Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.721
Filtrar
1.
MAbs ; 16(1): 2333436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38546837

RESUMO

Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are common degradation pathways that affect the stability of therapeutic antibodies. These modifications can pose a significant challenge in the development of biopharmaceuticals. As such, the early engineering and selection of chemically stable monoclonal antibodies (mAbs) can substantially mitigate the risk of subsequent failure. In this study, we introduce a novel in silico approach for predicting deamidation and isomerization sites in therapeutic antibodies by analyzing the structural environment surrounding asparagine and aspartate residues. The resulting quantitative structure-activity relationship (QSAR) model was trained using previously published forced degradation data from 57 clinical-stage mAbs. The predictive accuracy of the model was evaluated for four different states of the protein structure: (1) static homology models, (2) enhancing low-frequency vibrational modes during short molecular dynamics (MD) runs, (3) a combination of (2) with a protonation state reassignment, and (4) conventional full-atomistic MD simulations. The most effective QSAR model considered the accessible surface area (ASA) of the residue, the pKa value of the backbone amide, and the root mean square deviations of both the alpha carbon and the side chain. The accuracy was further enhanced by incorporating the QSAR model into a decision tree, which also includes empirical information about the sequential successor and the position in the protein. The resulting model has been implemented as a plugin named "Forecasting Reactivity of Isomerization and Deamidation in Antibodies" in MOE software, completed with a user-friendly graphical interface to facilitate its use.


Assuntos
Anticorpos Monoclonais , Asparagina , Isomerismo , Asparagina/química , Anticorpos Monoclonais/química , Amidas/química , Software
2.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502793

RESUMO

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Assuntos
Asparagina , Glucose , Extratos Vegetais , Ziziphus , Asparagina/química , Glucose/química , Espectrometria de Massas em Tandem , Reação de Maillard , Ácido Aspártico
3.
Cell Death Dis ; 15(3): 233, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521813

RESUMO

AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Aurora Quinase A/metabolismo , Asparagina , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral
4.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467390

RESUMO

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Assuntos
Asparaginase , Bacillus , Humanos , Asparaginase/genética , Bacillus/genética , Asparagina , Temperatura
5.
Cell Commun Signal ; 22(1): 163, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448969

RESUMO

Asparagine, an important amino acid in mammals, is produced in several organs and is widely used for the production of other nutrients such as glucose, proteins, lipids, and nucleotides. Asparagine has also been reported to play a vital role in the development of cancer cells. Although several types of cancer cells can synthesise asparagine alone, their synthesis levels are insufficient to meet their requirements. These cells must rely on the supply of exogenous asparagine, which is why asparagine is considered a semi-essential amino acid. Therefore, nutritional inhibition by targeting asparagine is often considered as an anti-cancer strategy and has shown success in the treatment of leukaemia. However, asparagine limitation alone does not achieve an ideal therapeutic effect because of stress responses that upregulate asparagine synthase (ASNS) to meet the requirements for asparagine in cancer cells. Various cancer cells initiate different reprogramming processes in response to the deficiency of asparagine. Therefore, it is necessary to comprehensively understand the asparagine metabolism in cancers. This review primarily discusses the physiological role of asparagine and the current progress in the field of cancer research.


Assuntos
Leucemia , Neoplasias , Animais , Asparagina , Aminoácidos , Glucose , Mamíferos
6.
J Agric Food Chem ; 72(12): 6089-6095, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483189

RESUMO

Acrylamide is a probable carcinogen in humans and is formed when reducing sugars react with free asparagine (Asn) during thermal processing of food. Although breeding for low reducing sugars worked well in potatoes, it is less successful in cereals. However, reducing free Asn in cereals has great potential for reducing acrylamide formation, despite the role that Asn plays in nitrogen transport and amino acid biosynthesis. In this perspective, we summarize the efforts aimed at reducing free Asn in cereal grains and discuss the potentials and challenges associated with targeting this essential amino acid, especially in a seed-specific manner.


Assuntos
Acrilamida , Asparagina , Humanos , Asparagina/química , Acrilamida/análise , Melhoramento Vegetal , Sementes/química , Açúcares/análise , Grão Comestível/química , Temperatura Alta
7.
World J Microbiol Biotechnol ; 40(3): 92, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345704

RESUMO

A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.


Assuntos
Acrilamida , Asparaginase , Asparaginase/química , Acrilamida/análise , Acrilamida/química , Asparagina , Indústria Alimentícia
8.
Biochemistry ; 63(5): 711-722, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380587

RESUMO

The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon-carbon bond between the two phenol groups of dicyclotyrosine (cYY) in Mycobacterium tuberculosis (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of 19F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.


Assuntos
Mycobacterium tuberculosis , Domínio Catalítico , Asparagina , Água , Sistema Enzimático do Citocromo P-450/metabolismo , Carbono , Ligação de Hidrogênio
9.
Rapid Commun Mass Spectrom ; 38(5): e9690, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355883

RESUMO

RATIONALE: Hydrogen/deuterium exchange mass spectrometry (HDX-MS) can provide precise analysis of a protein's conformational dynamics across varied states, such as heat-denatured versus native protein structures, localizing regions that are specifically affected by such conditional changes. Maximizing protein sequence coverage provides high confidence that regions of interest were located by HDX-MS, but one challenge for complete sequence coverage is N-glycosylation sites. The deuteration of peptides post-translationally modified by asparagine-bound glycans (glycopeptides) has not always been identified in previous reports of HDX-MS analyses, causing significant sequence coverage gaps in heavily glycosylated proteins and uncertainty in structural dynamics in many regions throughout a glycoprotein. METHODS: We detected deuterated glycopeptides with a Tribrid Orbitrap Eclipse mass spectrometer performing data-dependent acquisition. An MS scan was used to identify precursor ions; if high-energy collision-induced dissociation MS/MS of the precursor indicated oxonium ions diagnostic for complex glycans, then electron transfer low-energy collision-induced dissociation MS/MS scans of the precursor identified the modified asparagine residue and the glycan's mass. As in traditional HDX-MS, the identified glycopeptides were then analyzed at the MS level in samples labeled with D2 O. RESULTS: We report HDX-MS analysis of the SARS-CoV-2 spike protein ectodomain in its trimeric prefusion form, which has 22 predicted N-glycosylation sites per monomer, with and without heat treatment. We identified glycopeptides and calculated their average isotopic mass shifts from deuteration. Inclusion of the deuterated glycopeptides increased sequence coverage of spike ectodomain from 76% to 84%, demonstrated that glycopeptides had been deuterated, and improved confidence in results localizing structural rearrangements. CONCLUSION: Inclusion of deuterated glycopeptides improves the analysis of the conformational dynamics of glycoproteins such as viral surface antigens and cellular receptors.


Assuntos
COVID-19 , Glicopeptídeos , Humanos , Glicopeptídeos/química , Glicoproteína da Espícula de Coronavírus , Espectrometria de Massas em Tandem/métodos , Deutério , SARS-CoV-2 , Asparagina , Glicoproteínas/química , Polissacarídeos , Íons
10.
Theor Appl Genet ; 137(2): 46, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332254

RESUMO

KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential. The amount of free asparagine in grain of a wheat genotype determines its potential to form harmful acrylamide in derivative food products. Here, we explored the variation in the free asparagine, aspartate, glutamine and glutamate contents of 485 accessions reflecting wheat worldwide diversity to define the genetic architecture governing the accumulation of these amino acids in grain. Accessions were grown under high and low nitrogen availability and in water-deficient and well-watered conditions, and plant and grain phenotypes were measured. Free amino acid contents of grain varied from 0.01 to 1.02 mg g-1 among genotypes in a highly heritable way that did not correlate strongly with grain yield, protein content, specific weight, thousand-kernel weight or heading date. Mean free asparagine content was 4% higher under high nitrogen and 3% higher in water-deficient conditions. After genotyping the accessions, single-locus and multi-locus genome-wide association study models were used to identify several QTLs for free asparagine content located on nine chromosomes. Each QTL was associated with a single amino acid and growing environment, and none of the QTLs colocalised with genes known to be involved in the corresponding amino acid metabolism. This suggests that free asparagine content is controlled by several loci with minor effects interacting with the environment. We conclude that breeding for reduced asparagine content is feasible, but should be firmly based on multi-environment field trials. KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential.


Assuntos
Asparagina , Triticum , Triticum/metabolismo , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/metabolismo , Aminoácidos/metabolismo , Fenótipo , Acrilamidas/metabolismo
11.
Int J Biol Macromol ; 263(Pt 2): 130312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403216

RESUMO

L-Asparaginase is a key component in the treatment of leukemias and lymphomas. However, the glutamine affinity of this therapeutic enzyme is an off-target activity that causes several side effects. The modeling and molecular docking study of Yarrowia lipolytica L-asparaginase (YL-ASNase) to reduce its l-glutamine affinity and increase its stability was the aim of this study. Protein-ligand interactions of wild-type and different mutants of YL-ASNase against L-asparagine compared to l-glutamine were assessed using AutoDock Vina tools because the crystal structure of YL-ASNase does not exist in the protein data banks. The results showed that three mutants, T171S, T171S-N60A, and T171A-T223A, caused a considerable increase in L-asparagine affinity and a decrease in l-glutamine affinity as compared to the wild-type and other mutants. Then, molecular dynamics simulation and MM/GBSA free energy were applied to assess the stability of protein structure and its interaction with ligands. The three mutated proteins, especially T171S-N60A, had higher stability and interactions with L-asparagine than l-glutamine in comparison with the wild-type. The YL-ASNase mutants could be introduced as appropriate therapeutic candidates that might cause lower side effects. However, the functional properties of these mutated enzymes need to be confirmed by genetic manipulation and in vitro and in vivo studies.


Assuntos
Antineoplásicos , Yarrowia , Asparaginase/química , Glutamina/química , Simulação de Acoplamento Molecular , Asparagina/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Simulação de Dinâmica Molecular , Antineoplásicos/química
12.
World J Microbiol Biotechnol ; 40(3): 85, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296867

RESUMO

With an increasing demand for L-asparaginase in pharmaceutical and food sectors for its cytostatic and acrylamide-reducing qualities, there's a need to discover novel, highly productive enzyme sources with improved pharmacokinetic profiles. Keeping this in mind, the present study aimed at maximizing the potential of Ganoderma australe GPC191 to produce L-asparaginase by fermentation medium optimization using statistical validation. Of the 11 physicochemical parameters evaluated under submerged fermentation conditions through one-factor-at-a-time approach and Plackett-Burman design, only four parameters (inoculum load, L-asparagine, soybean meal, and initial pH) influenced L-asparaginase production, significantly (p < 0.001). The optimal levels and interaction effects of these on the overall production were further evaluated by the central composite rotatable design of response surface methodology. Post-optimization, 27.34 U/mL was predicted as the maximum activity at pH 7 with 5n inoculum load and 15 g/L each of L-asparagine and soybean meal. Experimental validation yielded an activity of 28.52 U/mL, indicating an overall 18.17-fold increase from the unoptimized stage. To our knowledge, this is the first report signifying the L-asparaginase production aptitude of G. australe with sequential statistical validation using agricultural waste, which can serve as a model to enhance its yields, offering a sustainable and cost-effective solution for industrial application.


Assuntos
Asparaginase , Ganoderma , Asparaginase/metabolismo , Asparagina/metabolismo , Fermentação
13.
J Bacteriol ; 206(2): e0042023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38193659

RESUMO

The Gram-positive model bacterium B. subtilis is able to import all proteinogenic amino acids from the environment as well as to synthesize them. However, the players involved in the acquisition of asparagine have not yet been identified for this bacterium. In this work, we used d-asparagine as a toxic analog of l-asparagine to identify asparagine transporters. This revealed that d- but not l-asparagine is taken up by the malate/lactate antiporter MleN. Specific strains that are sensitive to the presence of l-asparagine due to the lack of the second messenger cyclic di-AMP or due to the intracellular accumulation of this amino acid were used to isolate and characterize suppressor mutants that were resistant to the presence of otherwise growth-inhibiting concentrations of l-asparagine. These screens identified the broad-spectrum amino acid importers AimA and BcaP as responsible for the acquisition of l-asparagine. The amino acid exporter AzlCD allows detoxification of l-asparagine in addition to 4-azaleucine and histidine. This work supports the idea that amino acids are often transported by promiscuous importers and exporters. However, our work also shows that even stereo-enantiomeric amino acids do not necessarily use the same transport systems.IMPORTANCETransport of amino acid is a poorly studied function in many bacteria, including the model organism Bacillus subtilis. The identification of transporters is hampered by the redundancy of transport systems for most amino acids as well as by the poor specificity of the transporters. Here, we apply several strategies to use the growth-inhibitive effect of many amino acids under defined conditions to isolate suppressor mutants that exhibit either reduced uptake or enhanced export of asparagine, resulting in the identification of uptake and export systems for l-asparagine. The approaches used here may be useful for the identification of transporters for other amino acids both in B. subtilis and in other bacteria.


Assuntos
Aminoácidos , Asparagina , Aminoácidos/metabolismo , Asparagina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homeostase
14.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
15.
Compr Rev Food Sci Food Saf ; 23(1): e13260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284574

RESUMO

Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.


Assuntos
Asparagina , Grão Comestível , Asparagina/análise , Asparagina/química , Asparagina/metabolismo , Grão Comestível/química , Acrilamida/análise , Acrilamida/química , Acrilamida/toxicidade , Lanches , Carboidratos/análise , Carboidratos/química , Aminoácidos/análise
16.
J Sci Food Agric ; 104(7): 4070-4082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294231

RESUMO

BACKGROUND: In wheat-derived bakery products, the quantity of free asparagine (fAsn) has been identified as a key factor in acrylamide (AA) formation. Based on this assumption, four varieties of common wheat (Triticum aestivum L.), Stromboli, Montecarlo, Sothys and Cosmic, selected for their different fAsn content inside the grain, were studied to evaluate their potential in the production of pizza with reduced AA levels. To this purpose, wholemeal and refined flours were obtained from each variety. RESULTS: The fAsn content ranged from 0.25 to 3.30 mmol kg-1, with higher values for wholemeal flours which also showed greater amount of ash, fibre and damaged starch than refined wheat flours. All types of flours were separately used to produce wood oven baked pizza base, according to the Traditional Speciality Guaranteed EU Regulation (97/2010). AA reduction in the range 47-68% was found for all the selected wheat cultivars, compared with a commercial flour, with significantly lower values registered when refined flour was used. Moreover, refined leavened dough samples showed decreased levels of fAsn and reducing sugars due to the fermentation activity of yeasts. Furthermore, it was confirmed that pizza made with wholemeal flours exhibited lower rapidly digestible starch (RDS) and rapidly available glucose (RAG) values compared to that prepared with the refined flour. CONCLUSION: This study clearly shows that a reduced asparagine content in wheat flour is a key factor in the mitigation of AA formation in pizza base. Unfortunately, at the same time, it is highlighted how it is necessary to sacrifice the beneficial effects of fibre intake, such as lowering the glycaemic index, in order to reduce AA. © 2024 Society of Chemical Industry.


Assuntos
Asparagina , Farinha , Asparagina/química , Amido , Triticum/química , Acrilamida/química , Madeira , Pão
17.
Food Res Int ; 177: 113856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225122

RESUMO

In this study, twenty free amino acids (FAA) were investigated in samples of bracatinga (Mimosa scabrella) honeydew honey (BHH) from Santa Catarina (n = 15) and Paraná (n = 13) states (Brazil), followed by chemometric analysis for geographic discrimination. The FAA determination was performed by gas chromatography-mass spectrometry (GC-MS) after using a commercial EZ:faast™ kits for GC. Eight FAA were determined, being proline, asparagine, aspartic and glutamic acids found in all BHH, with significant differences (p < 0.05). In addition, with the exception of proline, the others FAA (asparagine, aspartic and glutamic) normally showed higher concentrations in samples from Santa Catarina state, being that in these samples it was also observed higher FAA sums (963.41 to 2034.73 mg kg-1) when compared to samples from Paraná state. The variability in the results did not show a clear profile of similarity when the heatmap and hierarchical grouping were correlated with the geographic origin and the concentration of eight determined FAA. However, principal component analysis (PCA) demonstrated that serine, asparagine, glutamic acid, and tryptophan were responsible for the geographic discrimination among samples from Santa Catarina and Paraná states, since they were the dominant variables (r > 0.72) in the PCA. Therefore, these results could be useful for the characterization and authentication of BHH based on their FAA composition and geographic origin.


Assuntos
Mel , Mimosa , Mel/análise , Aminoácidos , Mimosa/química , Quimiometria , Brasil , Asparagina , Aminas , Prolina
18.
J Fluoresc ; 34(1): 245-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37195541

RESUMO

In more than 50 to 90% of type 2 diabetic patients, under the influence of various factors, the production of islet amyloid polypeptide or amylin in pancreatic beta cells increases. Spontaneous accumulation of amylin peptide in the form of insoluble amyloid fibrils and soluble oligomers is one of the main causes of beta cell death in diabetic patients. The objective of the present study was to evaluate the effect of pyrogallol, as a phenolic compound, on inhibiting the formation of amylin protein amyloid fibrils. In this study, different techniques such as the thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence intensity and the circular dichroism (CD) spectrum, will be used to investigate the effects of this compound on inhibiting the formation of amyloid fibrils. To investigate the interaction sites of pyrogallol with amylin, docking studies were performed. Our results that pyrogallol in a dose-dependent manner (0.5:1, 1:1, and 5:1, Pyr to Amylin) inhibits the amylin amyloid fibrils formation. Docking analysis revealed that pyrogallol forms hydrogen bonds with valine 17 and asparagine 21. In addition, this compound forms 2 more hydrogen bonds with asparagine 22. This compound also forms hydrophobic bonds with histidine 18. Considering this data and the direct relationship between oxidative stress and the formation of amylin amyloid accumulations in diabetes, the use of compounds with both antioxidant and anti-amyloid properties can be considered an important therapeutic strategy for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Amiloide/química , Amiloide/metabolismo , Pirogalol , Asparagina
19.
Food Chem ; 439: 138097, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061304

RESUMO

Synergistic cross-linkers could improve the taste acceptability of ready-to-eat sea cucumber (RSC). Besides, the hardness of RSC was increased by 331.00% and 266.87% after synergistic cross-linking. Synergistic cross-linking treatment could ameliorate the non-enzymatic degradation of RSC collagen and polysaccharides. Gaussian calculations results showed that dipeptides containing asparagine residues may have different reaction pathways. The main cleavage pathways of CH3CO-Asn-Gly-NHCH3 (NG) might be water-assisted side chain cyclization, stepwise cyclamide hydrolysis via a Gemdiol Intermediate, deamination, and peptide bond breakage. The relative free energy of cyclamide hydrolysis process of NG was increased by 8.2 kcal/mol after synergistic cross-linking. The mass spectrometry results showed that typical peptides could cleavage at NG, CH3CO-Asn-Lys-NHCH3 (NK) and CH3CO-Asn-Leu-NHCH3 (NL) sites after heating, which justified the breakage pattern of peptides in Gaussian calculations. It can offer a comprehensive theoretical basis for the processing of the ready-to-eat sea cucumber with storage stability.


Assuntos
Pepinos-do-Mar , Animais , Cromatografia Gasosa-Espectrometria de Massas , Peptídeos , Compostos de Sulfonilureia , Asparagina/química
20.
Int J Biol Macromol ; 257(Pt 2): 128576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048933

RESUMO

L-asparaginase having low glutaminase activity is important in clinical and food applications. Herein, glutaminase-free L-asparaginase (type I) coding genes from Pseudomonas sp. PCH182 (Ps-ASNase I) and Rahnella sp. PCH162 (Rs-ASNase I) was amplified using gene-specific primers, cloned into a pET-47b(+) vector, and plasmids were transformed into Escherichia coli (E. coli). Further, affinity chromatography purified recombinant proteins to homogeneity with monomer sizes of ~37.0 kDa. Purified Ps-ASNase I and Rs-ASNase I were active at wide pHs and temperatures with optimum activity at 50 °C (492 ± 5 U/mg) and 37 °C (308 ± 4 U/mg), respectively. Kinetic constant Km and Vmax for L-asparagine (Asn) were 2.7 ± 0.06 mM and 526.31 ± 4.0 U/mg for Ps-ASNase I, and 4.43 ± 1.06 mM and 434.78 ± 4.0 U/mg for Rs-ASNase I. Circular dichroism study revealed 29.3 % and 24.12 % α-helix structures in Ps-ASNase I and Rs-ASNase I, respectively. Upon their evaluation to mitigate acrylamide formation, 43 % and 34 % acrylamide (AA) reduction were achieved after pre-treatment of raw potato slices, consistent with 65 % and 59 % Asn reduction for Ps-ASNase I and Rs-ASNase I, respectively. Current findings suggested the potential of less explored intracellular L-asparaginase in AA mitigation for food safety.


Assuntos
Antineoplásicos , Rahnella , Asparaginase/química , Rahnella/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Glutaminase/genética , Acrilamida , Asparagina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...