Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.296
Filtrar
1.
Environ Monit Assess ; 196(8): 698, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963549

RESUMO

Air pollution is affected by the atmospheric dynamics. This study aims to determine that air pollution concentration values in Istanbul increased significantly and reached peak values due to atmospheric blocking between the 30th of December 2022 and the 5th of January 2023. In this study, hourly pollutant data was obtained from 16 air quality monitoring stations (AQMS), the exact reanalysis data was extracted from ERA5 database, and inversion levels and meteorological and synoptic analyses were used to determine the effects of atmospheric blocking on air pollution. Also, cloud base heights and vertical visibility measurements were taken with a ceilometer. Statistical calculations and data visualizations were performed using the R and Grads program. Omega-type blocking, which started in Istanbul on December 30, 2022, had a significant impact on the 1st and 2nd of January 2023, and PM10 and PM2.5 concentration values reached their peak values at 572.8 and 254.20 µg/m3, respectively. In addition, it was found that the average concentration values in the examined period in almost all stations were higher than the averages for January and February. As a result, air quality in Istanbul was determined as "poor" between these calendar dates. It was found that the blocking did not affect the ozone (µg/m3) concentration. It was also found that the concentrations of particulate matter (PM) 10 µm or less in diameter (PM10) and PM 2.5 µm or less in diameter (PM2.5) were increased by the blocking effect in the Istanbul area. Finally, according to the data obtained using the ceilometer, cloud base heights decreased to 30 m and vertical visibility to 10 m.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Atmosfera , Monitoramento Ambiental , Ozônio , Material Particulado , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Ozônio/análise , Atmosfera/química , Turquia , Estações do Ano
2.
Sci Rep ; 14(1): 15574, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971867

RESUMO

The latest Triassic was characterised by protracted biotic extinctions concluding in the End-Triassic Extinction (~ 200 Ma) and a global carbon cycle perturbation. The onset of declining diversity is closely related to reducing conditions that spread globally from upper Sevatian (uppermost Norian) to across the Norian-Rhaetian boundary, likely triggered by unusually high volcanic activity. We correlate significant organic carbon cycle perturbations to an increase of CO2 in the ocean-atmosphere system, likely outgassed by the Angayucham igneous province, the onset of which is indicated by the initiation of a rapid decline in 87Sr/86Sr and 188Os/187Os seawater values. A possible causal mechanism involves elevated CO2 levels causing global warming and accelerating chemical weathering, which increased nutrient discharge to the oceans and greatly increased biological productivity. Higher export production and oxidation of organic matter led to a global O2 decrease in marine water across the Norian/Rhaetian boundary (NRB). Biotic consequences of dysoxia/anoxia include worldwide extinctions in some fossil groups, such as bivalves, ammonoids, conodonts, radiolarians.


Assuntos
Fósseis , Oceanos e Mares , Água do Mar , Água do Mar/química , Extinção Biológica , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Oxigênio/metabolismo , Atmosfera/química , Animais
3.
Glob Chang Biol ; 30(7): e17410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978457

RESUMO

Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained more N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ than N 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retain N 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.


Assuntos
Florestas , Isótopos de Nitrogênio , Nitrogênio , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Isótopos de Nitrogênio/análise , Atmosfera/química , Sequestro de Carbono , Árvores/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química
4.
J Environ Manage ; 365: 121644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963970

RESUMO

The Earth's atmosphere contains ultrafine particles known as aerosols, which can be either liquid or solid particles suspended in gas. These aerosols originate from both natural sources and human activities, termed primary and secondary sources respectively. They have significant impacts on the environment, particularly when they transform into ultrafine particles or aerosol nanoparticles, due to their extremely fine atomic structure. With this context in mind, this review aims to elucidate the fundamentals of atmospheric-derived aerosol nanoparticles, covering their various sources, impacts, and methods for control and management. Natural sources such as marine, volcanic, dust, and bioaerosols are discussed, along with anthropogenic sources like the combustion of fossil fuels, biomass, and industrial waste. Aerosol nanoparticles can have several detrimental effects on ecosystems, prompting the exploration and analysis of eco-friendly, sustainable technologies for their removal or mitigation.Despite the adverse effects highlighted in the review, attention is also given to the generation of aerosol-derived atmospheric nanoparticles from biomass sources. This finding provides valuable scientific evidence and background for researchers in fields such as epidemiology, aerobiology, and toxicology, particularly concerning atmospheric nanoparticles.


