Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.561
Filtrar
1.
Braz. j. biol ; 84: e257071, 2024. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364496

RESUMO

In advanced biotechnology, the utilization of enzymes to achieve new or modified compounds with antibacterial, fungicidal, and anti-cancer specifications is crucial. Mushroom lactases are a hopeful biocatalyst for the synthesis and modification of different compounds. They are an accessible and inexpensive enzyme for the preparation of reaction objects and have recently received attention. Laccase purification was performed from basidiomycete Lentinus strigosus (LS) in several stages: Stage 1. On ion-exchange chromatography on TEAE Servacell 23 (400 ml), two distinctly separated laccase activity peaks were observed, eluted from the carrier at 0.21 and 0.27 M NaCl. In order to reduce the loss of enzymes, all fractions with laccase activity were collected, concentrated, and desalted using an ultrafiltration cell (Amicon, United States) with a UM-10 membrane. Stage 2. The resulting preparation with laccase activity was applied to a Q-Sepharose column (60 ml). Two well-separated peaks with laccase activity were obtained during the elution: laccase I (0.12 M NaCl) and laccase II (0.2 M NaCl). Stage 3. In the course of further purification of both enzymes, carried out on anion-exchange carrier Resource Q (6 ml), a broken gradient was used: 0 - 10%, 10 - 20%, and 20 - 100% with 1M NaCl. Stage 4. Both laccase I and laccase II, obtained after Resource Q, were desalted, concentrated to 1 ml each, and applied to a Superdex 75 gel filtration column. As a result, two laccases were obtained in a homogeneous form.


Na biotecnologia moderna, o uso de enzimas para obter compostos novos ou modificados com propriedades antibacterianas, antifúngicas e anticancerígenas é crucial. Lactases de cogumelos são biocatalisadores promissores para síntese e modificação de diferentes compostos, por serem enzimas baratas e disponíveis para a preparação de componentes de reação, e vem recebendo a devida atenção recentemente. A purificação da lacase foi realizada a partir do basidiomiceto Lentinus strigosus em vários estágios: Etapa 1 - na cromatografia de troca iônica em TEAE Servacell 23 (400 ml), foram observados dois picos de atividade da lacase distintamente separados, com eluição do transportador a 0,21 e 0,27 M de NaCl. Para reduzir a perda de enzimas, todas as frações com atividade de lacase foram coletadas, concentradas e dessalinizadas em uma célula de ultrafiltração (Amicon, Estados Unidos) com membrana UM-10; Etapa 2 - a preparação resultante com atividade de lacase foi aplicada a uma coluna Q-Sepharose (60 ml). Durante a eluição, foram obtidos dois picos bem separados com atividade de lacase: lacase I (NaCl 0,12 M) e lacase II (NaCl 0,2 M); Etapa 3 - no decurso da purificação adicional de ambas as enzimas, realizada no Recurso Q de transportador de troca aniônica (6 ml), um gradiente quebrado foi usado: 0-10%, 10-20% e 20-100% com NaCl 1M; Etapa 4 - tanto a lacase I como a lacase II, obtidas após o Recurso Q, foram dessalinizadas e concentradas para 1 ml cada e aplicadas a uma coluna de filtração em gel Superdex 75. Como resultado, duas lacases foram obtidas de forma homogênea.


Assuntos
Basidiomycota , Biotecnologia , Lacase , Enzimas , Antibacterianos
2.
Methods Mol Biol ; 2553: 1-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227536

RESUMO

Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.


