Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.847
Filtrar
1.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955226

RESUMO

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Assuntos
Evolução Biológica , Aves , Plumas , Fósseis , Muda , Animais , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , Aves/fisiologia , Aves/anatomia & histologia , Muda/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Voo Animal , China , Asas de Animais/anatomia & histologia
2.
PeerJ ; 12: e17501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952987

RESUMO

Stridulation is used by male katydids to produce sound via the rubbing together of their specialised forewings, either by sustained or interrupted sweeps of the file producing different tones and call structures. There are many species of Orthoptera that remain undescribed and their acoustic signals are unknown. This study aims to measure and quantify the mechanics of wing vibration, sound production and acoustic properties of the hearing system in a new genus of Pseudophyllinae with taxonomic descriptions of two new species. The calling behaviour and wing mechanics of males were measured using micro-scanning laser Doppler vibrometry, microscopy, and ultrasound sensitive equipment. The resonant properties of the acoustic pinnae of the ears were obtained via µ-CT scanning and 3D printed experimentation, and numerical modelling was used to validate the results. Analysis of sound recordings and wing vibrations revealed that the stridulatory areas of the right tegmen exhibit relatively narrow frequency responses and produce narrowband calls between 12 and 20 kHz. As in most Pseudophyllinae, only the right mirror is activated for sound production. The acoustic pinnae of all species were found to provide a broadband increased acoustic gain from ~40-120 kHz by up to 25 dB, peaking at almost 90 kHz which coincides with the echolocation frequency of sympatric bats. The new genus, named Satizabalus n. gen., is here derived as a new polytypic genus from the existing genus Gnathoclita, based on morphological and acoustic evidence from one described (S. sodalis n. comb.) and two new species (S. jorgevargasi n. sp. and S. hauca n. sp.). Unlike most Tettigoniidae, Satizabalus exhibits a particular form of sexual dimorphism whereby the heads and mandibles of the males are greatly enlarged compared to the females. We suggest that Satizabalus is related to the genus Trichotettix, also found in cloud forests in Colombia, and not to Gnathoclita.


Assuntos
Ortópteros , Asas de Animais , Animais , Masculino , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Colômbia , Ortópteros/fisiologia , Ortópteros/anatomia & histologia , Comunicação Animal , Florestas , Vocalização Animal/fisiologia , Acústica , Feminino , Vibração
3.
Commun Biol ; 7(1): 774, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951581

RESUMO

Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype (disparity) among males versus females, predictions made from Darwinian sexual selection versus Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies (Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep convolutional neural network, shows ML can be used for automated reconstruction of phenotypic evolution achieving measures of phylogenetic congruence to genetic species trees within a range sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus female embedding distance), shows sexually and phylogenetically variable inter-species disparity. Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively static male embedded phenotype, and higher female than male disparity - though within an inferred selective regime common to these females. Birdwing shapes and colour patterns that are most phenotypically distinctive in ML similarity are generally those of males. However, either sex can contribute majoritively to observed phenotypic diversity among species.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Borboletas/fisiologia , Borboletas/anatomia & histologia , Masculino , Fenótipo , Filogenia , Caracteres Sexuais , Evolução Biológica , Aprendizado de Máquina , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
4.
J R Soc Interface ; 21(216): 20230593, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981517

RESUMO

Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.


Assuntos
Quirópteros , Voo Animal , Modelos Biológicos , Músculo Esquelético , Asas de Animais , Animais , Quirópteros/fisiologia , Quirópteros/anatomia & histologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Fenômenos Biomecânicos , Fenômenos Fisiológicos da Pele
5.
Bioinspir Biomim ; 19(5)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955342

RESUMO

This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratioJfrom 0 (hovering) to 1.0. The study reveals that the LE curvature has insignificant influence on the cycle-average aerodynamic lift and drag. However, the time-history lift coefficient shows that the curvature can enhance the lift around the middle of downstroke. This enhanced lift is reduced from 5% to 1.2% asJchanged from 0 to 1.0. Further flow examinations reveal that the LE curvature is beneficial by enhancing circulation only at the outboard wing sections. The enhanced outboard circulation is found to emanate from the less stretched leading-edge vortices (LEVs), weakened trailing-edge vortices (TEVs), and the coherent merging of the tip vortices (TVs) with the minor LEVs as observed from the phase-lock planar digital particle image velocimetry measurements. The far-wake observation shows that the LE curvature enhances the vorticity within the TV, helping to reduce the overall flow fluctuations in the far field. These findings can be extended to explain the predominantly straight LE wing shape with a small amount of curvature only observed near the wing tip for flapping fliers with Re from 103to 104.


