Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.811
Filtrar
1.
Food Res Int ; 188: 114479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823840

RESUMO

Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.


Assuntos
Galinhas , Congelamento , Eletricidade Estática , Água , Asas de Animais , Animais , Asas de Animais/química , Água/química , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Fósforo/análise
2.
PLoS One ; 19(6): e0303834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837960

RESUMO

We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.


Assuntos
Voo Animal , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Nadadeiras de Animais/fisiologia , Quirópteros/fisiologia , Baleias/fisiologia , Spheniscidae/fisiologia , Aves/fisiologia , Modelos Biológicos , Natação/fisiologia , Insetos/fisiologia
3.
Elife ; 122024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842917

RESUMO

The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.


Assuntos
Caderinas , Ciclo Celular , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Caderinas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proliferação de Células , Moléculas de Adesão Celular
4.
Proc Biol Sci ; 291(2023): 20240172, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772418

RESUMO

Tests for the role of species' relative dispersal abilities in ecological and biogeographical models rely heavily on dispersal proxies, which are seldom substantiated by empirical measures of actual dispersal. This is exemplified by tests of dispersal-range size relationships and by metacommunity research that often features invertebrates, particularly freshwater insects. Using rare and unique empirical data on dispersal abilities of caddisflies, we tested whether actual dispersal abilities were associated with commonly used dispersal proxies (metrics of wing size and shape; expert opinion). Across 59 species in 12 families, wing morphology was not associated with actual dispersal. Within some families, individual wing metrics captured some dispersal differences among species, although useful metrics varied among families and predictive power was typically low. Dispersal abilities assigned by experts were either no better than random or actually poorer than random. Our results cast considerable doubt on research underpinned by dispersal proxies and scrutiny of previous research results may be warranted. Greater progress may lie in employing innovative survey and experimental design to measure actual dispersal in the field.


Assuntos
Distribuição Animal , Insetos , Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Insetos/fisiologia
5.
Commun Biol ; 7(1): 533, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710747

RESUMO

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Asas de Animais , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Apoptose , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
6.
Bioinspir Biomim ; 19(4)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722361

RESUMO

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Assuntos
Biomimética , Desenho de Equipamento , Vento , Asas de Animais , Animais , Asas de Animais/fisiologia , Biomimética/métodos , Odonatos/fisiologia , Materiais Biomiméticos/química , Voo Animal/fisiologia , Centrais Elétricas
7.
Sci Rep ; 14(1): 11306, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760487

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.


Assuntos
Microbioma Gastrointestinal , Hemípteros , RNA Ribossômico 16S , Simbiose , Asas de Animais , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Asas de Animais/microbiologia , Feminino , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230111, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705186

RESUMO

Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Acústica , Asas de Animais , Animais , Abelhas/fisiologia , Asas de Animais/fisiologia , Voo Animal/fisiologia , Vocalização Animal/fisiologia , Polinização , Som
9.
PLoS One ; 19(5): e0303383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805521

RESUMO

One of the most challenging aspects of bee ecology and conservation is species-level identification, which is costly, time consuming, and requires taxonomic expertise. Recent advances in the application of deep learning and computer vision have shown promise for identifying large bumble bee (Bombus) species. However, most bees, such as sweat bees in the genus Lasioglossum, are much smaller and can be difficult, even for trained taxonomists, to identify. For this reason, the great majority of bees are poorly represented in the crowdsourced image datasets often used to train computer vision models. But even larger bees, such as bumble bees from the B. vagans complex, can be difficult to separate morphologically. Using images of specimens from our research collections, we assessed how deep learning classification models perform on these more challenging taxa, qualitatively comparing models trained on images of whole pinned specimens or on images of bee forewings. The pinned specimen and wing image datasets represent 20 and 18 species from 6 and 4 genera, respectively, and were used to train the EfficientNetV2L convolutional neural network. Mean test precision was 94.9% and 98.1% for pinned and wing images respectively. Results show that computer vision holds great promise for classifying smaller, more difficult to identify bees that are poorly represented in crowdsourced datasets. Images from research and museum collections will be valuable for expanding classification models to include additional species, which will be essential for large scale conservation monitoring efforts.


Assuntos
Aprendizado Profundo , Asas de Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Animais , Asas de Animais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Especificidade da Espécie
10.
Nat Commun ; 15(1): 4337, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773081

RESUMO

As natural predators, owls fly with astonishing stealth due to the serrated feather morphology that produces advantageous flow characteristics. Traditionally, these serrations are tailored for airfoil edges with simple two-dimensional patterns, limiting their effect on noise reduction while negotiating tradeoffs in aerodynamic performance. Conversely, the intricately structured wings of cicadas have evolved for effective flapping, presenting a potential blueprint for alleviating these aerodynamic limitations. In this study, we formulate a synergistic design strategy that harmonizes noise suppression with aerodynamic efficiency by integrating the geometrical attributes of owl feathers and cicada forewings, culminating in a three-dimensional sinusoidal serration propeller topology that facilitates both silent and efficient flight. Experimental results show that our design yields a reduction in overall sound pressure levels by up to 5.5 dB and an increase in propulsive efficiency by over 20% compared to the current industry benchmark. Computational fluid dynamics simulations validate the efficacy of the bioinspired design in augmenting surface vorticity and suppressing noise generation across various flow regimes. This topology can advance the multifunctionality of aerodynamic surfaces for the development of quieter and more energy-saving aerial vehicles.


Assuntos
Plumas , Voo Animal , Hemípteros , Estrigiformes , Asas de Animais , Animais , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Hemípteros/fisiologia , Hemípteros/anatomia & histologia , Estrigiformes/fisiologia , Estrigiformes/anatomia & histologia , Hidrodinâmica , Simulação por Computador , Fenômenos Biomecânicos
11.
F1000Res ; 13: 116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779314

RESUMO

Background: Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods: We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results: We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions: Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Neurônios Motores , Proteína Quinase C , Animais , Proteína Quinase C/metabolismo , Neurônios Motores/fisiologia , Neurônios Motores/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Aprendizagem/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Asas de Animais/fisiologia , Animais Geneticamente Modificados , Plasticidade Neuronal/fisiologia , Condicionamento Operante/fisiologia , Sistemas CRISPR-Cas , Drosophila/fisiologia
12.
PLoS One ; 19(5): e0303690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809838

RESUMO

Sexual dimorphism is common throughout the animal kingdom, leading to sex-specific phenotypic differences. The common whitetail skimmer dragonfly, Plathemis lydia (Drury, 1773), is sexually dichromatic, where males of this species display a conspicuous white abdomen and females display a dark brown abdomen. Differences in abdomen conspicuousness between male and female P. lydia are likely attributed to differences in selective pressure where males use their white conspicuous abdomen during male-male territorial chases. We hypothesized that male P. lydia would exhibit wing morphology adaptations to better offset the costs of predation and territoriality and that these adaptations would differ from females. We used field-collected images to quantify differences in body length, wing length, wing area, wing shape, and wing loading between male and female P. lydia. Our results show that male P. lydia have significantly shorter fore and hind wings relative to body size with a higher wing loading when compared to females. We also found that male P. lydia have narrower and pointier fore and hind wings compared to females. These results are consistent with the idea that males are adapted for faster flight, specifically higher acceleration capacity, and higher agility whereas females are adapted for higher maneuverability.


Assuntos
Odonatos , Caracteres Sexuais , Asas de Animais , Animais , Masculino , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Odonatos/anatomia & histologia , Odonatos/fisiologia , Feminino , Tamanho Corporal/fisiologia
13.
Arthropod Struct Dev ; 80: 101358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704966

RESUMO

Permopsocids are small acercarian insects with mouthparts specialized for sucking. They are closely related to Hemiptera and Thysanoptera. The earliest known representatives are from the Early Permian. Here evidence is presented that the Permopsocida occurred even earlier in Pennsylvanian (Moscovian) deposits in the Piesberg quarry near Osnabrück (Lower Saxony, Germany). This material is assigned to the Permian family Psocidiidae; Carbonopsocus mercuryi gen. et sp. nov., based on the wing venation diagnosed by the unique branching pattern of the main veins, the shape of the areola postica being longer than wide, the angular shape of the pterostigma, the ir crossvein directed proximally mid of pterostigma (apomorphy) and the vannus formed by the three veins of PCu, A1 and A2. The shape of the veins, with a Y-vein formed by the distal fusion of PCu with A1, could be a putative symplesiomorphy of the Psocodea with Permopsocida and Hemiptera. C. mercuryi gen. et sp. nov. is the first appearance date for Permopsocida and roots the Acercaria tree. In addition, another specimen of Dichentomum cf. arroyo (Psocidiidae) from Carrizo Arroyo is presented and figured, confirming the presence of the genus Dichentomum near the Carboniferous-Permian boundary and linking it to the Artinskian species from Elmo in Kansas, USA.


Assuntos
Fósseis , Insetos , Asas de Animais , Asas de Animais/anatomia & histologia , Animais , Insetos/anatomia & histologia , Fósseis/anatomia & histologia , Alemanha
14.
Biomolecules ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785929

RESUMO

Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.


Assuntos
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Oogênese , Receptores Notch , Animais , Oogênese/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Feminino , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Mutação , Transdução de Sinais , Fenótipo , Proteínas de Membrana
15.
Nat Commun ; 15(1): 4208, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806471

RESUMO

Birds are represented by 11,000 species and a great variety of body masses. Modular organisation of trait evolution across birds has facilitated simultaneous adaptation of different body regions to divergent ecological requirements. However, the role modularity has played in avian body size evolution, especially small-bodied, rapidly evolving and diverse avian subclades, such as hummingbirds and songbirds, is unknown. Modularity is influenced by the intersection of biomechanical restrictions, adaptation, and developmental controls, making it difficult to uncover the contributions of single factors such as body mass to skeletal organisation. We develop a novel framework to decompose this complexity, assessing factors underlying the modularity of skeletal proportions in fore-limb propelled birds distributed across a range of body masses. We demonstrate that differences in body size across birds triggers a modular reorganisation of flight apparatus proportions consistent with biomechanical expectations. We suggest weakened integration within the wing facilitates radiation in small birds. Our framework is generalisable to other groups and has the capacity to untangle the multi-layered complexity intrinsic to modular evolution.


Assuntos
Evolução Biológica , Aves , Tamanho Corporal , Voo Animal , Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Fenômenos Biomecânicos
16.
Genes (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790181

RESUMO

Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.


Assuntos
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Asas de Animais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética
17.
Nat Commun ; 15(1): 4073, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769302

RESUMO

Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.


Assuntos
Citoesqueleto de Actina , Actinas , Borboletas , Pigmentação , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/fisiologia , Borboletas/ultraestrutura , Asas de Animais/ultraestrutura , Asas de Animais/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Cor , Escamas de Animais/metabolismo , Escamas de Animais/ultraestrutura
18.
NPJ Syst Biol Appl ; 10(1): 49, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714708

RESUMO

Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.


Assuntos
Teorema de Bayes , Morfogênese , Asas de Animais , Animais , Modelos Biológicos , Drosophila melanogaster , Discos Imaginais , Simulação por Computador , Drosophila
19.
PLoS Biol ; 22(5): e3002629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805504

RESUMO

Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Epigênese Genética , Proteínas de Choque Térmico HSP90 , Histonas , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Asas de Animais/metabolismo , Asas de Animais/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Memória Epigenética , Fatores de Transcrição
20.
Proc Natl Acad Sci U S A ; 121(17): e2319726121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630713

RESUMO

The Ornate Moth, Utetheisa ornatrix, has served as a model species in chemical ecology studies for decades. Like in the widely publicized stories of the Monarch and other milkweed butterflies, the Ornate Moth and its relatives are tropical insects colonizing whole continents assisted by their chemical defenses. With the recent advances in genomic techniques and evo-devo research, it is becoming a model for studies in other areas, from wing pattern development to phylogeography, from toxicology to epigenetics. We used a genomic approach to learn about Utetheisa's evolution, detoxification, dispersal abilities, and wing pattern diversity. We present an evolutionary genomic analysis of the worldwide genus Utetheisa, then focusing on U. ornatrix. Our reference genome of U. ornatrix reveals gene duplications in the regions possibly associated with detoxification abilities, which allows them to feed on toxic food plants. Finally, comparative genomic analysis of over 100 U. ornatrix specimens from the museum with apparent differences in wing patterns suggest the potential roles of cortex and lim3 genes in wing pattern formation of Lepidoptera and the utility of museum-preserved collection specimens for wing pattern research.


Assuntos
Borboletas , Mariposas , Animais , Mariposas/genética , Borboletas/genética , Genômica , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...