Assuntos
Biotecnologia , Engenharia Metabólica , Biotecnologia/métodos , Biologia Computacional , Fermentação , Indústrias , Engenharia Metabólica/métodos
3.
Sci Total Environ ; 856(Pt 2): 159101, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181818

RESUMO

Bio-based polymers are increasingly attracting attention as a solution to reducing the consumption of non-renewable resources and curbing the accumulation of fossil-based plastic waste. In this study, we analyze the economics of a new packaging film based on a polylactic acid-polyhydroxybutyrate blend (PLA-PHB), with PHB obtained from agro-industrial residues (potato peels). We model various sizes of biorefineries using the new biotechnology in Europe. For a four-year payback period, which is generally accepted in the industry, the calculated minimum product selling price ranges from 9.7 euros per kilogram to 37.2 euros per kilogram, depending, among other factors, on the production capacity of the biorefinery. We have incorporated the uncertainty over the model parameters in a Monte Carlo simulation and investigated the relative impact of individual factors on the minimum product selling price. Overall, the results indicate that the bio-based feedstock availability is the most influential factor on the profitability of the new biotechnology.


Assuntos
Embalagem de Alimentos , Eliminação de Resíduos , Alimentos , Análise Custo-Benefício , Biotecnologia
4.
J Hazard Mater ; 443(Pt A): 130213, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36283219

RESUMO

Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to µg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.


Assuntos
Microalgas , Poluentes Químicos da Água , Microalgas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Biotecnologia , Preparações Farmacêuticas/metabolismo , Águas Residuárias
5.
Microbiol Res ; 266: 127212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36240665

RESUMO

Ensiling is a microbial-driven process used to preserve fresh forage in bio-refinery and animal production. The biochemical changes that ensue during ensiling have aided the search for new silage additives, emphasizing the potential of certain microbial strains that are more efficient in biopreservation. Lactic acid bacteria (LAB) species are widely recognized for their varied application as additives in the fermentation of crops or forage biomasses during ensiling. However, inconsistency in silage quality in recent times could be interpreted by the lack of information on gene expression and molecular mechanisms of microbiota involved in silage production. Modern research has focused on unraveling nutrient-rich animal feed with improved LAB inoculants. Therefore, this review elucidates the role of LAB inoculants in silage production as well as the modern biotechnology approaches, including metabolomics, proteomics, metagenomics, genomics, transcriptomics, and genetic manipulation, which are powerful tools for identifying, improving, and developing high-performance LAB strains. In addition, the review highlighted the trends and future perspectives of LAB development for silage improvement, pertinent for animal feed breakthroughs in sustainable agriculture.


Assuntos
Inoculantes Agrícolas , Lactobacillales , Animais , Silagem/análise , Silagem/microbiologia , Lactobacillus/genética , Lactobacillus/metabolismo , Fermentação , Biotecnologia
6.
Environ Res ; 216(Pt 1): 114342, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181894

RESUMO

Plastics, micro- and nano-plastics pollution are undoubtedly a severe and crucial ecological threat due to the durability of plastics and their destructive impacts on humans and wildlife. Most scientific investigations have addressed the classification, types, distribution, ingestion, fate, impacts, degradation, and various adverse effect of plastics. Heretofore, scanty reports have addressed implementing strategies for the remediation and mitigation of plastics. Therefore, in this paper, we review the current studies on the degradation of plastics, micro- and nano-plastics aided by microorganisms, and explore the relevant degradation properties and mechanisms. Diverse microorganisms are classified, such as bacteria, fungi, algae, cyanobacteria, wax worms, and enzymes that can decompose various plastics. Furthermore, bio-degradation is influenced by microbial features and environmental parameters; therefore, the ecological factors affecting plastic degradation and the resulting degradation consequences are discussed. In addition, the mechanisms underlying microbial-mediated plastic degradation are carefully studied. Finally, upcoming research directions and prospects for plastics degradation employing microorganisms are addressed. This review covers a comprehensive overview of the microorganism-assisted degradation of plastics, micro- and nano-plastics, and serves as a resource for future research into sustainable plastics pollution management methods.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Microplásticos/toxicidade , Poluição Ambiental , Fungos , Biotecnologia , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo
7.
Methods Mol Biol ; 2575: 153-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301475

RESUMO

Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.


Assuntos
Células Vegetais , Plantas Medicinais , Transfecção , Plantas Medicinais/metabolismo , Biotecnologia , Eletroporação
8.
Methods Mol Biol ; 2555: 23-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306077

RESUMO

The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.


Assuntos
Ecossistema , Metagenômica , Metagenoma , Biotecnologia , Biodiversidade
9.
Water Res ; 228(Pt A): 119353, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423549

RESUMO

Anaerobic ammonium oxidation (anammox) granular sludge is a promising biotechnological process for treating low-carbon nitrogenous wastewater, and is featured with low energy consumption and footprint. Previous theoretical and experimental research on anammox granular sludge processes mainly focused on granulation (flocs â†’ granules), but pay little attention to the granulation cycle including granulation and regeneration. This work reviewed the previous studies from the perspective of anammox granules lifecycle and proposed various sustainable formation mechanisms of anammox granules. By reviewing the anaerobic, aerobic, and anammox granulation mechanisms, we summarize the mechanisms of thermodynamic theory, heterogeneous growth, extracellular polymeric substance (EPS)-based adhesion, quorum sensing (QS)-based regulation, biomineralization-based growth, and stratification of microorganisms to understand anammox granulation. In the regeneration process, the formation of precursors for re-granulation is explained by the mechanisms of physical crushing, quorum quenching and dispersion cue sensing. Based on the granulation cycle mechanism, the rebuilding of the normal regeneration process is considered essential to avoid granule floatation and the wash-out of granules. This comprehensive review indicates that future research on anammox granulation cycle should focus on the effects of filamentous bacteria in denitrification-anammox granulation cycle, the role of QS/ quorum quenching (QQ)-based autoinducers, development of diversified mechanisms to understand the cycle and the cycle mechanisms of stored granules.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Oxidação Anaeróbia da Amônia , Biotecnologia , Águas Residuárias
10.
Methods Mol Biol ; 2601: 75-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36445580

RESUMO

Antibiotic natural products from microbes are characterized by diverse and mostly complex chemical structures, which challenge their total chemical synthesis and make biotechnological production to the predominant production route. In order to reach these valuable compounds in the fermentation broth, sophisticated recovery methods are required, and a high degree of purity is essential for a thorough exploration of their beneficial properties in subsequent assays. The isolation and purification of natural products from microbial cultures is mainly based on the repeated application of extraction and chromatographic separation methods.This chapter describes the general strategy of natural product recovery from microbial cultures, gives theoretical and practical insights to underlying methods-essentially compound extraction and preparative chromatography-and describes a specific methodical approach to isolate and purify the natural product fusarubin from the culture of the fungus Fusarium sp.


Assuntos
Produtos Biológicos , Testes Imunológicos , Biotecnologia , Antibacterianos , Bioensaio
11.
Carbohydr Polym ; 301(Pt A): 120224, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436845

RESUMO

Cationic chitosan is recognized as the most widely studied derivative of chitin, one of the main and the most evolutionary ancient structural biopolymer in nature. The multi-functionality of chitosan, due to its specific physicochemical properties, biodegradability and biocompatibility, is a fundamental factor in the patentability of this biopolymer in diverse fields of modern science and technology. It is shown that the chitosan-related patents were categorized mainly under biomedical, material science, biotechnology, and chemical directions; while a very small portion of the patents were mentioned under food, cosmetics, environmental protection, and agricultural fields. For the first time, the review provides a detailed analysis on the background and scope of the patents reported on chitosan so far.


Assuntos
Quitina , Quitosana , Materiais Biocompatíveis , Ciência dos Materiais , Biotecnologia
12.
Biotechnol Bioeng ; 119(3): 743-761, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936091

RESUMO

For drug products manufactured in mammalian cells, safety assurance practices are needed during production to assure that the final medicinal product is safe from the potential risk of viral contamination. Virus filters provide viral retention for a range of viruses through robust, largely size-based retention mechanism. Therefore, a virus filtration step is commonly utilized in a well-designed recombinant therapeutic protein purification process and is a key component in an overall strategy to minimize the risks of adventitious and endogenous viral particles during the manufacturing of biotechnology products. This study summarizes the history of virus filtration, currently available virus filters and prefilters, and virus filtration integrity test methods and study models. There is also discussion of current understanding and gaps with an eye toward future trends and emerging filtration technologies.


Assuntos
Vírus , Animais , Biotecnologia/métodos , Contaminação de Medicamentos/prevenção & controle , Filtração , Mamíferos , Vírion
13.
GM Crops Food ; 13(1): 372-387, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36453282

RESUMO

Africa has the world's fastest rate of population expansion, making it vulnerable to food shortages. Africa cultivates two types of rice (Asian rice; Oryza sativa and African rice; Oryza glaberrima). Native African rice called O. glaberrima has some intriguing characteristics, including resistance to several biotic and abiotic regional restrictions in Africa. However, O. glaberrima is solely employed as a tool to increase the production of O. sativa, which cannot grow in Africa, due to its low yield, lodging, grain breaking, and poor tissue culture ability. Enhancing breeding efforts for O. glaberrima is therefore critically important. The protocols for transformation and regeneration, however, are mostly for O. sativa and not O. glaberrima. This study examines the present problems with transformation and regeneration for African rice species as well as potential solutions for using modern breeding methods in O. glaberrima.


Assuntos
Oryza , Humanos , Oryza/genética , Melhoramento Vegetal , Biotecnologia , Grão Comestível , Negros
14.
FEMS Microbiol Lett ; 369(1)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455292

RESUMO

Professional development for teachers of primary, intermediate, and secondary schools (Kindergarten to Grade 12; K-12), especially for highly technical subjects such as Microbial Biotechnology, can involve arduous and ineffective training methods prioritizing content delivery over sound pedagogical techniques. Teachers are learning complex content, techniques, and pedagogies but have little time to practice or gain experience and confidence in their newly acquired skills. The Biotechnology Immersion Program (BiP) sought to overcome this challenge by incorporating an intentional immersive experiential system into professional development; teachers learn new content, experience hands-on activities, and work through assessments in the role of a student while experienced subject matter expert faculty run the teaching and activities. Afterwards, the teachers get the opportunity to switch roles and practice teaching, running, and managing the same learning activities that they just experienced. The faculty experts are available to mentor, guide, and direct the teachers as they try out teaching and implementing novel biotechnology classroom activities. BiP focused on three critical aspects of successful professional development: time, personal experience, and connection. This mentored teaching and implementation practice system provided a robust professional development platform, where educators felt prepared and confident to run new biotechnology lab activities in their own classrooms.


Assuntos
Imersão , Aprendizagem , Humanos , Instituições Acadêmicas , Docentes , Biotecnologia
16.
Nat Commun ; 13(1): 7374, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450726

RESUMO

The ability to identify the designer of engineered biological sequences-termed genetic engineering attribution (GEA)-would help ensure due credit for biotechnological innovation, while holding designers accountable to the communities they affect. Here, we present the results of the first Genetic Engineering Attribution Challenge, a public data-science competition to advance GEA techniques. Top-scoring teams dramatically outperformed previous models at identifying the true lab-of-origin of engineered plasmid sequences, including an increase in top-1 and top-10 accuracy of 10 percentage points. A simple ensemble of prizewinning models further increased performance. New metrics, designed to assess a model's ability to confidently exclude candidate labs, also showed major improvements, especially for the ensemble. Most winning teams adopted CNN-based machine-learning approaches; however, one team achieved very high accuracy with an extremely fast neural-network-free approach. Future work, including future competitions, should further explore a wide diversity of approaches for bringing GEA technology into practical use.


Assuntos
Biotecnologia , Engenharia Genética , Percepção Social , Clonagem Molecular , Técnicas Genéticas
17.
Int J Pharm Compd ; 26(6): 446-466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445764

RESUMO

Biotechnology drugs involve any technique that uses living organisms in their production or modification. These biotechnology drugs are prepared using different techniques such as recombinant DNA technology monoclonal antibody technologies along with tissue cultures living cells and cell enzymes to make specific products. These new pharmaceuticals are utilized in the diagnosis treatment and prevention of disease, but, because of the risk of clinically important and unusual and potentially harmful adverse effects produced, these agents require increased safety surveillance, and it is very important for pharmacists to participate in any adverse event reporting and monitoring program for these new products. The first biotechnology pharmaceuticals are proteins, but, eventually, an ever-increasing number of smaller molecules may be discovered through the previously mentioned methods and may become a mainstay in new pharmaceutical research and development in producing new drug products. Pharmacists involved in compounding must be aware of not only the biotechnology agent itself but especially of all of the different excipients that are required in order to produce a stable and safe preparation for patient use. Compounding involving these formulations should involve the simplest procedures and formulations as possible, maintaining sterility throughout the entire process. It is important to maintain a drug's biologic activity up to the point of administration to the patient, and the pharmacist can assist in explaining the various factors involved in storage preparation and administration of the drugs to the patient. In the first part of this two-part series of articles, we discussed the general considerations involved in compounding with biotechnology products. In this final part of the series, we discuss the formulations for a number of commercially available biotechnology products, the purpose of each of the ingredients, and any uniqueness about their formulations.


Assuntos
Infertilidade , Farmácia , Humanos , Biotecnologia , Excipientes , Farmacêuticos
18.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432139

RESUMO

Due to population growth, instability of climatic conditions, and reduction of the areas of natural ecosystems, it becomes necessary to involve modern biotechnological approaches to obtain highly productive plant material. This statement applies both to the creation of plant varieties and the production of new pharmaceutical raw materials. Genetic transformation of valuable medicinal plants using Agrobacterium rhizogenes ensures the production of stable and rapidly growing hairy roots cultures that have a number of advantages compared with cell culture and, above all, can synthesize root-specific substances at the level of the roots of the intact plant. In this regard, special attention should be paid to the collection of hairy roots of the Institute of Plant Physiology RAS, Russian Academy of Sciences, the founder of which was Dr. Kuzovkina I.N. Currently, the collection contains 38 hairy roots lines of valuable medicinal and forage plants. The review discusses the prospects of creating a hairy roots collection as a basis for fundamental research and commercial purposes.


Assuntos
Plantas Medicinais , Rhizobium , Rhizobium/genética , Raízes de Plantas/metabolismo , Ecossistema , Plantas Medicinais/genética , Biotecnologia
19.
Biol Open ; 11(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412269

RESUMO

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Assuntos
Euglena , Euglena/fisiologia , Biotecnologia , Simbiose
20.
An Acad Bras Cienc ; 94(suppl 3): e20210766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417602

RESUMO

Colchicine (COL) is a permeability-glycoprotein (P-gp) substrate drug used for familial Mediterranean fever, acute pericarditis, and the management of acute gout. It has a narrow therapeutic index which implies that a small change in the drug's absorption profile may lead to either toxicity or therapeutic failure. Absorption can be altered by modulating the function of P-gp via the concomitant use of drugs, herbal medicines, or food supplements such as probiotics. Here, we investigated the effect of probiotic Lactobacillus acidophilus BIOTECH 1900 on COL's transepithelial mucosal-to-serosal transport in the jejunum of ICR mice. A high-performance liquid chromatography-photodiode array (HPLC-PDA) method for the assay of COL was developed and validated. The HPLC-PDA method was applied in an ex vivo non-everted gut sac model to measure COL's cumulative mucosal-to-serosal transport and apparent permeability (Papp). Treatment of L. acidophilus BIOTECH 1900 resulted to a significantly lower COL transport and Papp value compared to the control group. Additionally, the activity of L. acidophilus BIOTECH 1900 was found to be similar to dexamethasone, a known P-gp inducer. We report that L. acidophilus BIOTECH 1900 decreases the transepithelial mucosal-to-serosal transport of COL, suggesting possible P-gp induction. Further studies are recommended to substantiate this transporter-based drug-probiotic interaction.


Assuntos
Lactobacillus acidophilus , Probióticos , Camundongos , Animais , Colchicina/farmacologia , Absorção Intestinal , Camundongos Endogâmicos ICR , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...