Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.231
Filtrar
1.
PLoS One ; 17(1): e0261344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982782

RESUMO

With more than 1400 chiropteran species identified to date, bats comprise one-fifth of all mammalian species worldwide. Many studies have associated viral zoonoses with 45 different species of bats in the EU, which cluster within 5 families of bats. For example, the Serotine bats are infected by European Bat 1 Lyssavirus throughout Europe while Myotis bats are shown infected by coronavirus, herpesvirus and paramyxovirus. Correct host species identification is important to increase our knowledge of the ecology and evolutionary pattern of bat viruses in the EU. Bat species identification is commonly determined using morphological keys. Morphological determination of bat species from bat carcasses can be limited in some cases, due to the state of decomposition or nearly indistinguishable morphological features in juvenile bats and can lead to misidentifications. The overall objective of our study was to identify insectivorous bat species using molecular biology tools with the amplification of the partial cytochrome b gene of mitochondrial DNA. Two types of samples were tested in this study, bat wing punches and bat faeces. A total of 163 bat wing punches representing 22 species, and 31 faecal pellets representing 7 species were included in the study. From the 163 bat wing punches tested, a total of 159 were genetically identified from amplification of the partial cyt b gene. All 31 faecal pellets were genetically identified based on the cyt b gene. A comparison between morphological and genetic determination showed 21 misidentifications from the 163 wing punches, representing ~12.5% of misidentifications of morphological determination compared with the genetic method, across 11 species. In addition, genetic determination allowed the identification of 24 out of 25 morphologically non-determined bat samples. Our findings demonstrate the importance of a genetic approach as an efficient and reliable method to identify bat species precisely.


Assuntos
Quirópteros/classificação , Quirópteros/genética , DNA Mitocondrial/análise , Animais , Monitoramento Epidemiológico , Fezes/química , França , Raiva/veterinária , Asas de Animais/química , Zoonoses
2.
J Colloid Interface Sci ; 610: 246-257, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923266

RESUMO

Randomly arranged irregular inclined conical structure-covered dragonfly wings, distinguished from periodic conical structure-covered cicada wings, are with high optical transparency for wide viewing angles. Bioinspired by the antireflective structures, we develop a colloidal lithography approach for engineering randomly arranged irregular conical structures with shape memory polymer-based tips. The structures establish a gradual refractive index transition to suppresses optical reflection in the visible spectrum. By manipulating the configuration of structure tips through applying common solvent stimulations or contact pressures under ambient conditions, the resulting unidirectional antireflection and omnidirectional antireflection performances are able to be instantaneously and reversibly switched. The dependences of structure shape, structure inclination, structure arrangement, and structure composition on the switchable antireflection capability are also systematically investigated in this study.


Assuntos
Odonatos , Animais , Asas de Animais
3.
Dev Biol ; 481: 43-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555363

RESUMO

Developmental patterning is thought to be regulated by conserved signalling pathways. Initial patterns are often broad before refining to only those cells that commit to a particular fate. However, the mechanisms by which pattern refinement takes place remain to be addressed. Using the posterior crossvein (PCV) of the Drosophila pupal wing as a model, into which bone morphogenetic protein (BMP) ligand is extracellularly transported to instruct vein patterning, we investigate how pattern refinement is regulated. We found that BMP signalling induces apical enrichment of Myosin II in developing crossvein cells to regulate apical constriction. Live imaging of cellular behaviour indicates that changes in cell shape are dynamic and transient, only being maintained in those cells that retain vein fate competence after refinement. Disrupting cell shape changes throughout the PCV inhibits pattern refinement. In contrast, disrupting cell shape in only a subset of vein cells can result in a loss of BMP signalling. We propose that mechano-chemical feedback leads to competition for the developmental signal which plays a critical role in pattern refinement.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Pupa , Asas de Animais
4.
Gene ; 809: 146002, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648919

RESUMO

We aimed to explain the reason and function of the successive expression of ecdysone-responsive transcription factors (ERTFs) and related cuticular protein (CP) genes during transformation from larva to pupa. The regulation of the expression of CP genes by ERTFs was examined by in vitro wing disc culture and reporter assay using a gene gun transduction system. Two CP genes that showed expression peaks at different stages-BmorCPG12 at W3L and BmorCPH2 at P0 stage-were selected and examined. Reporter constructs conveying putative BHR3, ßFTZ-F1, BHR39, and E74A binding sites of BmorCPG12 and BmorCPH2 showed promoter activity when introduced into wing discs. In the present study, we showed the functioning of the putative BHR3 and E74A binding sites, together with putative ßFTZ-F1 binding sites, on the activation of CP genes, and different ERTF binding sites functioned in one CP gene. From these, we conclude that BHR3, ßFTZ-F1, and E74A that are successively expressed bring about the successive expression of CP genes, resulting in insect metamorphosis. In addition to this, reporter constructs conveying putative BHR39 binding sites of BmorCPG12 and BmorCPH2 showed negative regulation.