Assuntos
Simulação por Computador , Voo Animal , Modelos Biológicos , Robótica , Asas de Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Animais , Robótica/métodos , Biomimética/métodos , Fenômenos Biomecânicos , Reologia/métodos , Desenho de Equipamento
6.
Proc Biol Sci ; 291(2027): 20240627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045691

RESUMO

The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.


Assuntos
Mimetismo Biológico , Borboletas , Asas de Animais , Borboletas/genética , Borboletas/fisiologia , Animais , Asas de Animais/anatomia & histologia , Pigmentação/genética , MicroRNAs/genética , Evolução Biológica , Fenótipo
7.
Parasitol Res ; 123(7): 283, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042222

RESUMO

Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.


Assuntos
DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Asas de Animais , Animais , Tailândia , DNA Mitocondrial/genética , Asas de Animais/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Culicidae/genética , Culicidae/anatomia & histologia , Culicidae/classificação , Insetos Vetores/genética , Insetos Vetores/anatomia & histologia , Haplótipos
8.
Arthritis Res Ther ; 26(1): 131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010233

RESUMO

BACKGROUND: Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-ß2 microglobulin (hß2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS: Genetic interaction was studied between activin/transforming growth factor ß (TGFß) pathway and HLA-B27/hß2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hß2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFß pathways induced by its ligands, and the transcript level of target genes of the TGFß pathway, were evaluated. RESULTS: In HLA-B27/hß2m transgenic Drosophila, inappropriate signalling through the activin/TGFß pathway, involving Baboon (Babo), the type I activin/TGFß receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hß2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hß2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFß receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFß1 was increased in T cells from B27 rats, showing evidence for deregulated TGFß pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFß exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS: This study shows that HLA-B27 alters the TGFß pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.


Assuntos
Animais Geneticamente Modificados , Antígeno HLA-B27 , Transdução de Sinais , Espondilartrite , Fator de Crescimento Transformador beta , Animais , Transdução de Sinais/fisiologia , Espondilartrite/metabolismo , Espondilartrite/imunologia , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/imunologia , Fator de Crescimento Transformador beta/metabolismo , Ratos , Drosophila , Drosophila melanogaster , Asas de Animais/metabolismo
9.
J R Soc Interface ; 21(216): 20240076, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016178

RESUMO

Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.


Assuntos
Voo Animal , Asas de Animais , Animais , Voo Animal/fisiologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Fenômenos Biomecânicos , Dípteros/fisiologia , Modelos Biológicos
10.
PLoS One ; 19(7): e0305825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39018344

RESUMO

We analyzed COI barcode sequences from 138 over-a-century old specimens of Calinaga including 36 name-bearing type specimens stored at the Natural History Museum London. These new data, combined with previously available RPS5 sequences, divide the Calinaga samples into four well-supported mitochondrial lineages that together with a novel wing-pattern analysis, support the recognition of six species (lhatso, buddha, brahma, aborica, formosana and davidis), with all other names subsumed either as subspecies or synonyms. One new taxon is described, Calinaga aborica naima Vane-Wright, ssp. n.


Assuntos
Borboletas , Código de Barras de DNA Taxonômico , Filogenia , Animais , Borboletas/genética , Borboletas/classificação , Borboletas/anatomia & histologia , Asas de Animais/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética
11.
J Morphol ; 285(8): e21750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032031

RESUMO

Accurate identification of waterfowl bones in archaeological and fossil assemblages has potential to unlock new methods of past environmental reconstruction, as species have differing habitat preferences and migration patterns. Therefore, identifying the presence of avian species with different ecological niches is key to determining past environments and ultimately how prehistoric people responded to climatic and environmental realignments. However, the identification of osteological remains of waterbirds such as ducks to species level is notoriously challenging. We address this by presenting a new two-dimensional geometric morphometric protocol on wing elements from over 20 duck species and test the utility of these shape data for correct species identification. This is an ideal starting point to expand utilization of these types of approaches in avifaunal research and test applicability to an extremely difficult taxonomic group.


Assuntos
Patos , Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Patos/anatomia & histologia , Osteologia , Europa (Continente) , Fósseis/anatomia & histologia
12.
Neotrop Entomol ; 53(4): 929-936, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963529

RESUMO

Body size is an important morphological characteristic that covaries with the quality of parasitoids and predators. Data show that the larger the organism is, the better the biological parameters and the host location by natural enemies in the field. The standard way of evaluating the size of parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) is by measuring the tibia, but using only one body part to estimate the size of organisms can lead to miscalculations. In this paper, commercial Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) and Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae) were mounted on slides for microscopy and photographed, and the photographs were used to measure their antennae, scutellum, ovipositor, tibia, and wing. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to select the body part that best represents their size. PCA showed that all body parts represented size in a similar way, and LDA showed that the ovipositor was the most representative. We conclude that the best body parts for representing the size of the Trichogramma species studied are the wing and ovipositor, and at least two body parts are needed to detect two size groups.


Assuntos
Himenópteros , Animais , Himenópteros/classificação , Himenópteros/anatomia & histologia , Tamanho Corporal , Asas de Animais/anatomia & histologia
13.
Proc Biol Sci ; 291(2024): 20240311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864337

RESUMO

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.


Assuntos
Drosophila melanogaster , Voo Animal , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Cabeça/anatomia & histologia , Mecanorreceptores/fisiologia , Movimentos da Cabeça/fisiologia , Sensilas/fisiologia , Fenômenos Biomecânicos
14.
Biosens Bioelectron ; 260: 116445, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843771

RESUMO

Butterfly wings possess distinct micro/nanostructures that contribute to their vibrant coloration, light-trapping capabilities, and sensitivity to various stimuli. These complex features have inspired the creation of diverse devices and systems, such as sensors, photovoltaics, photocatalysis, and robotics. Specifically, the wing scales of the Emerald Swallowtail (Papilio palinurus) display iridescent, polarization-sensitive, and retroreflective colors due to their hierarchical structures. However, current technologies fail to mimic these natural designs fully, limiting their practical application in everyday life. In this study, we introduce a groundbreaking method for fabricating artificial wing scales that emulate the biological structure's functionality with a much simpler geometry. By integrating self-graded lossy media into metallic micro-concavity arrays, we achieve pronounced iridescent effects in both coaxial and non-coaxial arrangements, while preserving retroreflective properties. In particular, the simplified design allows for switchable color patterns based on the viewing angle. Demonstrating the concept, we successfully employ these conspicuous retroreflectors in hydrogen gas detection and the bi-directional/switchable recognition of patterned signals.


Assuntos
Técnicas Biossensoriais , Borboletas , Asas de Animais , Técnicas Biossensoriais/instrumentação , Animais , Desenho de Equipamento , Hidrogênio/química , Hidrogênio/análise , Cor , Nanoestruturas/química
15.
Elife ; 122024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842917

RESUMO

The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.


Assuntos
Caderinas , Ciclo Celular , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Caderinas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proliferação de Células , Moléculas de Adesão Celular
16.
Bioinspir Biomim ; 19(4)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38866024

RESUMO

The diversity in butterfly morphology has attracted many people around the world since ancient times. Despite morphological diversity, the wing and body kinematics of butterflies have several common features. In the present study, we constructed a bottom-up butterfly model, whose morphology and kinematics are simplified while preserving the important features of butterflies. The present bottom-up butterfly model is composed of two trapezoidal wings and a rod-shaped body with a thorax and abdomen. Its wings are flapped downward in the downstroke and backward in the upstroke by changing the geometric angle of attack (AOA). The geometric AOA is determined by the thorax-pitch and wing-pitch angles. The thorax-pitch angle is actively controlled by abdominal undulation, and the wing-pitch angle is passively determined because of a rotary spring representing the basalar and subalar muscles connecting the wings and thorax. We investigated the effectiveness of abdominal undulation for thorax-pitch control and how wing-pitch flexibility affects aerodynamic-force generation and thorax-pitch control, through numerical simulations using the immersed boundary-lattice Boltzmann method. As a result, the thorax-pitch angle perfectly follows the desired angle through abdominal undulation. In addition, there is an optimal wing-pitch flexibility that maximizes the flying speed in both the forward and upward directions, but the effect of wing-pitch flexibility on thorax-pitch control is not significant. Finally, we compared the flight behavior of the present bottom-up butterfly model with that of an actual butterfly. It was found that the present model does not reproduce reasonable body kinematics but can provide reasonable aerodynamics in butterfly flights.


Assuntos
Borboletas , Simulação por Computador , Voo Animal , Modelos Biológicos , Tórax , Asas de Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Animais , Borboletas/fisiologia , Borboletas/anatomia & histologia , Voo Animal/fisiologia , Tórax/fisiologia , Fenômenos Biomecânicos
17.
Ann N Y Acad Sci ; 1536(1): 107-121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837424

RESUMO

One feature of animal wings is their embedded mechanosensory system that can support flight control. Insect wings are particularly interesting as they are highly deformable yet the actuation is limited to the wing base. It is established that strain sensors on insect wings can directly mediate reflexive control; however, little is known about airflow sensing by insect wings. What information can flow sensors capture and how can flow sensing benefit flight control? Here, we use the dragonfly (Sympetrum striolatum) as a model to explore the function of wing sensory bristles in the context of flight control. Combining our detailed anatomical reconstructions of both the sensor microstructures and wing architecture, we used computational fluid dynamics simulations to ask the following questions. (1) Are there strategic locations on wings that sample flow for estimating aerodynamically relevant parameters such as the local effective angle of attack? (2) Is the sensory bristle distribution on dragonfly wings optimal for flow sensing? (3) What is the aerodynamic effect of microstructures found near the sensory bristles on dragonfly wings? We discuss the benefits of flow sensing for flexible wings and how the evolved sensor placement affects information encoding.


Assuntos
Voo Animal , Odonatos , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Odonatos/fisiologia , Voo Animal/fisiologia , Fenômenos Biomecânicos/fisiologia , Hidrodinâmica , Simulação por Computador
18.
Nature ; 631(8020): 369-377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926579

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.


Assuntos
Conectoma , Drosophila melanogaster , Extremidades , Neurônios Motores , Vias Neurais , Sinapses , Asas de Animais , Animais , Feminino , Masculino , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Músculos/inervação , Músculos/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Asas de Animais/inervação , Asas de Animais/fisiologia
19.
Nature ; 630(8017): 671-676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867039

RESUMO

The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.


Assuntos
Voo Animal , Falcões , Respiração , Sistema Respiratório , Asas de Animais , Animais , Evolução Biológica , Fenômenos Biomecânicos/fisiologia , Voo Animal/fisiologia , Falcões/anatomia & histologia , Falcões/classificação , Falcões/fisiologia , Pulmão/anatomia & histologia , Pulmão/fisiologia , Modelos Biológicos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Sistema Respiratório/anatomia & histologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Masculino , Feminino
20.
Rev Bras Parasitol Vet ; 33(2): e020123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896757

RESUMO

Horse fly females (Diptera, Tabanidae) are hematophagous and can vector pathogens that affect livestock. Complexes of cryptic species are common in Tabanidae, as exemplified by some species of Tabanus, including Tabanus triangulum and Tabanus occidentalis, both prevalent in the Southern region of Brazil. In this study, geometric morphometrics were employed to ascertain the wing venation in species identification. It was demonstrated that this tool effectively differentiates T. triangulum from T. occidentalis in the coastal plain of Rio Grande do Sul state, situated within the Pampa biome. The results indicate that T. triangulum and T. occidentalis occupy distinct regions of the morphological space, allowing their precise identification through geometric morphometrics, which is fast, affordable, and easy to implement.


Assuntos
Dípteros , Animais , Dípteros/classificação , Dípteros/anatomia & histologia , Feminino , Brasil , Tamanho Corporal , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA