Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.643
Filtrar
1.
Ecol Lett ; 27(7): e14481, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022847

RESUMO

Ecological communities are inherently dynamic: species constantly turn over within years, months, weeks or even days. These temporal shifts in community composition determine essential aspects of species interactions and how energy, nutrients, information, diseases and perturbations 'flow' through systems. Yet, our understanding of community structure has relied heavily on static analyses not designed to capture critical features of this dynamic temporal dimension of communities. Here, we propose a conceptual and methodological framework for quantifying and analysing this temporal dimension. Conceptually, we split the temporal structure into two definitive features, sequence and duration, and review how they are linked to key concepts in ecology. We then outline how we can capture these definitive features using perspectives and tools from temporal graph theory. We demonstrate how we can easily integrate ongoing research on phenology into this framework and highlight what new opportunities arise from this approach to answer fundamental questions in community ecology. As climate change reshuffles ecological communities worldwide, quantifying the temporal organization of communities is imperative to resolve the fundamental processes that shape natural ecosystems and predict how these systems may change in the future.


Assuntos
Mudança Climática , Ecossistema , Fatores de Tempo , Biota , Modelos Biológicos , Ecologia/métodos , Dinâmica Populacional
2.
Microb Biotechnol ; 17(6): e14505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932670

RESUMO

In recent years, the production of volatile fatty acids (VFA) through mixed culture fermentation (MCF) has been gaining attention. Most authors have focused on the fermentation of carbohydrates, while other possible substrates, such as proteins, have not been considered. Moreover, there is little information about how operational parameters affect the microbial communities involved in these processes, even though they are strongly related to reactor performance and VFA selectivity. Hence, this study aims to evaluate how microbial composition changes according to three different parameters (pH, type of protein and micronutrient addition) during anaerobic fermentation of protein-rich side streams. For this, two continuous stirred tank reactors (CSTR) were fed with two different proteins (casein and gelatine) and operated at different conditions: three pH values (5.0, 7.0 and 9.0) with only macronutrients supplementation and two pH values (5.0 and 7.0) with micronutrients' supplementation as well. Firmicutes, Proteobacteria and Bacteroidetes were the dominant phyla in the two reactors at all operational conditions, but their relative abundance varied with the parameters studied. At pH 7.0 and 9.0, the microbial composition was mainly affected by protein type, while at acidic conditions the driving force was the pH. The influence of micronutrients was dependent on the pH and the protein type, with a special effect on Clostridiales and Bacteroidales populations. Overall, this study shows that the acidogenic microbial community is affected by the three parameters studied and the changes in the microbial community can partially explain the macroscopic results, especially the process selectivity.


Assuntos
Bactérias , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Ácidos Graxos Voláteis/metabolismo , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Anaerobiose , Proteínas/metabolismo , Biota , Microbiota
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230137, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913055

RESUMO

Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Temperatura , Ecossistema , Biota , Tetrahymena/fisiologia , Fenótipo
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230126, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913056

RESUMO

Dispersal among local communities is fundamental to the metacommunity concept but is only important to the metacommunity structure if dispersal causes distortions of species abundances away from what local ecological conditions favour. We know from much previous work that dispersal can cause such abundance distortions. However, almost all previous theoretical studies have only considered one species alone or two interacting species (e.g. competitors or predator and prey). Moreover, a systematic analysis is needed of whether different dispersal strategies (e.g. passive dispersal versus demographic habitat selection) result in different abundance distortion patterns, how these distortion patterns change with local food web structure, and how the dispersal propensities of the interacting species might evolve in response to one another. In this article, we show using computer simulations and analytical models that abundance distortions occur in simple food webs with both passive dispersal and habitat selection, but habitat selection causes larger distortions. Additionally, patterns in the evolution of dispersal propensity in interacting species are very different for these two dispersal strategies. This study identifies that the dispersal strategies employed by interacting species critically shape how dispersal will influence metacommunity structure. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Evolução Biológica , Ecossistema , Cadeia Alimentar , Modelos Biológicos , Distribuição Animal , Animais , Simulação por Computador , Biota , Dinâmica Populacional
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230132, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913058

RESUMO

While the influence of dispersal on ecological selection is the subject of intense research, we still lack a thorough understanding of how ecological selection operates to favour distinct dispersal strategies in metacommunities. To address this issue, we developed a model framework in which species with distinct quantitative dispersal traits that govern the three stages of dispersal-departure, movement and settlement-compete under different ecological contexts. The model identified three primary dispersal strategies (referred to as nomadic, homebody and habitat-sorting) that consistently dominated metacommunities owing to the interplay of spatiotemporal environmental variation and different types of competitive interactions. We outlined the key characteristics of each strategy and formulated theoretical predictions regarding the abiotic and biotic conditions under which each strategy is more likely to prevail in metacommunities. By presenting our results as relationships between dispersal traits and well-known ecological gradients (e.g. seasonality), we were able to contrast our theoretical findings with previous empirical research. Our model demonstrates how landscape environmental characteristics and competitive interactions at the intra- and interspecific levels can interact to favour distinct multivariate and context-dependent dispersal strategies in metacommunities. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Ecossistema , Modelos Biológicos , Animais , Biota
6.
Proc Biol Sci ; 291(2024): 20240567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864323

RESUMO

Understanding the drivers of community stability has been a central goal in ecology. Traditionally, emphasis has been placed on studying the effects of biotic interactions on community variability, and less is understood about how the spatial configuration of habitats promotes or hinders metacommunity stability. To test the effects of contrasting spatial configurations on metacommunity stability, I designed metacommunities with patches connected as random or scale-free networks. In these microcosms, two prey and one protist predator dispersed, and I evaluated community persistence, tracked biomass variations, and measured synchrony between local communities and the whole metacommunity. After 30 generations, scale-free metacommunities had lower global biomass variability and higher persistence, suggesting higher stability. Synchrony between patches was lower in scale-free metacommunities. Patches in scale-free metacommunities showed a positive relationship between variability and patch connectivity, indicating higher stability in isolated communities. No clear relationship between variability and patch connectivity was observed in random networks. These results suggest the increased heterogeneity in connectivity of scale-free networks favours the prevalence of isolated patches of the metacommunity, which likely act as refugia against competition-the dominant interaction in this system-resulting in higher global stability. These results highlight the importance of accounting for network topology in the study of spatial dynamics.


Assuntos
Ecossistema , Dinâmica Populacional , Animais , Biomassa , Cadeia Alimentar , Biota , Modelos Biológicos
7.
Mar Pollut Bull ; 205: 116611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917502

RESUMO

An accident at the Barakah Nuclear Power Plant (BNPP) would result in a significant radionuclide release into the semi-closed marine environment. In this research, the released radionuclide distribution pattern and dose rate in the Persian/Arabian (Gulf) were calculated using a combined hydrodynamic/radiobiological model. Simulations of the dispersion of artificial radionuclide concentrations were conducted using a HYSPLIT model. To assess prospective hazards in case of an incident, environmental risk from ionizing contaminants: assessment and management (ERICA) tools were used. Using the Fukushima nuclear power accident as a model, the scenario source term profile was developed. The volumetric concentrations levels of pollutants ranged between 1 × 104 mBq m-3 to 1 × 1010 mBq m-3 in the radius of 200 km after 48 h. Based on the dose rates of the various marine biotas, Polychaete worms, and Pelagic fish, they had the highest and lowest dose contribution.


Assuntos
Biota , Centrais Nucleares , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Animais , Peixes , Organismos Aquáticos , Acidente Nuclear de Fukushima , Liberação Nociva de Radioativos , Poliquetos
8.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895814

RESUMO

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Anaerobiose , Águas Residuárias/química , Biota , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Eliminação de Resíduos Líquidos/métodos , Chironomidae/efeitos dos fármacos , Chironomidae/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo
9.
Geobiology ; 22(3): e12597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700422

RESUMO

Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.


Assuntos
Biota , Fósseis , Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Isótopos de Carbono/análise , Yukon , Terra Nova e Labrador , Paleontologia , Territórios do Noroeste
10.
Mar Pollut Bull ; 203: 116444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705002

RESUMO

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.


Assuntos
Biota , Monitoramento Ambiental , Toxinas Marinhas , Água do Mar , Extração em Fase Sólida , Toxinas Marinhas/análise , Monitoramento Ambiental/métodos , Água do Mar/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Interações Hidrofóbicas e Hidrofílicas , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas
11.
Am Nat ; 203(6): 668-680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781525

RESUMO

AbstractMaintaining the stability of ecological communities is critical for conservation, yet we lack a clear understanding of what attributes of metacommunity structure control stability. Some theories suggest that greater dispersal promotes metacommunity stability by stabilizing local populations, while others suggest that dispersal synchronizes fluctuations across patches and leads to global instability. These effects of dispersal on stability may be mediated by metacommunity structure: the number of patches, the pattern of connections across patches, and levels of spatiotemporal correlation in the environment. Thus, we need theory to investigate metacommunity dynamics under different spatial structures and ecological scenarios. Here, we use simulations to investigate whether stability is primarily affected by connectivity, including dispersal rate and topology of connectivity network, or by mechanisms related to the number of patches. We find that in competitive metacommunities with environmental stochasticity, network topology has little effect on stability on the metacommunity scale even while it could change spatial diversity patterns. In contrast, the number of connected patches is the dominant factor promoting stability through averaging stochastic fluctuations across more patches, rather than due to more habitat heterogeneity per se. These results broaden our understanding of how metacommunity structure changes metacommunity stability, which is relevant for designing effective conservation strategies.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Biota , Distribuição Animal , Processos Estocásticos , Meio Ambiente , Simulação por Computador
12.
Ecotoxicology ; 33(4-5): 325-396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683471

RESUMO

An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.


Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Monitoramento Biológico/métodos , Animais , Monitoramento Ambiental/métodos , Biota , Poluentes Químicos da Água/análise , Aves , Compostos de Metilmercúrio/análise , Peixes/metabolismo
13.
BMC Biol ; 22(1): 96, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679748

RESUMO

BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.


Assuntos
Artrópodes , Fósseis , Animais , Fósseis/anatomia & histologia , Artrópodes/anatomia & histologia , China , Evolução Biológica , Biota , Microtomografia por Raio-X
14.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38663017

RESUMO

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Assuntos
Biota , Mudança Climática , Camada de Gelo , Perda de Ozônio , Neve , Regiões Antárticas , Animais , Raios Ultravioleta , Estações do Ano , Ozônio Estratosférico/análise
15.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580109

RESUMO

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Solo , Solo/química , Clima , Meio Ambiente , Irã (Geográfico) , Quercus , Betulaceae , Tempo , Biota , Conservação dos Recursos Naturais
16.
Sci Total Environ ; 928: 172504, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636865

RESUMO

Marine litter and more specifically plastic marine litter is nowadays considered a global issue with unprecedented impact and consequences to the entire marine ecosystem and biota. The current situation that has been created worldwide due to the abundance of plastic litter in the Earth's Seas has been characterized as alarming, necessitating the immediate action for an overall reduction of plastic waste, better collection and recycling schemes and beach-shoreline clean-ups. In this article we attempt to delve into the details of the magnitude of the impact that plastic litter have caused to marine biota via a meta-research analysis, by compiling, combining, analysing and presenting data from various relative works, using primarily scientific and, secondarily, grey literature. Apart from the threats that plastic marine litter pose to the marine ecosystem, they present potential threats to humans, as well, via food chain. Aside from understating the risks and uncertainties contained in the hereby collected and presenting information, this study can provide an evidence base for decision and policy makers into implementing the appropriate action plans for reducing and, in time, mitigating this immense problem.


Assuntos
Organismos Aquáticos , Monitoramento Ambiental , Plásticos , Biota , Poluentes Químicos da Água/análise , Animais , Ecossistema
17.
PeerJ ; 12: e17230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638159

RESUMO

Pectocaris species are intermediate- to large-sized Cambrian bivalved arthropods. Previous studies have documented Pectocaris exclusively from the Cambrian Series 2 Stage 3 Chengjiang biota in Yu'anshan Formation, Chiungchussu Stage in SW China. In this study, we report Pectocaris paraspatiosa sp. nov., and three other previously known Pectocaris from the Xiazhuang section in Kunming, which belongs to the Hongjingshao Formation and is a later phase within Cambrian Stage 3 than the Yu'anshan Formation. The new species can be distinguished from its congeners by the sparsely arranged endopodal endites and the morphologies of the abdomen, telson, and telson processes. We interpret P. paraspatiosa sp. nov. as a filter-feeder and a powerful swimmer adapted to shallow, agitated environments. Comparison among the Pectocaris species reinforces previous views that niche differentiation had been established among the congeneric species based on morphological differentiation. Our study shows the comprehensive occurrences of Pectocaris species outside the Chengjiang biota for the first time. With a review of the shared fossil taxa of Chengjiang and Xiaoshiba biotas, we identify a strong biological connection between the Yu'anshan and Hongjingshao Formations.


Assuntos
Artrópodes , Bivalves , Animais , Artrópodes/anatomia & histologia , Fósseis , China , Biota
18.
Ecol Lett ; 27(4): e14413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584579

RESUMO

Natural systems are built from multiple interconnected units, making their dynamics, functioning and fragility notoriously hard to predict. A fragility scenario of particular relevance concerns so-called regime shifts: abrupt transitions from healthy to degraded ecosystem states. An explanation for these shifts is that they arise as transitions between alternative stable states, a process that is well-understood in few-species models. However, how multistability upscales with system complexity remains a debated question. Here, we identify that four different multistability regimes generically emerge in models of species-rich communities and other archetypical complex biological systems assuming random interactions. Across the studied models, each regime consistently emerges under a specific interaction scheme and leaves a distinct set of fingerprints in terms of the number of observed states, their species richness and their response to perturbations. Our results help clarify the conditions and types of multistability that can be expected to occur in complex ecological communities.


Assuntos
Ecossistema , Modelos Biológicos , Biota
19.
Rev. biol. trop ; 72(supl.1): e58884, Mar. 2024. graf
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1559345

RESUMO

Resumen Introducción: La Sierra Santa Teresa se encuentra a 20 km al sureste de Hermosillo en la región central del estado de Sonora, México. Los estratos sedimentarios corresponden principalmente a textura de piedra caliza, mudstone, wackestone y packstone del Paleozoico superior. La biota está representada por crinoideos de las morfoespecies Baryschyr anosus, Cyclocaudex insaturatus, Floricyclus angustimargo, Cyclocion distictus, Lamprosterigma erathense y Preptopremnum rugosum en asociación con algas, foraminíferos fusulínidos, esponjas coralinas (Chaetetes sp), corales solitarios (Lophophyllidium sp., Fomichevella sp.), briozoos fenestélidos (Archimedes stoyanowi) y braquiópodos (Antiquatonia sp.). Objetivo: El objetivo principal de este estudio es dar a conocer la composición biótica de la Sierra Santa Teresa y sus consideraciones paleoecológicas y paleogeográficas. Métodos: En este estudio se sintetiza la información sobre las principales taxas recolectadas en afloramientos del Carbonífero de la Sierra, Santa Teresa. Resultados: La distribución de la biota, y particularmente de las morfoespecies de crinoideos, permitió hacer correlaciones paleobiogeográficas con otras localidades del Misisípico-Pensilvánico de México y de distintas regiones de los Estados Unidos de América, principalmente en Texas, Colorado, Illinois y Oklahoma, que se encontraban ubicadas al suroeste del Cratón norteamericano. Conclusiones: Se considera que el paleoambiente inferido con base en los registros paleontológicos de la Sierra Santa Teresa se trataba de mares someros que permitieron el desarrollo de comunidades de crinoideos, así como otros invertebrados como esponjas coralinas, corales solitarios, briozoos fenestélidos y braquiópodos, con un rango estratigráfico del Misisípico Medio-Superior (Chesteriano) al Pensilvánico Medio (Desmoinesiano).


Abstract Introduction: The Sierra Santa Teresa is located 20 km southeast of Hermosillo in the central region of Sonora state, Mexico. The sedimentary strata mainly correspond to limestone, mudstone, wackestone and packstone texture, from the upper Paleozoic. The biota is represented by crinoids of the morphospecies Baryschyr anosus, Cyclocaudex insaturatus, Floricyclus angustimargo, Cyclocion distictus, Lamprosterigma erathense, Preptopremnum rugosum in association with algae, fusulinid foraminifera, coralline sponges (Chaetetes sp.), solitary corals (Lophophyllidium sp., Fomichevella sp.), fenestellid bryozoans (Archimedes stoyanowi), and brachiopods (Antiquatonia sp.). Objective: The principal aim of this study is to analyze the biotic composition in the Sierra Santa Teresa and its paleoecological and paleogeographical considerations. Methods: In this study we synthetize information about the principal taxa collected in outcrops of the Carboniferous of the Sierra, Santa Teresa. Results: The distribution of the biota, and particularly the crinoid morphospecies, allowed paleobiogeographical correlations to be made with other Mississippian-Pennsylvanian localities of Mexico and different regions of the United States of America in Texas, Colorado, Illinois and Oklahoma, which were located in the southwestern of the North American Craton. Conclusions: It is considered that the paleoenvironment inferred based on the paleontological records of the Sierra Santa Teresa were shallow seas that allowed the development of communities of crinoids, as well as other invertebrates such as coralline sponges, solitary corals, fenestellid bryozoans and brachiopods, with a range stratigraphic from the Middle-Upper Mississippian (Chesterian) to the Middle Pennsylvanian (Desmoinesian).


Assuntos
Animais , Paleontologia , Biota , Invertebrados/anatomia & histologia , México
20.
Zootaxa ; 5415(4): 501-528, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38480186

RESUMO

Being areas of biotic overlap located between biogeographic regions, transition zones function as natural laboratories. The present study explores the phylogenetic history of the dung beetle subfamily Scarabaeinae, in order to present an evolutionary scenario that allows inference of the biogeographic history of the Mexican Transition Zone (MTZ) and integration of the distributional patterns of its biota. The species sampling included 94 New World taxa (93 species of Scarabaeinae and one species of Aphodiinae). The phylogenetic relationships of the main clades recovered in our study were supported with PP values 0.95. Based on the BAYAREALIKE model to reconstruct the ancestral distributional patterns of Scarabaeinae, we inferred a complex scenario with 19 dispersal events, 15 vicariance events, and three extinctions. We suggest that the Ancient Neotropical and Tropical Paleoamerican patterns represent the most likely ancestral distributional patterns for the Scarabaeinae of the MTZ, which probably settle there during the Eocene-Oligocene. The rest of the Scarabaeinae distributional patterns were assembled in subsequent periods. The results suggest that the MTZ had two separate formation stages: a Paleo-MTZ (Eocene-Miocene) and a current MTZ (Pliocene-Anthropocene). We conclude that the evolutionary history as well as the dispersal-vicariance scenario for the Scarabaeinae of the MTZ fits the out of the tropics model.


Assuntos
Besouros , Animais , Filogenia , Besouros/genética , Evolução Biológica , México , Biota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA