Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.363
Filtrar
1.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338348

RESUMO

Chronic inflammation plays a crucial role in the development and progression of numerous chronic diseases. To search for anti-inflammatory metabolites from endophytic fungi isolated from plants growing in Thai mangrove areas, a chemical investigation of those fungi was performed. Five new oxygenated isocoumarins, setosphamarins A-E (1-5) were isolated from the EtOAc extract of an endophytic fungus Setosphaeria rostrata, along with four known isocoumarins and one xanthone. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of the undescribed compounds were established by comparative analysis between experimental and calculated circular dichroism (ECD) spectroscopy. All the compounds were evaluated for their anti-inflammatory activity by monitoring nitric oxide inhibition in lipopolysaccharide-induced macrophage J774A.1 cells. Only a xanthone, ravenelin (9), showed potent activity, with an IC50 value of 6.27 µM, and detailed mechanistic study showed that it suppressed iNOS and COX-2 expression.


Assuntos
Ascomicetos , Xantonas , Isocumarinas/química , Tailândia , Ascomicetos/química , Anti-Inflamatórios/farmacologia , Xantonas/farmacologia , Estrutura Molecular
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338970

RESUMO

The obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) is the causal agent of wheat powdery mildew disease. The TOPLESS-related 1 (TPR1) corepressor regulates plant immunity, but its role in regulating wheat resistance against powdery mildew remains to be disclosed. Herein, TaTPR1 was identified as a positive regulator of wheat post-penetration resistance against powdery mildew disease. The transient overexpression of TaTPR1.1 or TaTPR1.2 confers wheat post-penetration resistance powdery mildew, while the silencing of TaTPR1.1 and TaTPR1.2 results in an enhanced wheat susceptibility to B.g. tritici. Furthermore, Defense no Death 1 (TaDND1) and Defense no Death 2 (TaDND2) were identified as wheat susceptibility (S) genes facilitating a B.g. tritici infection. The overexpression of TaDND1 and TaDND2 leads to an enhanced wheat susceptibility to B.g. tritici, while the silencing of wheat TaDND1 and TaDND2 leads to a compromised susceptibility to powdery mildew. In addition, we demonstrated that the expression of TaDND1 and TaDND2 is negatively regulated by the wheat transcriptional corepressor TaTPR1. Collectively, these results implicate that TaTPR1 positively regulates wheat post-penetration resistance against powdery mildew probably via suppressing the S genes TaDND1 and TaDND2.


Assuntos
Ascomicetos , Triticum , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Erysiphe , Doenças das Plantas/microbiologia , Resistência à Doença/genética
3.
Sci Rep ; 14(1): 3932, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366094

RESUMO

Patching whole slide images (WSIs) is an important task in computational pathology. While most of them are designed to classify or detect the presence of pathological lesions in a WSI, the confounding role and redundant nature of normal histology are generally overlooked. In this paper, we propose and validate the concept of an "atlas of normal tissue" solely using samples of WSIs obtained from normal biopsies. Such atlases can be employed to eliminate normal fragments of tissue samples and hence increase the representativeness of the remaining patches. We tested our proposed method by establishing a normal atlas using 107 normal skin WSIs and demonstrated how established search engines like Yottixel can be improved. We used 553 WSIs of cutaneous squamous cell carcinoma to demonstrate the advantage. We also validated our method applied to an external dataset of 451 breast WSIs. The number of selected WSI patches was reduced by 30% to 50% after utilizing the proposed normal atlas while maintaining the same indexing and search performance in leave-one-patient-out validation for both datasets. We show that the proposed concept of establishing and using a normal atlas shows promise for unsupervised selection of the most representative patches of the abnormal WSI patches.