Assuntos
Aerossóis , Atmosfera , Ecossistema , Nanopartículas , Aerossóis/análise , Nanopartículas/química , Atmosfera/química , Poluentes Atmosféricos/análise , Humanos , Monitoramento Ambiental , Material Particulado/análise
5.
6.
Environ Sci Technol ; 58(29): 12853-12864, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38982755

RESUMO

Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
7.
Am J Bot ; 111(7): e16376, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020509

RESUMO

PREMISE: The Aptian-Albian (121.4-100.5 Ma) was a greenhouse period with global temperatures estimated as 10-15°C warmer than pre-industrial conditions, so it is surprising that the most reliable CO2 estimates from this time are <1400 ppm. This low CO2 during a warm period implies a very high Earth-system sensitivity in the range of 6 to 9°C per CO2 doubling between the Aptian-Albian and today. METHODS: We applied a well-vetted paleo-CO2 proxy based on leaf gas-exchange principles (Franks model) to two Pseudotorellia species from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7-100.5 Ma). RESULTS: Our median estimated CO2 concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2 but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2 approaches that of the full data set. CONCLUSIONS: Our three CO2 estimates all exceeded 2000 ppm, translating to an Earth-system sensitivity (~3-5°C/CO2 doubling) that is more in keeping with the current understanding of the long-term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices.


Assuntos
Atmosfera , Dióxido de Carbono , Estômatos de Plantas , Dióxido de Carbono/análise , Mongólia , Estômatos de Plantas/fisiologia , Atmosfera/química , Isótopos de Carbono/análise , Fósseis , Isótopos de Oxigênio/análise , Folhas de Planta/química
8.
Environ Sci Technol ; 58(28): 12585-12597, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38956968

RESUMO

Elevated levels of atmospheric molecular chlorine (Cl2) have been observed during the daytime in recent field studies in China but could not be explained by the current chlorine chemistry mechanisms in models. Here, we propose a Cl2 formation mechanism initiated by aerosol iron photochemistry to explain daytime Cl2 formation. We implement this mechanism into the GEOS-Chem chemical transport model and investigate its impacts on the atmospheric composition in wintertime North China where high levels of Cl2 as well as aerosol chloride and iron were observed. The new mechanism accounts for more than 90% of surface air Cl2 production in North China and consequently increases the surface air Cl2 abundances by an order of magnitude, improving the model's agreement with observed Cl2. The presence of high Cl2 significantly alters the oxidative capacity of the atmosphere, with a factor of 20-40 increase in the chlorine radical concentration and a 20-40% increase in the hydroxyl radical concentration in regions with high aerosol chloride and iron loadings. This results in an increase in surface air ozone by about 10%. This new Cl2 formation mechanism will improve the model simulation capability for reactive chlorine abundances in the regions with high emissions of chlorine and iron.


Assuntos
Aerossóis , Atmosfera , Cloro , Ferro , Oxirredução , Cloro/química , China , Ferro/química , Atmosfera/química , Poluentes Atmosféricos/química , Fotoquímica
9.
Environ Sci Technol ; 58(28): 12554-12562, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959497