Assuntos
Bombyx/genética , Ecdisona/metabolismo , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Bombyx/fisiologia , Ecdisona/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Insetos/metabolismo , Larva/genética , Mutagênese Sítio-Dirigida , Pupa/genética , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento
5.
Naturwissenschaften ; 109(1): 11, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958410

RESUMO

Not all flower-visiting animals act as pollinators; some visitors engage in foraging nectar without pollen transfer. The tendency to rob nectar is related to visitors' morphological traits and rewards per foraging effort, and drivers of this variation within visitor species are largely unknown. Because foraging behavior is affected by foraging experience, we focused on the relationship between the tendency to rob nectar and the foraging experience of each forager. We investigated five consecutive visits of European honeybee, Apis mellifera L., on comfrey, Symphytum officinale L., in Japan. We estimated the foraging experience of A. mellifera using wing wear, categorized into six groups. Approximately 60% and 40% of A. mellifera foragers engaged in legitimate visits and nectar robbing, respectively. Moreover, most A. mellifera engaged in only one foraging tactic. The proportion of nectar robbing was related to wing wear and was higher in individuals with extensively damaged wings than those with less damaged wings. The present study suggests that extensively experienced honeybee foragers tend towards nectar robbing.


Assuntos
Comportamento Alimentar , Néctar de Plantas , Animais , Abelhas , Flores , Humanos , Pólen , Asas de Animais
6.
Nat Commun ; 12(1): 7248, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903755

RESUMO

The coexistence of closely-related species in sympatry is puzzling because ecological niche proximity imposes strong competition and reproductive interference. A striking example is the widespread wing pattern convergence of several blue-banded Morpho butterfly species with overlapping ranges of distribution. Here we perform a series of field experiments using flying Morpho dummies placed in a natural habitat. We show that similarity in wing colour pattern indeed leads to interspecific territoriality and courtship among sympatric species. In spite of such behavioural interference, demographic inference from genomic data shows that sympatric closely-related Morpho species are genetically isolated. Mark-recapture experiments in the two most closely-related species unravel a strong temporal segregation in patrolling activity of males. Such divergence in phenology reduces the costs of reproductive interference while simultaneously preserving the benefits of convergence in non-reproductive traits in response to common ecological pressures. Henceforth, the evolution of multiple traits may favour species diversification in sympatry by partitioning niche in different dimensions.


Assuntos
Borboletas/genética , Especiação Genética , Simpatria , Animais , Mimetismo Biológico , Borboletas/classificação , Corte , Ecossistema , Masculino , Isolamento Reprodutivo , Análise Espaço-Temporal , Territorialidade , Asas de Animais
7.
Zootaxa ; 5016(1): 107-116, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34810462

RESUMO

A new species of Nesolinoceras Ashmead from the Dominican Republic is described and illustrated. A key to the species and a revised and expanded distribution map is presented. This is the third species recognized for the genus, and the first one confirmed to occur in high altitude (1100 m). When compared with the previously known species, a number of unique and shared features emerged, supporting a redefinition of the genus beyond that of Santos (2016): (1) the known inter-specific variability of 48% of the examined characters increased considerably, confirming their diagnostic value at the species-level, and (2) the stability of six features support them as additionally diagnostic for the genus: 2223 flagellomeres; mesoscutum subcircular, as long as wide; scuto-scutellar carina absent, axillary trough shallow, indistinct on scutellum; subalar ridge wide, somewhat ovoid, not keeled; crossvein 1cu-a arising basad of vein 1M+Cu by about 0.3 its length; and vein 2-M only slightly longer than vein 3-M. Furthermore, two important measurements for the diagnosis of Nesolinoceras now have new, expanded ranges: areolet 1.82.6 as long as pterostigma width, and areolet 0.71.0 as long as wide. The new taxon is readily recognizable by having the body mostly brown, fully infuscated wings, and the longest ovipositor of the species, among other diagnostic features. A new geographic record and in situ photo are also provided for N. laluzbrillante Santos.


Assuntos
Himenópteros , Animais , Asas de Animais
8.
Zootaxa ; 5006(1): 90-94, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34810585

RESUMO

A new species of the genus Probles Frster, P. mikhailovi sp. nov., is described from Central Madagascar. The new species possesses unique venation of the fore wing previously unknown in the subfamily Tersilochinae. The genus Probles is recorded from Madagascar for the first time.


Assuntos
Himenópteros , Animais , Madagáscar , Asas de Animais
9.
Zootaxa ; 5061(2): 249-270, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34810628

RESUMO

Memphis Hbner, [1819] is a nymphalid butterfly genus exclusive to the Neotropics. It includes species with iridescent bluish or greenish coloration on the upper side of the wings while the underside is cryptic, resembling dead leaves. This paper aims to describe a remarkable new species, M. smalli Riley Dias sp. nov., from the remote Atlantic slopes of Panama based on molecular and morphological analyses. We also review the taxonomy of species herein included in the arginussa species group based on distances analyses of DNA sequence data. The arginussa species group, as defined here, includes M. arginussa (Geyer, 1832), M. eubaena (Boisduval, 1870) stat. rest., M. onophis (Felder Felder, 1861) stat. rest., M. lemons (Druce, 1877), M. neidhoeferi (Rotger, Escalante Coronado, 1965), M. perenna (Godman Salvin, [1884]), M. lankesteri (Hall, 1935) stat. rest., M. paulus Costa Orellana, 2014, M. pithyusa (Felder, 1869), M. herbacea (Butler Druce, 1872) and M. smalli sp. nov. Anaea pithyusa morena Hall, 1935 syn. nov. is recognized as a synonym of Nymphalis pithyusa Felder, 1869. The new species and its closest ally, M. herbacea, are illustrated, including characters of the head, labial palpus, wings, legs, male and female genitalia and their distribution map.


Assuntos
Borboletas , Lepidópteros , Animais , Borboletas/genética , Feminino , Masculino , Panamá , Asas de Animais
10.
Zootaxa ; 5067(1): 135-143, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34810754

RESUMO

The fossil record of Triassic Diptera is still poor, with the oldest dipteran assemblage described from the Upper Buntsandstein of the 'Grs Voltzia Formation (early Anisian, France). From the stratigraphically closest insect fauna of the Rt Formation of Lower Franconia, Germany, the first Diptera, Bashkonia franconica gen. et sp. nov. is described based on an isolated wing. The new genus is assigned to the family Nadipteridae, bridging the gap between two other genera included.


Assuntos
Dípteros , Animais , Europa (Continente) , Fósseis , Insetos , Asas de Animais
11.
BMC Genomics ; 22(1): 756, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34674639

RESUMO

BACKGROUND: Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS: We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION: Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.


Assuntos
Discos Imaginais , Transcriptoma , Animais , Abelhas/genética , Humanos , Metamorfose Biológica/genética , Classe Social , Asas de Animais
12.
Naturwissenschaften ; 108(6): 49, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601627

RESUMO

Sexual selection via male competition is a strong evolutionary force that can drive rapid changes in competitive traits and subsequently lead to population divergence and speciation. Territorial males of many odonates are known to use their colorful wings as visual signals and to perform agonistic displays toward intruders. Psolodesmus mandarinus dorothea and Psolodesmus mandarinus mandarinus are two parapatrically distributed sister damselflies that share similar ecological characteristics but differ markedly in wing coloration. The wings of P. m. dorothea are mostly clear, whereas those of P. m. mandarinus have a large area of black pigmentation and a central white patch. We investigated whether territorial males of the two damselflies at breeding sites display distinct agonistic behaviors associated with their respective wing colors. Behavioral interactions between territorial and intruder males and their wing kinematics were filmed and analyzed for P. m. dorothea in Lienhuachih of central Taiwan, and P. m. mandarinus in Tianxiyuan and Fusan of northern Taiwan. We observed that the P. m. mandarinus males exhibited a novel set of perched wing displays, which was not only absent in its sister P. m. dorothea but also previously unknown in Odonata. At breeding sites, perched rival males of P. m. mandarinus with pigmented wings exhibited escalating agonistic wing-flapping and wing-hitting displays toward each other. In contrast, territorial males of P. m. dorothea with clear wings engaged only in aerial chase or face-to-face hovering when intruder males approached from the air. These results indicate that the two sister P. mandarinus damselflies diverged behaviorally in territorial contests and support the hypothesis of coadaptation on the basis of wing colors and types of wing movement in Odonata. Our findings further suggest that divergent agonistic wing displays may play a pivotal role in the speciation mechanism of P. mandarinus damselflies. The sequential analyses of behavioral characteristics and progression suggest that P. m. mandarinus damselflies likely use mutual assessment of rivals in territorial contests.


Assuntos
Odonatos , Comportamento Agonístico , Animais , Masculino , Pigmentação , Asas de Animais
13.
Zoolog Sci ; 38(5): 427-435, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664917

RESUMO

No scales of most lepidopterans (butterflies and moths) detach from the wings through fluttering. However, in the pellucid hawk moth, Cephonodes hylas, numerous scales detach from a large region of the wing at initial take-off after eclosion; consequently, a large transparent region without scales appears in the wing. Even after this programmed detachment of scales (d-scales), small regions along the wing margin and vein still have scales attached (a-scales). To investigate the scale detachment mechanism, we analyzed the scale detachment process using video photography and examined the morphology of both d- and a-scales using optical and scanning electron microscopy. This study showed that d-scale detachment only occurs through fluttering and that d-scales are obviously morphologically different from a-scales. Although a-scales are morphologically common lepidopteran scales, d-scales have four distinctive features. First, d-scales are much larger than a-scales. Second, the d-scale pedicel, which is the slender base of the scale, is tapered; that of the a-scale is columnar. Third, the socket on the wing surface into which the pedicel is inserted is much smaller for d-scales than a-scales. Fourth, the d-scale socket density is much lower than the a-scale socket density. This novel scale morphology likely helps to facilitate scale detachment through fluttering and, furthermore, increases wing transparency.


Assuntos
Mariposas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Voo Animal/fisiologia , Metamorfose Biológica , Mariposas/crescimento & desenvolvimento , Asas de Animais/ultraestrutura
14.
J R Soc Interface ; 18(183): 20210518, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665973

RESUMO

Insect wings are hybrid structures that are typically composed of veins and solid membranes. In some of the smallest flying insects, however, the wing membrane is replaced by hair-like bristles attached to a solid root. Bristles and membranous wing surfaces coexist in small but not in large insect species. There is no satisfying explanation for this finding as aerodynamic force production is always smaller in bristled than solid wings. This computational study suggests that the diversity of wing structure in small insects results from aerodynamic efficiency rather than from the requirements to produce elevated forces for flight. The tested wings vary from fully membranous to sparsely bristled and were flapped around a wing root with lift- and drag-based wing kinematic patterns and at different Reynolds numbers (Re). The results show that the decrease in aerodynamic efficiency with decreasing surface solidity is significantly smaller at Re = 4 than Re = 57. A replacement of wing membrane by bristles thus causes less change in energetic costs for flight in small compared to large insects. As a consequence, small insects may fly with bristled and solid wing surfaces at similar efficacy, while larger insects must use membranous wings for an efficient production of flight forces. The above findings are significant for the biological fitness and dispersal of insects that fly at elevated energy expenditures.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Insetos , Asas de Animais
15.
Arthropod Struct Dev ; 65: 101113, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666210

RESUMO

A large fraction of dorsal wing surface ground scales show an unusual granulated nature, composed of material apparently extruded from the scale lumen in male individuals of both Trichonis Hewitson, 1865 species in the tribe Eumaeini, a rare Guyanian-Amazonian genus. Only a few not-granulated male specimens are known, females are not granulated. The granulated scales are investigated by various microscopic (optical, scanning and transmission electron microscopy, focused ion beam lamella cutting) and spectroscopic (optical reflectance, energy-dispersive X-ray (EDS), Raman) techniques. The characteristic blue colour unique in the South American representatives of the tribe is documented and analysed. EDS spectra show that the granules contain additional calcium and oxygen as compared with the un-granulated regions of the same scale. Electron diffraction (inside the TEM) did not reveal any crystalline component in the granules. The granulated wing surfaces of the males exhibit a UV absorption band at 280 nm, characteristic for biogenic CaCO3; therefore, the material of the granules is tentatively identified as CaCO3. It is shown that the granules influence the optical properties of the dorsal wing surface resulting in a characteristic spectrum.


Assuntos
Borboletas , Animais , Cor , Feminino , Masculino , Microscopia Eletrônica de Transmissão , Caracteres Sexuais , Asas de Animais
16.
J Theor Biol ; 531: 110898, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508757

RESUMO

Butterfly wing color patterns are a representative model system for studying biological pattern formation, due to their two-dimensional simple structural and high inter- and intra-specific variabilities. Moreover, butterfly color patterns have demonstrated roles in mate choice, thermoregulation, and predator avoidance via disruptive coloration, attack deflection, aposematism, mimicry, and masquerade. Because of the importance of color patterns to many aspects of butterfly biology and their apparent tractability for study, color patterns have been the subjects of many attempts to model their development. Early attempts focused on generalized mechanisms of pattern formation such as reaction-diffusion, diffusion gradient, lateral inhibition, and threshold responses, without reference to any specific gene products. As candidate genes with expression patterns that resembled incipient color patterns were identified, genetic regulatory networks were proposed for color pattern formation based on gene functions inferred from other insects with wings, such as Drosophila. Particularly detailed networks incorporating the gene products, Distal-less (Dll), Engrailed (En), Hedgehog (Hh), Cubitus interruptus (Ci), Transforming growth factor-ß (TGF-ß), and Wingless (Wg), have been proposed for butterfly border ocelli (eyespots) which helps the investigation of the formation of these patterns. Thus, in this work, we develop a mathematical model including the gene products En, Hh, Ci, TGF-ß, and Wg to mimic and investigate the eyespot formation in butterflies. Our simulations show that the level of En has peaks in the inner and outer rings and the level of Ci has peaks in the inner and middle rings. The interactions among these peaks activate cells to produce white, black, and yellow pigments in the inner, middle, and outer rings, respectively, which captures the eyespot pattern of wild type Bicyclus anynana butterflies. Additionally, our simulations suggest that lack of En generates a single black spot and lack of Hh or Ci generates a single white spot, and a deficiency of TGF-ß or Wg will cause the loss of the outer yellow ring. These deficient patterns are similar to those observed in the eyespots of Vanessa atalanta, Vanessa altissima, and Chlosyne nycteis. Thus, our model also provides a hypothesis to explain the mechanism of generating the deficient patterns in these species.


Assuntos
Borboletas , Proteínas Hedgehog , Animais , Borboletas/genética , Proteínas Hedgehog/genética , Humanos , Modelos Biológicos , Pigmentação , Asas de Animais
17.
J Mech Behav Biomed Mater ; 124: 104809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517171

RESUMO

Distal phalanges in bat wings have been hypothesized to be cartilaginous to allow for flight. We provide new evidence on how bat wing development might facilitate flight though protein-based regulation of bone mineralization and lead to more deflection at phalanx than humerus. Between Pteropus poliocephalus and Pteropus hypomelanus, two large bat species, we detected 112 proteins including 11 associated with mineralization and analyzed their distribution between the wing bones. Here, in contrast to previous reports, we found no cartilage-specific proteins and demonstrate that distal phalanges in bat wings are in fact low density bone that contain collagen I (the main constituent of bone's organic matrix) and proteins associated with mineralization in bone such as osteomodulin, bone-specific protein osteocalcin. The functional relevance of these changes was explored by measuring changes in mineral (crystal sizes, packing and density), material (Young's modulus and hardness) and structural characteristics. Consistent with changes in proteins associated with mineralization, mineral crystal thickness and alignment decreased from humerus to phalanges, and the mineral platelets were less densely packed along the wing length. Crystal thickness was negatively correlated with proteins associated with inhibition of mineralization as well as with two types of small leucine-rich proteoglycans, indicating the mineral growth and maturity is down regulated by these proteins independent of mineral quantity. The Young's modulus decreased across the wing and was significantly correlated with bone mineral density. Thus, the results from two bat species, studied here, demonstrate progressive alterations in bone mineralization occur in concert with the changes in secretion of bone regulatory proteins along the wing length. This altered mineralization together with structural changes serve to lighten the limb bone and optimize biomechanical properties conducive to flight.


Assuntos
Quirópteros , Animais , Densidade Óssea , Osso e Ossos , Calcificação Fisiológica , Asas de Animais
18.
PLoS One ; 16(9): e0257031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34550976

RESUMO

Psyllids, also known as jumping plant lice, are phloem feeding Hemiptera that often show a strict species-specific relationship with their host plants. When psyllid-plant associations involve economically important crops, this may lead to the recognition of a psyllid species as an agricultural or horticultural pest. The Australian endemic tea tree, Melaleuca alternifolia (Maiden & Betche) Cheel., has been used for more than a century to extract essential oils and, long before that, as a traditional medicine by Indigenous Australian people. Recently, a triozid species has been found to damage the new growth of tea trees both in Queensland and New South Wales, raising interest around this previously undocumented pest. Furthermore, adults of the same species were also collected from Citrus plantations, leading to potential false-positive records of the exotic pest Trioza erytreae (Del Guercio 1918), the African Citrus psyllid. Here we describe for the first time Trioza melaleucae Martoni sp. nov. providing information on its distribution, host plant associations and phylogenetic relationships to other Trioza species. This work enables both morphological and molecular identification of this new species, allowing it to be recognized and distinguished for the first time from exotic pests as well as other Australian native psyllids. Furthermore, the haplotype network analysis presented here suggests a close relationship between Trioza melaleucae and the other Myrtaceae-feeding Trioza spp. from Australia, New Zealand, and Taiwan.


Assuntos
Hemípteros/anatomia & histologia , Melaleuca/parasitologia , Animais , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Haplótipos/genética , Hemípteros/genética , Interações Hospedeiro-Parasita , Larva/anatomia & histologia , Masculino , Especificidade da Espécie , Asas de Animais/anatomia & histologia
19.
Arthropod Struct Dev ; 65: 101076, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34482021

RESUMO

Male crickets produce acoustic signals by wing stridulation, attracting females for mating. A plectrum on the left forewing's (or tegmen) anal margin rapidly strikes along a serrated vein (stridulatory file, SF) on the opposite tegmen as they close, producing vibrations, ending in a tonal sound. The tooth strike rate of the plectrum across file teeth is equal to the sound frequency produced by the cricket (i.e., ∼5k teeth/s for ∼5 kHz in field crickets) and is specific to the forewing's resonant frequency. Sound is subsequently amplified using specialised wing cells. Anatomically, the forewings appear to mirror each other: both tegmina bear a SF and plectrum; however, most cricket species stridulate using right-over-left wing overlap making the stridulatory mechanism asymmetrical by default, rendering the left tegmen's SF unused. Therefore, we hypothesised structural differences between functional and unfunctional SFs. Three-dimensional mapping was used to accurately measure SF structures in Gryllus bimaculatus wings. We found that the left SF shows significantly greater variation in inter-tooth distance than the right, but less variation within the first sixty teeth (the functional part) than the right file. The left SF's slow evolutionary change over millions of years is discussed considering modern molecular phylogenies and fossil records.


Assuntos
Gryllidae , Ortópteros , Acústica , Animais , Diferenciação Celular , Feminino , Masculino , Vibração , Asas de Animais
20.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34587624

RESUMO

In true color vision, animals discriminate between light wavelengths, regardless of intensity, using at least two photoreceptors with different spectral sensitivity peaks. Heliconius butterflies have duplicate UV opsin genes, which encode ultraviolet and violet photoreceptors, respectively. In Heliconius erato, only females express the ultraviolet photoreceptor, suggesting females (but not males) can discriminate between UV wavelengths. We tested the ability of H. erato, and two species lacking the violet receptor, Heliconius melpomene and Eueides isabella, to discriminate between 380 and 390 nm, and between 400 and 436 nm, after being trained to associate each stimulus with a sugar reward. We found that only H. erato females have color vision in the UV range. Across species, both sexes show color vision in the blue range. Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corollas of Psiguria flowers from their outer orange petals. Moreover, previous models ( McCulloch et al., 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hydroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in other heliconiines. These results provide some of the first behavioral evidence for female H. erato UV color discrimination in the context of foraging, lending support to the hypothesis ( Briscoe et al., 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection.


Assuntos
Borboletas , Visão de Cores , Animais , Borboletas/genética , Cor , Feminino , Masculino , Opsinas/genética , Opsinas de Bastonetes , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...