Assuntos
Ascomicetos , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Biópsia , Mama
4.
Theor Appl Genet ; 137(3): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369666

RESUMO

KEY MESSAGE: ClLOX, is located on chromosome 2 and encodes a lipoxygenase gene, which induced watermelon powdery mildew resistance by inhibiting pathogen spread. Powdery mildew is one of the most severe fungal diseases reducing yield and quality of watermelon (Citrullus lanatus L.) and other cucurbit crops. Genes responsible for powdery mildew resistance in watermelon are highly valuable. In this study, we first identified the QTL pm-lox for powdery mildew resistance in watermelon, located within a 0.93 Mb interval of chromosome 2, via XP-GWAS method using two F2 populations. The F2:3 families from one of the F2 populations were then used for fine-mapping the pm-lox locus into a 9,883 bp physical region between 29,581,906 and 29,591,789, containing only two annotated genes. Of these, only ClG42_02g0161300 showed a significant differential expression between the resistant and susceptible lines after powdery mildew inoculation based on RNA sequencing (RNA-seq) and qRT-PCR analysis, and is designated ClLOX. Derived Cleaved Amplified Polymorphic Sequence (dCAPs) markers were developed and validated. In addition, our tests showed that the resistance was anti-spread rather than anti-infection of the pathogen. This study identified a new resistance gene (ClLOX), provided insights into the mechanism of powdery mildew resistance, and developed a molecular marker for watermelon breeding.


Assuntos
Ascomicetos , Citrullus , Humanos , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Citrullus/genética , Citrullus/microbiologia , Ascomicetos/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Bull Environ Contam Toxicol ; 112(2): 35, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353745

RESUMO

This work evaluated the biochemical responses of the endogeic earthworm Balanteodrilus extremus exposed for 14 and 48 days (d) to soils collected from two tropical agricultural systems: maize-sorghum (MS) and soybean-sorghum (SS). A soil without agricultural management (WAM) and the use of pesticides was selected as a reference. The presence of organochlorine (OC) and organophosphate (OP) pesticide residues was quantified in MS and SS soils. Biomarkers of detoxification [glutathione S transferase (GST)], neurotoxicity [acetylcholinesterase (AChE)] and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and lipoperoxidation (LPO)] were evaluated in B. extremus. The concentration of OP pesticide residues was higher in SS than in MS. Activity of AChE in B. extremus exposed to SS soil for 14 d was significantly more inhibited (78%) than in MS soil (68%). B. extremus has been shown to be a good bioindicator of contaminated soils in tropical regions.


Assuntos
Ascomicetos , Oligoquetos , Resíduos de Praguicidas , Sorghum , Animais , Solo , Acetilcolinesterase , Agricultura , Grão Comestível , Zea mays
6.
PLoS One ; 19(2): e0297232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354109

RESUMO

Exophiala is a black fungi of the family Herpotrichiellaceae that can be found in a wide range of environments like soil, water and the human body as potential opportunistic pathogen. Some species are known to be extremophiles, thriving in harsh conditions such as deserts, glaciers, and polluted habitats. The identification of novel Exophiala species across diverse environments underlines the remarkable biodiversity within the genus. However, its classification using traditional phenotypic and phylogenetic analyses has posed a challenges. Here we describe a novel taxon, Exophiala chapopotensis sp. nov., strain LBMH1013, isolated from oil-polluted soil in Mexico, delimited according to combined morphological, molecular, evolutionary and statistics criteria. This species possesses the characteristic dark mycelia growing on PDA and tends to be darker in the presence of hydrocarbons. Its growth is dual with both yeast-like and hyphal forms. LBMH1013 differs from closely related species such as E. nidicola due to its larger aseptate conidia and could be distinguished from E. dermatitidis and E. heteromorpha by its inability to thrive above 37°C or 10% of NaCl. A comprehensive genomic analyses using up-to-date overall genome relatedness indices, several multigene phylogenies and molecular evolutionary analyzes using Bayesian speciation models, further validate its species-specific transition from all current Exophiala/Capronia species. Additionally, we applied the phylophenetic conceptual framework to delineate the species-specific hypothesis in order to incorporate this proposal within an integrative taxonomic framework. We believe that this approach to delimit fungal species will also be useful to our peers.


Assuntos
Ascomicetos , Exophiala , Humanos , Exophiala/genética , Saccharomyces cerevisiae , Filogenia , México , Teorema de Bayes
7.
BMC Genomics ; 25(1): 180, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355402

RESUMO

Pecan scab is a devastating disease that causes damage to pecan (Carya illinoinensis (Wangenh.) K. Koch) fruit and leaves. The disease is caused by the fungus Venturia effusa (G. Winter) and the main management practice for controlling the disease is by application of fungicides at 2-to-3-week intervals throughout the growing season. Besides disease-related yield loss, application of fungicides can result in considerable cost and increases the likelihood of fungicide resistance developing in the pathogen. Resistant cultivars are available for pecan growers; although, in several cases resistance has been overcome as the pathogen adapts to infect resistant hosts. Despite the importance of host resistance in scab management, there is little information regarding the molecular basis of genetic resistance to pecan scab.The purpose of this study was to elucidate mechanisms of natural pecan scab resistance by analyzing transcripts that are differentially expressed in pecan leaf samples from scab resistant and susceptible trees. The leaf samples were collected from trees in a provenance collection orchard that represents the natural range of pecan in the US and Mexico. Trees in the orchard have been exposed to natural scab infections since planting in 1989, and scab ratings were collected over three seasons. Based on this data, ten susceptible trees and ten resistant trees were selected for analysis. RNA-seq data was collected and analyzed for diseased and non-diseased parts of susceptible trees as well as for resistant trees. A total of 313 genes were found to be differentially expressed when comparing resistant and susceptible trees without disease. For susceptible samples showing scab symptoms, 1,454 genes were identified as differentially expressed compared to non-diseased susceptible samples. Many genes involved in pathogen recognition, defense responses, and signal transduction were up-regulated in diseased samples of susceptible trees, whereas differentially expressed genes in pecan scab resistant samples were generally down-regulated compared to non-diseased susceptible samples.Our results provide the first account of candidate genes involved in resistance/susceptibility to pecan scab under natural conditions in a pecan orchard. This information can be used to aid pecan breeding programs and development of biotechnology-based approaches for generating pecan cultivars with more durable scab resistance.


Assuntos
Ascomicetos , Carya , Fungicidas Industriais , Carya/genética , Carya/microbiologia , Transcriptoma , Árvores/genética , Ascomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
8.
Theor Appl Genet ; 137(3): 50, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363421

RESUMO

KEY MESSAGE: Two new major QTL were identified for powdery mildew resistance. We confirmed that the QTL on 7HS contributed mainly to the adult-plant resistance, while another one on chromosome arm 1HS made a significant contribution to the seedling resistance. Powdery mildew (PM), caused by Blumeria hordei, can occur at all post emergent stages of barley and constantly threatens crop production. To identify more genes for effective resistance to powdery mildew for use in breeding programs, 696 barley accessions collected from different regions of the world were evaluated for PM resistance at seedling and adult growth stages in three different states of Australia. These barley accessions were genotyped using DArTSeq with over 18,000 markers for a genome-wide association study (GWAS). Using the FarmCPU model, 54 markers showed significant associations with PM resistance scored at the seedling and adult-plant stages in different states of Australia. Another 40 markers showed tentative associations (LOD > 4.0) with resistance. These markers are distributed across all seven barley chromosomes. Most of them were grouped into eleven QTL regions, coinciding with the locations of most of the reported resistance genes. Two major MTAs were identified on chromosome arms 3HS and 5HL, with one on 3HS contributing to adult plant resistance and the one on 5HL to both seedling and adult plant resistance. An MTA on 7HS contributed mainly to the adult-plant resistance, while another one on chromosome arm 1HS made a significant contribution to the seedling resistance.


Assuntos
Ascomicetos , Hordeum , Hordeum/genética , Estudo de Associação Genômica Ampla , Plântula/genética , Marcadores Genéticos , Ascomicetos/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Resistência à Doença/genética
9.
Mol Plant Pathol ; 25(2): e13431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353627

RESUMO

Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.


Assuntos
Acremonium , Oxirredutases do Álcool , Ascomicetos , Hidrolases de Éster Carboxílico , Gossypium , Verticillium
10.
Fungal Biol ; 128(1): 1607-1615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341266

RESUMO

Endophytic fungi as well as arbuscular mycorrhizal fungi (AMF) are known to stimulate plant growth and production of secondary metabolites in medicinal plants. Here, 10 endophytic fungi isolated from roots of wild Alkanna tinctoria plants and 5 AMF purchased from the Glomeromycota in vitro collection were evaluated, during two successive three-month greenhouse experiments, on the growth of Echium vulgare and alkannin/shikonin and their derivatives (A/Sd) production in the roots. Some of the endophytic fungi tested significantly increased plant growth parameters as compared to the control: Cladosporium allicinum, Cadophora sp., Clonostachys sp., Trichoderma hispanicum and Leptosphaeria ladina increased root volume, Plectosphaerella sp. And T. hispanicum root fresh weight and root water retention and T. hispanicum plant water retention. However, none of these fungi impacted A/Sd production. Conversely, none of the AMF strains tested impacted plant growth parameters, but those inoculated with Rhizophagus intraradices MUCL 49410 had a significantly higher concentration of alkannin/shikonin (A/S), acetyl-A/S, ß,ß- dimethylacryl-A/S, isovaleryl-A/S and total A/Sd, compared to the control plants. Further studies are needed to investigate the mechanisms involved in the production of A/Sd in plants associated to specific endophytic fungi/AMF and on the cultivation conditions required for optimal production of these compounds.


Assuntos
Ascomicetos , Echium , Micorrizas , Naftoquinonas , Endófitos , Fungos , Plantas , Água , Raízes de Plantas/microbiologia
11.
Mycoses ; 67(2): e13703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345265

RESUMO

Scedosporium/Lomentospora species exist as saprophytic moulds that can potentially lead to serious infections in patients who have experienced near-drowning incidents. Scedosporium species are distributed across different regions of the world while Lomentospora prolificans has quite a restricted geographic distribution. We aimed to systematically review scedosporiosis cases after near-drowning, their clinical manifestations, underlying diseases, treatments, outcomes and its impact through disability-adjusted life years (DALYs). Five available sources were searched from 1 January 2007, to 20 April 2022. Thirty-eight studies, including 41 patients, were evaluated. Mean age was 33.6 ± 18.6 years (range 1-68), and 28 were male (68.3%). Central nervous system (CNS) dissemination predominated (36/41; 87.8%), presenting mainly as multiple brain abscesses (26/41; 63.4%), followed by lung involvement (22/41; 56.4%). Scedosporium apiospermum species complex was the most causative agent (38/41; 92.7%). Overall mortality was 51.2%. Half of the patients (18/37) were cured after receiving proper treatment, and in most cases, voriconazole alone or in combination with surgery or other antifungals caused survival. The mean survival time was 123 ± 27 days. Mean DALYs in 1980-2022 were 46.110 ± 3.318 (39.607-52.612). Time to diagnosis was estimated to be 120 days, and there was no association between time to diagnosis and outcome. Voriconazole is a potentially effective therapy, and combination of surgery and antifungal treatment may lead to more favourable outcome. Advances in early diagnosis and appropriate antifungal therapy may have contributed to reducing its mortality.


Assuntos
Ascomicetos , Infecções Fúngicas Invasivas , Afogamento Iminente , Scedosporium , Humanos , Masculino , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Antifúngicos/uso terapêutico , Voriconazol/uso terapêutico , Anos de Vida Ajustados pela Incapacidade
12.
Chem Pharm Bull (Tokyo) ; 72(2): 186-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346722

RESUMO

As a part of our continuing exploration to discover new potential promising fungicide candidates, eighteen sulfonate derivatives (3a-3r) containing a kakuol moiety were designed and synthesized. Synthetic sulfonate derivatives were tested comprehensively for antifungal activities against four plant pathogenic fungi (Botrytis (B.) cinerea, Valsa (V.) mali, Fusarium (F.) graminearum, Sclerotinia (S.) sclerotiorum), and their structure activity relationships were summarized. Especially, derivatives 3i and 3j exhibited remarkable activity against V. mali, with the inhibition rates of 99.8 and 100%, which were slightly superior to that of carbendazim (98.9%), a reference fungicide. Moreover, derivatives 3a, 3k and 3q possess the broader antifungal spectrum against three tested plant pathogenic fungi with inhibition rates over 60%. Structure-activity relationship (SAR) analysis indicated that the introduction of 2-F or 3-F into the benzene ring would give rise to a remarkable increase of the antifungal activity against V. mali.


Assuntos
Ascomicetos , Benzodioxóis , Fungicidas Industriais , Propiofenonas , Antifúngicos/química , Fungicidas Industriais/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Plantas
13.
J Agric Food Chem ; 72(6): 2935-2942, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317284

RESUMO

Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum has led to serious losses in the yields of oilseed rape and other crops every year. Here, we designed and synthesized a series of carboxamide derivatives containing a diphenyl ether skeleton by adopting the scaffold splicing strategy. From the results of the mycelium growth inhibition experiment, inhibition rates of compounds 4j and 4i showed more than 80% to control S. sclerotiorum at a dose of 50 µg/mL, which is close to that of the positive control (flubeneteram, 95%). Then, the results of a structure-activity relationship study showed that the benzyl scaffold was very important for antifungal activity and that introducing a halogen atom on the benzyl ring would improve antifungal activity. Furthermore, the results of an in vitro activity test suggested that these novel compounds can inhibit the activity of succinate dehydrogenase (SDH), and the binding mode of 4j with SDH was basically similar to that of the flutolanil derivative. Morphological observation of mycelium revealed that compound 4j could cause a damage on the mycelial morphology and cell structure of S. sclerotiorum, resulting in inhibition of the growth of mycelia. Furthermore, in vivo antifungal activity assessment of 4j displayed a good control of S. sclerotiorum (>97%) with a result similar to that of the positive control at a concentration of 200 mg/L. Thus, the diphenyl ether carboxamide skeleton is a new starting point for the discovery of new SDH inhibitors and is worthy of further development.


Assuntos
Ascomicetos , Brassica napus , Fungicidas Industriais , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Relação Estrutura-Atividade , Brassica napus/metabolismo , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
14.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38305094

RESUMO

Rice blast fungus (Pyricularia oryzae) is a heterothallic ascomycete that causes the most destructive disease in cultivated rice worldwide. This fungus reproduces sexually and asexually, and its mating type is determined by the MAT1 locus, MAT1-1 or MAT1-2. Interestingly, most rice-infecting field isolates show a loss of female fertility, but the MAT1 locus is highly conserved in female-sterile isolates. In this study, we performed a functional analysis of MAT1 using the CRISPR/Cas9 system in female- and male-fertile isolates and female-sterile (male-fertile) isolates. Consistent with a previous report, MAT1 was essential for sexual reproduction but not for asexual reproduction. Meanwhile, deletion mutants of MAT1-1-1, MAT1-1-2, and MAT1-1-3 exhibited phenotypes different from those of other previously described isolates, suggesting that the function of MAT1-1 genes and/or their target genes in sexual reproduction differs among strains or isolates. The MAT1 genes, excluding MAT1-2-6, retained their functions even in female-sterile isolates, and deletion mutants lead to loss or reduction of male fertility. Although MAT1 deletion did not affect microconidia (spermatia) production, microconidia derived from the mutants could not induce perithecia formation. These results indicated that MAT1 is required for microconidia-mediated male fertility in addition to female fertility in P. oryzae .


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Fertilidade/genética , Ascomicetos/genética , Reprodução/genética , Esporos Fúngicos
15.
Sci Rep ; 14(1): 4164, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378919

RESUMO

Microbial diversity of caves is largely understudied and its possible applications are still unknown. Autochthonous fungi, in particular, may have the potential to biomineralize metals and may be used as promising agents for bioremediation of polluted sites; thus, unearthing the fungal diversity in hypogean ecosystems is nowadays of utmost importance. To start addressing this knowledge gap, the cultivable mycobiota of two neighbouring caves-one natural and one exploited for touristic purposes-were characterised and compared by studying fungi isolated from sediments collected at increasing distances from the entrance. Overall, 250 fungal isolates ascribable to 69 taxa (mainly Ascomycota) were found, a high percentage of which was reported in caves for the first time. The sediments of the touristic cave displayed a richer and more diversified community in comparison with the natural one, possibly due to visitors carrying propagules or organic material. Considering that these environments are still poorly explored, chances to detect new fungal lineages are not negligible.


Assuntos
Ascomicetos , Ecossistema , Ascomicetos/genética , Itália , Filogenia
16.
Arch Microbiol ; 206(3): 92, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319486

RESUMO

Melia dubia is an important tree species grown worldwide for its medicinal and timber values. It is widely used in timber and pulp industry and also as an organic pesticide, fertilisers, agro-forestry and herbal formulations. During 2019-2022, a dieback disease in plantations of M. dubia was recorded in Mysore, Mandya, Chamarajanagar, Hassan and Tumkur districts of Karnataka state (India) with disease incidence of 26.25%. The associated pathogen was isolated on PDA medium and its morpho-cultural characteristics were studied. The genomic DNA of the pathogen was isolated, and rDNA was amplified and sequenced using universal primers. Based on the microscopic, morpho-cultural, sequence data and phylogenetic analysis, the pathogen was identified as Diaporthe phaseolorum (Cooke & Ellis) Sacc. Koch's postulates were performed both in vitro and in vivo and the typical symptoms of dieback disease were recorded on post-inoculated saplings. The dieback disease is responsible for the poor growth of Melia species in the region, and hence, there is an urgent need to manage the disease in plantations using integrated management practices. This is the first report of the occurrence of D. phaseolorum on M. dubia plantations in India.


Assuntos
Ascomicetos , Melia , Índia , Filogenia , Ascomicetos/genética
17.
Arch Virol ; 169(2): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300296

RESUMO

Here, a novel mycovirus, Botryosphaeria dothidea narnavirus 5 (BdNV5), was discovered in the plant-pathogenic fungus Botryosphaeria dothidea strain ZM210167-1. The BdNV5 genome sequence is 2,397 nucleotides (nt) in length and contains a putative open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) with a molecular mass of 72.77 kDa. A BLASTp search using the RdRp amino acid (aa) sequence showed that it was most similar to the RdRp of Botryosphaeria dothidea narnavirus 4 (42.35%). In a phylogenetic tree based on RdRp aa sequences, BdNV5 clustered with members of the family Narnaviridae. BdNV5 is thus a novel member of the family Narnaviridae infecting the phytopathogenic fungus B. dothidea.


Assuntos
Ascomicetos , Vírus de RNA , Filogenia , Ascomicetos/genética , Sequência de Aminoácidos , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
18.
Arch Microbiol ; 206(2): 86, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302781

RESUMO

Dark septate endophytes (DSEs) inhabit plant roots and soil in ecosystems and host plants worldwide. DSE colonization is influenced by cultivars, soil factors, and specific habitat conditions. The regular diversity of DSEs in blueberries in Guizhou, China, is still unclear. In this study, four cultivars (Gardenblue, Powderblue, O'Neal, and Legacy) in three areas (Gaopo, Majiang, and Fenggang) in Guizhou were used to identify DSEs by morphological and molecular biological methods and to clarify the relationship between DSE diversity and DSE colonization and soil factors of cultivated blueberries in Guizhou. The DSEs isolated from cultivated blueberry roots in 3 areas in Guizhou Province were different, belonging to 17 genera, and the dominant genera were Penicillium, Phialocephala, and Thozetella. DSEs isolated from Majiang belonged to 12 genera and 16 species, those from Gaopo belonged to 7 genera and 15 species, and those from Fenggang belonged to 5 genera and 7 species. Among the different blueberry varieties, 11 genera were isolated from O'Neal, 12 genera were isolated from Powderblue, 11 genera were isolated from Legacy and 13 genera were isolated from Gardenblue. Coniochaeta is endemic to O'Neal, Chaetomium and Curvularia are endemic to Powderblue, and Thielavia is endemic to Legacy. Correlation analysis showed that DSE diversity was significantly correlated with DSE colonization and soil factors.


Assuntos
Ascomicetos , Mirtilos Azuis (Planta) , Micorrizas , Ecossistema , Solo , Raízes de Plantas/microbiologia , Endófitos/genética
19.
Math Biosci Eng ; 21(1): 1144-1166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303458

RESUMO

We propose a new mathematical model based on differential equations to investigate the transmission and spread of frogeye leaf spot, a major soybean disease caused by the fungus Cercospora sojina. The model incorporates the primary and secondary transmission routes of the disease as well as the intrinsic dynamics of the pathogen in the contaminated soil. We conduct detailed equilibrium and stability analyses for this model using theories of dynamical systems. We additionally conduct numerical simulations to verify the analytical predictions and to implement the model for a practical application.


Assuntos
Ascomicetos , Epidemias , Doenças das Plantas/microbiologia , Cercospora
20.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305262

RESUMO

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Assuntos
Agaricales , Ascomicetos , Hepatopatias Alcoólicas , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Ascomicetos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Agaricales/metabolismo , Micélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...