RESUMO

Dissecting the photochemical reactivity of metal ions is a significant contribution to understanding secondary pollutant formation, as they have a role to be reckoned with atmospheric chemistry. However, their photochemical reactivity has received limited attention within the active nitrogen cycle, particularly at the gas-solid interface. In this study, we delve into the contribution of magnesium ion (Mg2+) and ferric ion (Fe3+) to nitrate decomposition on the surface of photoactive mineral dust. Under simulated sunlight irradiation, the observed NOX production rate differs by an order of magnitude in the presence of Mg2+ (6.02 × 10-10 mol s-1) and Fe3+ (2.07 × 10-11 mol s-1). The markedly decreased fluorescence lifetime induced by Mg2+ and the change in the valence of Fe3+ revealed that Mg2+ and Fe3+ significantly affect the concentration of nitrate decomposition products by distinct photochemical reactivity with photogenerated electrons. Mg2+ promotes NOX production by accelerating charge transfer, while Fe3+ hinders nitrate decomposition by engaging in a redox cyclic reaction with Fe2+ to consume photogenerated carriers continuously. Furthermore, when Fe3+ coexists with other metal ions (e.g., Mg2+, Ca2+, Na+, and K+) and surpasses a proportion of approximately 12%, the photochemical reactivity of Fe3+ tends to be dominant in depleting photogenerated electrons and suppressing nitrate decomposition. Conversely, below this threshold, the released NOX concentration increases sharply as the proportion of Fe3+ decreases. This research offers valuable insights into the role of metal ions in nitrate transformation and the generation of reactive nitrogen species, contributing to a deep understanding of atmospheric photochemical reactions.


Assuntos
Metais , Nitratos , Nitratos/química , Metais/química , Minerais/química , Poeira , Atmosfera/química , Íons , Processos Fotoquímicos
10.
Radiat Prot Dosimetry ; 200(11-12): 1003-1006, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016483

RESUMO

The Fast Fourier Transform (FFT) analysis of the activity concentration of radon and selected meteorological parameters was carried out at Department of Physics, Bangalore University, Bengaluru (12056'44"N, 77030'25″E, 840 m above MSL). All of the measured parameters, with the exception of pressure, showed a clear diurnal trend, which can be explained by the presence of typical atmospheric processes such as temperature inversion in the morning and greater vertical mixing in the afternoon. Radon's time series has a latent memory of sub-diurnal cycles, as shown via FFT analysis. The monthly average radon has higher levels of activity during winter months compared with monsoon and summer months. Days during the monsoon season had the lowest radon activity, which may be ascribed to the fact that less radon was being exhaled from the soil as a result of the rain. Radon was recorded at 8.06 ± 0.56 Bq/m3, temperature at 28.9 °C, humidity at 55.2% and pressure at 918 mbar.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Monitoramento de Radiação , Radônio , Estações do Ano , Radônio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Índia , Atmosfera/análise , Temperatura , Umidade , Humanos
11.
Sci Rep ; 14(1): 13760, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877021

RESUMO

Elevated atmospheric carbon dioxide (eCO2) can affect plant growth and physiology, which can, in turn, impact herbivorous insects, including by altering pollen or plant tissue nutrition. Previous research suggests that eCO2 can reduce pollen nutrition in some species, but it is unknown whether this effect is consistent across flowering plant species. We experimentally quantified the effects of eCO2 across multiple flowering plant species on plant growth in 9 species and pollen chemistry (%N an estimate for protein content and nutrition in 12 species; secondary chemistry in 5 species) in greenhouses. For pollen nutrition, only buckwheat significantly responded to eCO2, with %N increasing in eCO2; CO2 treatment did not affect pollen amino acid composition but altered secondary metabolites in buckwheat and sunflower. Plant growth under eCO2 exhibited two trends across species: plant height was taller in 44% of species and flower number was affected for 63% of species (3 species with fewer and 2 species with more flowers). The remaining growth metrics (leaf number, above-ground biomass, flower size, and flowering initiation) showed divergent, species-specific responses, if any. Our results indicate that future eCO2 is unlikely to uniformly change pollen chemistry or plant growth across flowering species but may have the potential to alter ecological interactions, or have particularly important effects on specialized pollinators.


Assuntos
Dióxido de Carbono , Pólen , Dióxido de Carbono/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Atmosfera/química , Especificidade da Espécie , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos
12.
PLoS One ; 19(6): e0305345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889132

RESUMO

Conducting this research contributes to a deeper understanding of the correlation between atmospheric environmental quality and lung cancer incidence, and provides the scientific basis for formulating effective environmental protection and lung cancer prevention and control strategies. Lung cancer incidence in China has strong spatial variation. However, few studies have systematically revealed the characteristics of the spatial variation in lung cancer incidence, and have explained the causes of this spatial variation in lung cancer incidence from the perspectives of multiple components of the atmospheric environment to explain this spatial variation in lung cancer incidence. To address research limitations, we first analyze the spatial variation and spatial correlation characteristics of lung cancer incidence in China. Then, we build a spatial regression model using GeoDa software with lung cancer incidence as the dependent variable, five atmospheric environment factors-particulate matter 2.5 (PM2.5) concentration, temperature, atmospheric pressure, and elevation as explanatory variables, and four socio-economic characteristics as control variables to systematically analyze the influence and intensity of these factors on lung cancer incidence. The results show that lung cancer incidence in China has apparent changes in geographical and spatial unevenness, and spatial autocorrelation characteristics. In China, the lung cancer incidence is relatively high in Northeast China, while some areas of high lung cancer incidence still exist in Central China, Southwest China and South China, although the overall lung cancer incidence is relatively low. The atmospheric environment significantly affects lung cancer incidence. Different elements of the atmospheric environment vary in the direction and extent of their influence on the development of lung cancer. A 1% increase in PM2.5 concentration is associated with a level of 0.002975 increase in lung cancer incidence. Atmospheric pressure positively affects lung cancer incidence, and an increase in atmospheric pressure by 1% increases lung cancer incidence by a level of 0.026061. Conversely, a 1% increase in temperature is linked to a level of 0.006443 decreases in lung cancer incidence, and a negative correlation exists between elevation and lung cancer incidence, where an increase in elevation by 1% correlates with a decrease in lung cancer incidence by a level of 0.000934. The core influencing factors of lung cancer incidence in the seven geographical divisions of China exhibit variations. This study facilitates our understanding of the spatial variation characteristics of lung cancer incidence in China on a finer scale, while also offering a more diverse perspective on the impact of the atmospheric environment on lung cancer incidence.


Assuntos
Neoplasias Pulmonares , Material Particulado , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , China/epidemiologia , Incidência , Humanos , Material Particulado/análise , Material Particulado/efeitos adversos , Atmosfera/química , Pressão Atmosférica , Temperatura , Análise Espacial , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
13.
Environ Sci Pollut Res Int ; 31(29): 42372-42387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874757

RESUMO

Globally, the circular efficiency of biomass resources has become a priority due to the depletion and negative environmental impacts of fossil fuels. This study aimed to quantify the atmosphere-dependent combustion of Ganoderma lucidum (GL) biomass and its thermodynamic and kinetic parameters toward enhancing its circularity and transformability characteristics. The GL combustion occurred in the three stages of moisture removal, volatile release, and coke combustion. Combustion performance characteristics were more favorable in the N2/O2 atmosphere than in the CO2/O2 atmosphere under the same heating rates. The rising heating rate facilitated the release of volatiles. According to the model-free methods of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose, the activation energies essential for the primary reaction were 283.09 kJ/mol and 288.28 kJ/mol in the N2/O2 atmosphere and 233.09 kJ/mol and 235.64 kJ/mol in the CO2/O2 atmosphere. The gaseous products of the GL combustion included CH4, H2O, C = O, CO, CO2, NH3, C = C, and C-O(H). Ash prepared in both atmospheres exhibited a tendency for slag formation, with oxy-fuel combustion lowering its risk. This study thus provides a theoretical and practical basis for transforming GL residues into a sustainable energy source.


Assuntos
Biomassa , Reishi , Reishi/química , Atmosfera/química , Dióxido de Carbono/química , Dióxido de Carbono/análise
14.
Environ Sci Technol ; 58(25): 10956-10968, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38868859

RESUMO

Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.


Assuntos
Atmosfera , Atmosfera/química
15.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874561

RESUMO

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Assuntos
Poluentes Atmosféricos , Atmosfera , China , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Fluorocarbonos/análise , Teorema de Bayes , Politetrafluoretileno , Ciclobutanos
16.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889013

RESUMO

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Assuntos
Poluentes Atmosféricos , Atmosfera , Aprendizado de Máquina , Poluentes Atmosféricos/análise , Atmosfera/química , Óxidos de Nitrogênio/análise , Poluição do Ar , Ozônio/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise
17.
Environ Sci Technol ; 58(26): 11363-11375, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900148

RESUMO

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.


Assuntos
Aerossóis , Atmosfera , Tamanho da Partícula , Tensão Superficial , Atmosfera/química , Poluentes Atmosféricos/análise , China
18.
Plant Physiol Biochem ; 213: 108793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870681

RESUMO

Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.


Assuntos
Fotossíntese , Synechococcus , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Synechococcus/crescimento & desenvolvimento , Atmosfera/química , Exobiologia , Luz , Dióxido de Carbono/metabolismo , Aclimatação , Oxigênio/metabolismo
19.
Sci Total Environ ; 945: 174086, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908591

RESUMO

Aerosol proteins, as core biological components of bioaerosols, are garnering increasing attention due to their environmental significance, including their roles in atmospheric processes and associated health risks. However, observational data on the proteins are very limited, leaving their distribution and variation in the atmosphere poorly understood. To investigate the long-distance transport of proteins with Asian dust in the Northern Hemisphere middle latitude westerlies to remote downwind areas, we quantified the soluble proteins in aerosol particles, referred to as aerosol soluble proteins (ASPs), collected in the coastal city of Kumamoto, Japan, during the spring of 2023, when three dust events occurred. The concentration of ASPs ranged from 0.22 to 1.68 µg m-3, with an average concentration of 0.73 ± 0.36 µg m-3 under dust conditions and 0.31 ± 0.05 µg m-3 under non-dust conditions. During the dust periods, the largest concentration of ASPs (1.68 µg m-3) coincided with the peak concentration of suspended particulate matter, and the concentration strongly correlated with the mass concentration of particles larger than 2.5 µm, indicating a close dependence of ASPs on dust particles. Primary estimations indicated a dry deposition flux of ASPs at approximately 1.10 ± 0.87 mg m-2 d-1 under the dust conditions. These results prove that Asian dust efficiently transports proteins, facilitating their dispersion in the atmosphere.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poeira , Monitoramento Ambiental , Poeira/análise , Japão , Aerossóis/análise , Poluentes Atmosféricos/análise , Proteínas/análise , Material Particulado/análise , Atmosfera/química
20.
J Environ Radioact ; 277: 107466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838510

RESUMO

Plutonium, as well as fission products such as 137Cs, had been released into the earth environment in 1945 after the first atmospheric nuclear explosion of plutonium bomb in the desert of New Mexico (USA, July 16) and later over Nagasaki (August 9), followed then by many other explosions. Thus, plutonium cycling in the atmosphere and ocean has become a major public concern as a result of the radiological and chemical toxicity of plutonium. However, plutonium isotopes and 137Cs are important transient tracers of biogeochemical and physical processes in the environment, respectively. In this review, we show that both physical and chemical approaches are needed to comprehensively understand the behaviors of plutonium in the atmosphere and ocean. In the atmosphere, plutonium and 137Cs attach with aerosols; thus, plutonium moves according to physical and chemical processes in connection with aerosols; however, since plutonium is a chemically reactive element, its behavior in an aqueous environment is more complicated, because biogeochemical regulatory factors, in addition to geophysical regulatory factors, must be considered. Meanwhile, 137Cs is chemically inert in aqueous environments. Therefore, the biogeochemical characteristics of plutonium can be elucidated through a comparison with those of 137Cs, which show conservative properties and moves according to physical processes. Finally, we suggest that monitoring of both plutonium and 137Cs can help elucidate geophysical and biogeochemical changes from climate changes.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Plutônio , Monitoramento de Radiação , Plutônio/análise , Atmosfera/química , Poluentes Radioativos do Ar/análise , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análise , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA