2 spike protein. CONCLUSIONS: The results of the present study suggested that COVID-19 accelerates the development and progression of RA by increasing inflammation, autoantibody production, and thrombosis. Video Abstract.
Assuntos
Artrite Experimental , Artrite Reumatoide , COVID-19 , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Inflamação , Citocinas , AutoanticorposRESUMO
INTRODUCTION: Previous studies revealed that gallic acid (GA) exerts anti-inflammation and immuno-regulatory properties. This study aims to explore the pharmacological activities of GA in collagen-induced arthritis (CIA) mouse model. METHODS: Male DBA/1J mice were used to construct the CIA model. The mice were administrated with GA for 3 weeks. Clinical arthritis scores and hind paw volume were evaluated over the experimental period. qPCR and Western blot analysis were used to determine the levels of matrix metallopeptidases (MMPs) and cytokines. In addition, flow cytometry was used to measure the populations of Th17 and Treg cells. ELISAs were used to determine the cytokines in the serum and ankle joint tissues. RESULTS: Treatment of GA (40 and 80 mg/kg/d) reduced clinical arthritis scores and hind paw volume in the CIA mouse model. Besides, treatment of GA reduced the overexpression of MMPs and modulated the dysregulation of inflammation-related cytokines. Flow cytometry showed that treatment of GA decreased the population of Th17 cells, and increased the population of Treg cells, as supported by treatment of GA regulated the Th17/Treg-related cytokines. CONCLUSIONS: GA attenuates symptoms in the CIA mouse model by anti-inflammation and regulating Th17/Treg cell imbalance.
Assuntos
Artrite Experimental , Artrite Reumatoide , Masculino , Camundongos , Animais , Ácido Gálico/efeitos adversos , Camundongos Endogâmicos DBA , Modelos Animais de Doenças , Citocinas , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , ImunidadeRESUMO
Background: Bone dysfunction is a crucial problem that occurs during rheumatoid arthritis (RA) disease. Osteoclast plays a significant role in bone resorption and osteoclast differentiation and its enhancement of bone destruction. Edaravone remarkably exhibited free radical scavenging and anti-inflammatory effects. The objective of the current investigation is to comfort the inhibitory effect of Edaravone (ED) against complete Freund adjuvant (CFA) rat model via inhibition of angiogenesis and inflammation. Methods: Subcutaneous injection of CFA (1%) was used to induce arthritis; the rats were divided into different groups and received the oral administration of ED. Paw edema, body weight, and arthritis score were regularly estimated. Biochemical parameters were estimated, respectively. We also estimate the level of hypoxia-inducible factor-1α (HIF-1α), angiopoietin 1 (ANG-1), and vascular endothelial growth factor (VEGF). We also checked into how ED affected the differentiation of osteoclasts utilising a co-culture system with monocytes and synovial fibroblasts in arthritis rats. Results: ED treatment significantly (P<0.001) suppressed the arthritis score and paw edema and improved the body weight. ED treatment significantly (P<0.001) altered the antioxidant parameters and pro-inflammatory cytokines: inflammatory mediator nuclear kappa B factor (NF-κB), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), respectively. Furthermore, ED treatment significantly (P<0.001) suppressed the level of ANG-1, HIF-1α, and VEGF, respectively. The results suggest that ED suppressed osteoclast differentiation and also decreased the level of cytokines and osteopontin (OPN), receptor activator for nuclear factor-κ B Ligand (RANKL) and macrophage colony stimulating factor (M-CSF) in the co-culture supernatant of monocytes and synovial fibroblasts. Conclusion: Edaravone could mitigate CFA via inhibiting angiogenesis and inflammatory reactions, which may be linked with the HIF-1α-VEGF-ANG-1 axis and also enhance the bone destruction of murine arthritis via suppression of osteoclast differentiation and inflammatory reaction.
Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Camundongos , Animais , Osteoclastos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adjuvante de Freund/metabolismo , Adjuvante de Freund/farmacologia , Edaravone/farmacologia , Angiopoietina-1/metabolismo , Angiopoietina-1/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismoRESUMO
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases affecting primarily the joints. Despite successful therapies including antibodies against tumor necrosis factor (TNF) and interleukin-6 (IL-6) receptor, only 20 to 30% of patients experience remission. We studied whether inhibiting both TNF and IL-6 would result in improved efficacy. Using backtranslation from single-cell RNA sequencing (scRNA-seq) data from individuals with RA, we hypothesized that TNF and IL-6 act synergistically on fibroblast-like synoviocytes (FLS) and T cells. Coculture of FLS from individuals with RA and T cells supported this hypothesis, revealing effects on both disease-driving pathways and biomarkers. Combining anti-TNF and anti-IL-6 antibodies in collagen-induced arthritis (CIA) mouse models resulted in sustained long-term remission, improved histology, and effects on bone remodeling pathways. These promising data initiated the development of an anti-TNF/IL-6 bispecific nanobody compound 1, with similar potencies against TNF and IL-6. We observed additive efficacy of compound 1 in a FLS/T cell coculture affecting arthritis and T helper 17 (TH17) pathways. This nanobody compound transcript signature inversely overlapped with described RA endotypes, indicating a potential efficacy in a broader patient population. In summary, we showed superiority of a bispecific anti-TNF/IL-6 nanobody compound or combination treatment over monospecific treatments in both in vitro and in vivo models. We anticipate improved efficacy in upcoming clinical studies.
Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/tratamento farmacológico , Células Cultivadas , Fibroblastos/patologia , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Inibidores do Fator de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/imunologiaRESUMO
Rheumatoid arthritis is an inflammatory autoimmune disease, characterized by autoantibody production, synovial inflammation, and joint destruction. Its pathogenesis is due to environmental factors and genetic backgrounds. Bruton's tyrosine kinase is a cytoplasmic non-receptor tyrosine kinase, expressed in most hematopoietic cell lineages, except T cells and plasma cells, and regulates various immune-related signaling pathways, thereby playing a crucial role in pathogenesis. Thus, inhibiting Bruton's tyrosine kinase may prove beneficial in treating autoimmune diseases. In the present study, we characterized Bruton's tyrosine kinase inhibitor, TAS5315, in vitro and evaluated its therapeutic effects in experimental arthritis models. TAS5315 markedly inhibited Bruton's tyrosine kinase enzyme activity and suppressed the B-cell receptor signaling pathway in Ramos cells. Moreover, it suppressed the expression of CD69, CD86, and MHC class II in mouse B lymphocytes and the production of TNF-α and MIP-1α in mouse macrophages and decreased bone resorption activity in mouse osteoclasts. Furthermore, it ameliorated the pathological changes in two rodent models of collagen-induced arthritis in vivo. TAS5315 improved bone mineral density and bone intensity. Thus, these results suggest that TAS5315 could be a promising therapeutic option for the treatment of rheumatoid arthritis.
Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/patologia , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteína Tirosina Quinase , Roedores , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
AIM: The in vitro effects of commonly used first-line anti-arthritic drugs on early stages of T-cell activation were examined. METHODS: The 2B4.11 murine T cell hybridoma cell line recognizing pigeon cytochrome c (PCC) as the antigen was co-cultured with the histocompatible antigen presenting B cell hybridoma line LK35.2, PCC, and anti-arthritic drugs, including methotrexate, hydroxychloroquine, salazopyrine, cyclosporin, and leflunomide. After 16 hours of incubation, the supernatant was removed, and cytokines were assayed. RESULTS: Anti-arthritic drugs inhibited the production of pro-inflammatory cytokines IL-2, IL-6, IFN-γ, GM-CSF, and TNF-α (Th1 cytokines) to a varying extent. Surprisingly, leflunomide, salazopyrine, prednisone and indomethacin as well as blocking Th1 cytokines, stimulated the production of the anti-inflammatory cytokine IL-10, a Th2 cytokine. CONCLUSION: Anti-arthritic medications can inhibit the production of pro-inflammatory cytokines and in some cases, incite a Th2 response that could potentially inhibit the progression of the immune response.
Assuntos
Artrite Experimental , Células Th1 , Camundongos , Animais , Células Th1/metabolismo , Leflunomida/farmacologia , Leflunomida/uso terapêutico , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Th2RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Panlongqi Tablet is prepared with the ancestral secret recipe provided by Mr. Wang Jiacheng, a famous specialist in orthopedics and traumatology of China. The efficacy and safety of PLQT have been supported by years of clinical practice in the treatment of joint-related conditions. Has remarkable effect for treating rheumatoid arthritis (RA) clinically. However, its mechanism is not entirely clear. AIM OF THE STUDY: We aim to evaluate the anti-inflammatory activity of PLQT and explore its mechanism in adjuvant-induced arthritis (AA) mice and LPS-induced Human fibroblast-like synovial (HFLS) cells. MATERIALS AND METHODS: To this end, we analyzed the active ingredients in PLQT by HPLC-MS/MS. Furthermore, the anti-RA effect of PLQT was studied through proliferation, apoptosis, foot swelling, cytokine levels, immune organ index, histopathology and related signal pathways in LPS-induced HFLS cells and AA-treated mice. RESULTS: HPLC-MS/MS results showed that PLQT contained a variety of active compounds, such as epicatechin, imperatorin, hydroxysafflor yellow A and so on. PLQT significantly inhibited the abnormal proliferation of HFLS cells induced by LPS, promoted cell apoptosis. In AA-treated mice, PLQT alleviated RA symptoms by alleviating paw swelling, synovial hyperplasia, pannus formation, inflammatory cell infiltration, and inhibiting abnormal immune responses. The results showed that PLQT significantly decreased the expression of inflammatory mediators (IL-1ß, IL-6, IL-17) in vivo and in vitro, which may be related to the regulation of PI3K/Akt, MAPK and JAK/STAT signaling pathways. CONCLUSION: Based on serum pharmacology and in vivo pharmacology studies, PLQT may regulate RA symptoms by regulating inflammatory and immune response-related pathways, which is an effective method for the treatment of RA.
Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológicoRESUMO
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Assuntos
Artrite Experimental , Artrite Reumatoide , Dendrímeros , MicroRNAs , Animais , Ratos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , MicroRNAs/genética , Proteínas de Transporte , Proteínas do Tecido NervosoRESUMO
It is still a clinical challenge to sustain the remission of rheumatoid arthritis (RA); thus, identifying more effective and safer agents for RA treatment remains an urgent demand. We investigated the anti-arthritic activity and potential mechanism of action of sodium Danshensu (SDSS), a structurally representative water-soluble derivative of Danshen, on collagen-induced arthritis (CIA) mice. Our results showed that paw edema, synovium hyperplasia, bone destruction, and the serum levels of both IL-1ß and IL-6 were ameliorated by SDSS (40 mg/kg·d) in CIA mice. In addition, there was no difference between SDSS and methotrexate (MTX, 2 mg/kg·3d) treatment in the above indicators. Further mechanism studies illustrated that SDSS inhibited IL-1ß secretion by downregulating the HIF-1α/STAT3/NLRP3 pathway in macrophages. On the other hand, HIF-1α accumulation and HIF-1α/STAT3/NLRP3 pathway activation by IOX4 stimulation reduced the therapeutic effect of SDSS. These findings demonstrate that SDSS displays anti-arthritic activity in CIA mice and prevents proinflammatory cytokines secretion in macrophages by suppressing the HIF-1α/STAT3/NLRP3 pathway.
Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ativação de Macrófagos , Membrana Sinovial/metabolismo , Artrite Reumatoide/tratamento farmacológico , Metotrexato/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismoRESUMO
Rheumatoid arthritis (RA), a systemic autoimmune disease that dramatically affects patients' quality of life. Given the intricacy of RA's pathophysiology, no single treatment can completely halt the disease progression. Here, we attempted to treat RA holistically and synergistically by co-delivering methotrexate (MTX), a standard slow-acting anti-rheumatic drug, and phenethyl isothiocyanate (PEITC), a bioactive phytochemical, using a sodium alginate (SA)-pluronic F127 (PF-127) in situ hydrogel formulation. Therefore, in the current study, the co-delivery of MTX and PEITC in the nanoparticulate form could help enhance stability and solubility and facilitate greater penetration in the target arthritic tissues. The fabricated MTX NP and PEITC NE were found to have a minimum particle size, PDI, and good zeta potential. Results from in vitro release studies showed that MTX and PEITC were simultaneously released from the DD NP HG matrix over 6-7 days through diffusion and erosion mechanisms. An intra-articular (IA) injection of DD NP HG dramatically reduced chronic inflammation in adjuvant-induced arthritis (AIA) rats, delayed the onset of bone erosion, significantly reduced synovitis, and down-regulated the inflammatory cytokine expression. Most notably, the co-delivery strategy almost entirely restored the morphological features of the ankle joints of RA rats. The hepatic and renal function tests indicated good biological safety for DD NP HG in RA conditions. Taken together, these findings indicated that DD NP HG could achieve good anti-inflammatory activity and reverse cartilage disruption through a synergistic effect between two nanoparticulate forms of MTX and PEITC, which can effectively improve the drawbacks of their free forms.
A nanostructured dual-drug loaded smart hydrogel (DD NP HG) was successfully constructed for the intra-articular delivery of MTX and PEITC to the affected joints of RA.The fabrication of the nanoformulation of both MTX (MTX NP) and PEITC (PEITC NE) aided in mitigating the drawbacks and drug-related side effects of the free form of drugs.DD NP HG markedly suppressed joint inflammation and protect against bone destruction in arthritic rats.This combination approach of PEITC and MTX (DD NP HG) synergistically improved anti-arthritic activity and reduced the adverse side effects in vivo.
Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Ratos , Hidrogéis , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Metotrexato/farmacologia , Artrite Experimental/tratamento farmacológicoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbium is the resinous secretion of Euphorbia resinifera Berg. According to the record, Euphorbium was first used by Roman doctors to treat the emperor's joint pain. In China, it is applied in folk medicine to treat damp-cold or mucous diseases, such as arthralgia and ascites, etc. This herb is used for rheumatoid arthritis and skin tumors in the folklore of northeastern Brazil. Triterpenes are mainly characteristic constituents of Euphorbium, and possibly possess anti-rheumatoid arthritis. AIM OF THE STUDY: To explore the preventive effect of Euphorbium total triterpenes (TTE) on Freund's complete adjuvant (FCA) induced arthritis in rats and its mechanism. MATERIAL AND METHODS: TTE was extracted and isolated from Euphorbium, and its components were analyzed by HPLC. The safety of TTE was evaluated by an acute toxicity test in mice. Arthritis was induced in rats by injecting 0.2 mL FCA into the right hind paw toe, except for the control group, which was given the same volume of physiological saline. Tripterygium Glycosides (TG, 7.5 mg/kg) and TTE (32, 64 and 128 mg/kg) were administered by gavage for 30 days. Body weights, paw swelling, and arthritic scores were measured during the experiment process. After 30 days, blood and joints were harvested to determine various indicators of arthritis. RESULTS: The contents of euphol and euphorbol in TTE were 47.03% and 18.77% respectively, and the maximal feasible dose of TTE in mice is 12 g/kg. The experimental results showed that arthritis indicators in rats deteriorated after FCA inducement compared with the control group. After treatment with TTE, the swelling degree and histopathological change of the hind paws in rats were significantly improved as well as arthritic score; the serum TNF-α, CRP, IL-1ß, IL-6, IL-18 and RF levels in rats were significantly reduced; The expression of PI3K, AKT, P-AKT, Bcl-2, NF-κB, NLRP3 and Pro-caspase-1 protein in joint tissue were down-regulated, and the expression of Bax protein was up-regulated. CONCLUSION: The results suggested that TTE possessed anti-arthritis effects, and its mechanism may be related to its anti-inflammatory and immunomodulatory properties, as well as regulation of PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathway.
Assuntos
Artrite Experimental , Artrite Reumatoide , Triterpenos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Proteína X Associada a bcl-2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triterpenos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Adjuvante de Freund , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológicoRESUMO
Rubia cordifolia L. (Rubiaceae), one of the traditional anti-rheumatic herbal medicines in China, has been used to treat rheumatoid arthritis (RA) since ancient times. Purpurin, an active compound of Rubia cordifolia L., has been identified in previous studies and exerts antibacterial, antigenotoxic, anticancer, and antioxidant effects. However, the efficacy and the underlying mechanism of purpurin to alleviate RA are unclear. In this study, the effect of purpurin on inflammation was investigated using macrophage RAW264.7 inflammatory cells, induced by lipopolysaccharide (LPS), and adjuvant-induced arthritis (AIA) rat was established to explore the effect of purpurin on joint damage and immune disorders; the network pharmacology and molecular docking were integrated to dig out the prospective target. Purpurin showed significantly anti-inflammatory effect by reducing the content of IL-6, TNF-α, and IL-1ß and increasing IL-10. Besides, purpurin obviously improved joint injury and hypotoxicity in the liver and spleen and regulated the level of FOXP3 and CD4+/CD8+. Furthermore, purpurin reduced the MMP3 content of AIA rats. Network pharmacology and molecular docking also suggested that MMP3 may be the key target of purpurin against RA. The results of this study strongly indicated that purpurin has a potential effect on anti-RA.
Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Metaloproteinase 3 da Matriz , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Antirreumáticos/farmacologiaRESUMO
AIMS: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features are synovial inflammation, bone erosion, and joint structural damages. Our previous studies have shown that kefir peptides (KPs) can reduce cardiovascular disease, osteoporosis and renal inflammation. In this study, we further evaluate the efficacy of KPs on adjuvant-induced arthritis (AIA) in a rat model. MAIN METHODS: After the 14th day of adjuvant induction, rats were subsequently orally administered KPs (83 or 166 mg/day/kg) or tofacitinib (6.2 mg/day/kg) for 14 days. On the 28th day, the rats were anesthetized with isoflurane for ultrasonic, in vivo imaging system (IVIS), and radiographic imaging and then sacrificed for ankle tissues collection and analysis. In vitro, IL-1ß-treated human synovial cells (SW982) were subjected to anti-arthritis mechanism study in the presence of KPs. KEY FINDINGS: The results of ultrasonography, radiograph, histology, the expression of matrix metalloproteinases (MMPs), inflammatory cytokines and RANKL/OPG ratio demonstrated decreasing severity of synovitis and bone erosion in the ankle joints after KPs treatment. Activation of the NF-κB and MAPK pathways was significantly reduced in KPs treated AIA group. Furthermore, KPs attenuated IL-1ß-induced inflammatory cytokine production and the expression of MMPs in a human synovial cell line SW982. These results demonstrated that KPs alleviated adjuvant-induced arthritis in rats by inhibiting IL-1ß-related inflammation and MMPs production. SIGNIFICANCE: We concluded that KPs can exhibit anti-inflammatory effects by reducing the levels of macrophage-related inflammatory cytokines and MMPs, thus alleviating bone erosion in the ankle joint and constituting a potential therapeutic strategy for rheumatoid arthritis.