Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.566
Filtrar
1.
Sci Rep ; 14(1): 10782, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734775

RESUMO

The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1ß, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Colesterol , Proteínas de Ligação a DNA , Células Espumosas , Lipoproteínas LDL , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Células Espumosas/metabolismo , Humanos , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Células THP-1 , Macrófagos/metabolismo , Biologia Computacional/métodos , Apoptose , Inflamação/metabolismo , Inflamação/patologia
2.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725857

RESUMO

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Assuntos
Receptores ErbB , Vesículas Extracelulares , Fatores de Transcrição Kruppel-Like , Músculo Liso Vascular , Miócitos de Músculo Liso , Estresse Mecânico , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Líquido Extracelular/metabolismo , Fenótipo , Animais , Aterosclerose/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais
3.
CNS Neurosci Ther ; 30(5): e14683, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38738952

RESUMO

INTRODUCTION: Alzheimer's disease (AD) and atherosclerosis (AS) are widespread diseases predominantly observed in the elderly population. Despite their prevalence, the underlying molecular interconnections between these two conditions are not well understood. METHODS: Utilizing meta-analysis, bioinformatics methodologies, and the GEO database, we systematically analyzed transcriptome data to pinpoint key genes concurrently differentially expressed in AD and AS. Our experimental validations in mouse models highlighted the prominence of two genes, NKRF (NF-κB-repressing factor) and ZBTB17 (MYC-interacting zinc-finger protein 1). RESULTS: These genes appear to influence the progression of both AD and AS by modulating the NF-κB signaling pathway, as confirmed through subsequent in vitro and in vivo studies. CONCLUSIONS: This research uncovers a novel shared molecular pathway between AD and AS, underscoring the significant roles of NKRF and ZBTB17 in the pathogenesis of these disorders.


Assuntos
Doença de Alzheimer , Aterosclerose , NF-kappa B , Transdução de Sinais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Animais , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , NF-kappa B/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Camundongos , Transcriptoma , Perfilação da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos Transgênicos
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732155

RESUMO

The goal of this Special Issue was to collect original pieces as well as state-of-the-art review articles from scientists and research groups with specific interests in atherosclerosis research [...].


Assuntos
Aterosclerose , Humanos , Aterosclerose/metabolismo , Aterosclerose/terapia , Aterosclerose/genética , Animais , Cardiologia/métodos
5.
Curr Atheroscler Rep ; 26(5): 163-175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698167

RESUMO

PURPOSE OF REVIEW: Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS: FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Proteínas de Ligação a Ácido Graxo , Humanos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/epidemiologia , Envelhecimento/genética , Envelhecimento/fisiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo
6.
Front Immunol ; 15: 1369202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774876

RESUMO

Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.


Assuntos
Aterosclerose , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Animais , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Placa Aterosclerótica/imunologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Imunidade Inata , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Inflamação/imunologia , Imunidade Adaptativa
7.
Medicine (Baltimore) ; 103(20): e38061, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758895

RESUMO

BACKGROUND: Atherosclerosis (AS), as a complex chronic inflammatory disease, is 1 of the main causes of cardiovascular and cerebrovascular diseases. This study aimed to confirm the direct interaction between miR-146a-3p and NF-κB, and explore the role of miR-146a-3p/NF-κB in the regulation of inflammation in AS. METHODS: Bioinformatic prediction and dual-luciferase reporter assay were used to confirm the interaction between miR-146a-3p and NF-κB. Lipopolysaccharides stimulation was performed to establish AS inflammatory cell model, and the levels of pro-inflammatory cytokines were estimated using an enzyme-linked immunosorbent assay. miR-146a-3p and NF-κB expression were evaluated using reverse transcription quantitative PCR, and their clinical value was examined using a receiver operating characteristic curve. RESULTS: Inflammatory cell model showed increased IL-1ß, IL-6, and TNF-α. NF-κB was a target gene of miR-146a-3p, and mediated the inhibitory effects of miR-146a-3p on inflammatory responses in the cell model. In patients with AS, miR-146a-3p/NF-κB was associated with patients' clinical data and inflammatory cytokine levels, and aberrant miR-146a-3p and NF-κB showed diagnostic accuracy to distinguish AS patients from healthy populations. CONCLUSION: miR-146a-3p might inhibit inflammation by targeting NF-κB in AS progression, and miR-146a-3p/ NF-κB might provide novel biomarkers and therapeutic targets for the prevention of AS and related vascular events.


Assuntos
Aterosclerose , Progressão da Doença , MicroRNAs , NF-kappa B , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Aterosclerose/genética , Aterosclerose/metabolismo , NF-kappa B/metabolismo , Masculino , Citocinas/metabolismo , Feminino , Inflamação/genética , Inflamação/metabolismo , Pessoa de Meia-Idade , Lipopolissacarídeos
8.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727309

RESUMO

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Assuntos
Colesterol , Células Endoteliais , Inflamação , Animais , Humanos , Células Endoteliais/metabolismo , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Artérias/metabolismo , Artérias/patologia , Transcriptoma/genética , Aorta/metabolismo , Aorta/patologia , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Quinase I-kappa B/metabolismo , Masculino , NF-kappa B/metabolismo
9.
Int J Oral Sci ; 16(1): 39, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740741

RESUMO

The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/metabolismo , Camundongos , Masculino , Periodontite Periapical/metabolismo , Periodontite Periapical/microbiologia , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
10.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578680

RESUMO

Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Cromatina/metabolismo
12.
Exp Cell Res ; 438(2): 114054, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657723

RESUMO

Recent studies have suggested exosomes (EXO) as potential therapeutic tools for cardiovascular diseases, including atherosclerosis (AS). This study investigates the function of bone marrow stem cell (BMSC)-derived exosomes (EXO) on macrophage pyroptosis in AS and explores the associated mechanism. BMSC-EXO were isolated from healthy mice and identified. RAW264.7 cells (mouse macrophages) were exposed to oxLDL to simulate an AS condition. BMSC-EXO treatment enhanced viability and reduced lactate dehydrogenase release of macrophages. An animal model of AS was established using ApoE-/- mice. BMSC-EXO treatment suppressed plaque formation as well as macrophage and lipid infiltration in mouse aortic tissues. Moreover, BMSC-EXO decreased concentrations of pyroptosis-related markers interleukin (IL)-1ß, IL-18, cleaved-caspase-1 and gasdermin D in vitro and in vivo. Long non-coding RNA AU020206 was carried by the BMSC-EXO, and it bound to CCAAT enhancer binding protein beta (CEBPB) to block CEBPB-mediated transcriptional activation of NLR family pyrin domain containing 3 (NLRP3). Functional assays revealed that silencing of AU020206 aggravated macrophage pyroptosis and exacerbated AS symptoms in mice. These exacerbations were blocked upon CEBPB silencing but then restored after NLRP3 overexpression. In conclusion, this study demonstrates that AU020206 delivered by BMSC-EXO alleviates macrophage pyroptosis in AS by blocking CEBPB-mediated transcriptional activation of NLRP3.


Assuntos
Aterosclerose , Proteína beta Intensificadora de Ligação a CCAAT , Exossomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Animais , Piroptose/efeitos dos fármacos , Piroptose/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , RNA Longo não Codificante/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Exossomos/metabolismo , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Masculino
13.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687279

RESUMO

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Assuntos
Resinas Acrílicas , Aterosclerose , Sulfatos de Condroitina , Lipoproteínas LDL , Rosiglitazona , Animais , Camundongos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/isolamento & purificação , Sulfatos de Condroitina/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Resinas Acrílicas/química , Rosiglitazona/farmacologia , Rosiglitazona/química , Adsorção , Células RAW 264.7 , Microesferas , Ciclodextrinas/química
14.
J Colloid Interface Sci ; 667: 520-528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38653073

RESUMO

Fluorescent probes that specifically targeting Lipid droplets (LDs) have shown potential in biological imaging. Albeit, their in vivo applications are limited due to the hydrophobicity, low signal-to-noise ratio (SNR) and LDs-specificity. Thus, we designed a novel probe namely MeOND, and a reactive oxygen species (ROS)-responsive nano-platform to improve in vivo LDs-specific imaging. MeOND exhibits a remarkable twisted intramolecular charge transfer (TICT) effect with a strongly enhanced near-infrared emission in low-polarity lipid environment. Also, MeOND demonstrates satisfactory biocompatibility and superior intracellular LDs imaging capabilities. MeOND encapsulated nano-platform (MeOND@PMM) presented favorable water solubility and biocompatibility. MeOND@PMM remains stable in physiological conditions but quickly degrades in the environment of elevated ROS level. The released MeOND could then light up the intracellular LDs in atherosclerotic plaques. The design of the probe and nano-platform is expected to provide a better tool for the scientific research of LDs and LDs-related diseases.


Assuntos
Aterosclerose , Corantes Fluorescentes , Imagem Óptica , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Corantes Fluorescentes/química , Animais , Camundongos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Nanopartículas/química , Humanos , Tamanho da Partícula , Células RAW 264.7 , Propriedades de Superfície
15.
Biochem Biophys Res Commun ; 715: 149979, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678779

RESUMO

Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.


Assuntos
Aterosclerose , Senescência Celular , DNA Mitocondrial , Células Endoteliais , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Estresse Mecânico , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dieta Hiperlipídica , Células Cultivadas
16.
J Ethnopharmacol ; 330: 118209, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38663779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.


Assuntos
Aterosclerose , Ácidos e Sais Biliares , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Knockout para ApoE , Ratos , Humanos
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673815

RESUMO

Atherosclerosis, a complex metabolic-immune disease characterized by chronic inflammation driven by the buildup of lipid-rich plaques within arterial walls, has emerged as a pivotal factor in the intricate interplay between cancer and cardiovascular disease. This bidirectional relationship, marked by shared risk factors and pathophysiological mechanisms, underscores the need for a comprehensive understanding of how these two formidable health challenges intersect and influence each other. Cancer and its treatments can contribute to the progression of atherosclerosis, while atherosclerosis, with its inflammatory microenvironment, can exert profound effects on cancer development and outcomes. Both cancer and cardiovascular disease involve intricate interactions between general and personal exposomes. In this review, we aim to summarize the state of the art of translational data and try to show how oncologic studies on cardiotoxicity can broaden our knowledge of crucial pathways in cardiovascular biology and exert a positive impact on precision cardiology and cardio-oncology.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/complicações , Aterosclerose/metabolismo , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Animais , Fatores de Risco , Pesquisa Translacional Biomédica
18.
Atherosclerosis ; 392: 117519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581737

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Assuntos
Aorta , Aterosclerose , Modelos Animais de Doenças , Progressão da Doença , Glucuronidase , Camundongos Knockout para ApoE , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/metabolismo , Glucuronidase/deficiência , Glucuronidase/genética , Glucuronidase/metabolismo , Aorta/patologia , Aorta/metabolismo , Aorta/enzimologia , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/enzimologia , Doenças da Aorta/metabolismo , Dieta Hiperlipídica , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Camundongos Endogâmicos C57BL , Masculino , Molécula 1 de Adesão de Célula Vascular/metabolismo , Camundongos , Camundongos Knockout , Seio Aórtico/patologia , Necrose
19.
Atherosclerosis ; 392: 117527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583286

RESUMO

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Assuntos
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP90 , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tiroxina , Calcificação Vascular , Humanos , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Tiroxina/sangue , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pessoa de Meia-Idade , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/etiologia , Metabolômica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Idoso , Camundongos Endogâmicos C57BL , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/sangue , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582266

RESUMO

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Estresse Oxidativo , Sinvastatina , Ubiquinona , Animais , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/induzido quimicamente , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Miotoxicidade/tratamento farmacológico , Miotoxicidade/patologia , Miotoxicidade/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...