Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.012
Filtrar
1.
Biol Lett ; 20(6): 20240066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836647

RESUMO

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.


Assuntos
Sinais (Psicologia) , Espécies Introduzidas , Comportamento Predatório , Temperatura , Animais , Braquiúros/fisiologia , Bivalves/fisiologia , Bivalves/metabolismo
2.
PeerJ ; 12: e17425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832036

RESUMO

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Assuntos
Bivalves , Animais , Mar Mediterrâneo , Bivalves/classificação , Crustáceos/classificação , Moluscos/classificação , Israel , Distribuição Animal , Espécies Introduzidas
3.
Biosens Bioelectron ; 260: 116421, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838572

RESUMO

Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate. This network enables real-time monitoring of critical physiological parameters, including temperature, humidity, and muscle contraction. Remarkably, our system operates under battery-free and wireless near-field communication (NFC) technology for data readout via smartphones. Moreover, two of the three sensors were integrated onto a naturally adhesive bioinspired membrane. This membrane, developed using an eco-friendly, high-throughput process, draws inspiration from the remarkable adhesive properties of mussel-inspired molecules. The resulting ultra-conformable membrane adheres effortlessly to the skin, ensuring reliable and continuous data collection. The urgency of effective monitoring systems cannot be overstated, especially in the context of rising heat stroke incidents attributed to climate change and high-risk occupations. Heat stroke manifests as elevated skin temperature, lack of sweating, and seizures. Swift intervention is crucial to prevent progression to coma or fatality. Therefore, our proposed system holds immense promise for the monitoring of these parameters on the field, benefiting both the general population and high-risk workers, such as firefighters.


Assuntos
Técnicas Biossensoriais , Bivalves , Golpe de Calor , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Técnicas Biossensoriais/instrumentação , Animais , Golpe de Calor/prevenção & controle , Bivalves/química , Adesivos/química , Membranas Artificiais , Desenho de Equipamento , Smartphone
4.
Mar Pollut Bull ; 204: 116516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833951

RESUMO

This study investigates the presence of microplastics (MPs) in seawater, sediments, and organisms along the coastal areas of Da Nang, Vietnam. The results obtained revealed MP concentrations ranging from 111 to 304 MPs/L in seawater and 2267 to 4600 MPs/kg in sediment. In organisms such as oysters, mussels, crabs, snails, and fish, MP levels ranged from 1.8 to 17.3 MPs/g (wet weight). Fiber MPs were found to be predominant across seawater, sediment, and organisms. The study identified eight, ten, and eleven types of MPs in seawater, sediment, and organisms, respectively, with Nylon, Polytetrafluoroethylene (PTFE), and Ethylene vinyl alcohol (EVOH) being the most prevalent. Notably, MP concentrations were significantly higher in benthic organisms such as oysters, mussels, and crabs compared to fish (t-test, p < 0.05), suggesting habitat dependency. Similar concentrations, shapes, and types of MPs in seawater, sediments, and organisms demonstrate a tendency for MP accumulation in aquatic organisms within the marine environment.


Assuntos
Organismos Aquáticos , Monitoramento Ambiental , Microplásticos , Água do Mar , Poluentes Químicos da Água , Animais , Vietnã , Poluentes Químicos da Água/análise , Água do Mar/química , Microplásticos/análise , Sedimentos Geológicos/química , Braquiúros , Peixes , Bivalves , Ostreidae , Caramujos
5.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849820

RESUMO

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Assuntos
Bivalves , Regeneração Óssea , Durapatita , Ouro , Indóis , Macrófagos , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Animais , Camundongos , Ouro/química , Ouro/farmacologia , Bivalves/química , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Polímeros/química , Polímeros/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo
6.
Sci Data ; 11(1): 606, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851789

RESUMO

Sinosolenaia oleivora (Bivalve, Unionida, Unionidae), is a near-endangered edible mussel. In 2022, it was selected by the Ministry of Agriculture and Rural Affairs as a top-ten aquatic germplasm resource, with potential for industrial development. Using Illumina, PacBio, and Hi-C technology, a high-quality chromosome-level genome of S. oleivora was assembled. The assembled S. oleivora genome spanned 2052.29 Mb with a contig N50 size of 20.36 Mb and a scaffold N50 size of 103.57 Mb. The 302 contigs, accounting for 98.41% of the total assembled genome, were anchored into 19 chromosomes using Hi-C scaffolding. A total of 1171.78 Mb repeat sequences were annotated and 22,971 protein-coding genes were predicted. Compared with the nearest ancestor, a total of 603 expanded and 1767 contracted gene families were found. This study provides important genomic resources for conservation, evolutionary research, and genetic improvements of many economic traits like growth performance.


Assuntos
Cromossomos , Genoma , Animais , Unionidae/genética , Bivalves/genética
7.
Aquat Toxicol ; 272: 106971, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843741

RESUMO

Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.


Assuntos
Acetilcolinesterase , Compostos Benzidrílicos , Dopamina , Brânquias , Hemócitos , Estresse Oxidativo , Fenóis , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Fenóis/toxicidade , Hemócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Dopamina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
8.
Environ Pollut ; 351: 124086, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692387

RESUMO

Marine microdebris (MD) seem to be widespread in benthic invertebrates, even in the most remote areas of the planet such as Antarctica, although the information available is still very scarce. Here we provide a detailed quantification and characterization of the MD found on three common bivalve species (Aequiyoldia eightsii, Thracia cf. meridionalis, and Cyclocardia astartoides) inhabiting shallow areas in Johnsons' Bay, Livingston Island (South Shetland Islands, Antarctica) as a snapshot of the MD present. On average, these bivalves contained 0.71 ± 0.89 items per individual and 1.49 ± 2.35 items per gram, being comparable to the few previous existing studies in other Antarctic areas. Nearly half of the organisms analysed here (45.6 %), contained at least one item. No significant differences were found in the three bivalve species. As far as we know, this is the first study to analyse and compare MD in three bivalve species in the Antarctic Peninsula. Although our results indicate bivalves are as not as polluted as in other areas of the planet, this is remarkable since this is considered one of the last pristine areas of the world. Our results point to local activities as the main source of MD pollution in Livingston Island, although global pollution cannot be discarded. We believe this research provides a useful baseline for future studies and will contribute to develop policies and strategies to preserve Antarctic marine ecosystems from MD pollution.


Assuntos
Bivalves , Monitoramento Ambiental , Ilhas , Animais , Regiões Antárticas , Monitoramento Ambiental/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38749209

RESUMO

Sox transcription factors are vital in numerous fundamental biological processes. In this study, nine Sox gene family members were discovered in the Ruditapes philippinarum genome, classified into the SoxB1, SoxB2, SoxC, SoxD, SoxE, and SoxF groups, marking the first genome-wide identification of this gene family in R. philippinarum. Analyses of phylogeny, exon-intron structures, and domains bolster the support for their categorization and annotation. Furthermore, transcriptomic analyses across various developmental stages revealed that RpSox4, RpSox5, RpSox9, and RpSox11 were significantly expressed in the D-larval stage. Additionally, investigations into transcriptomes of clams with different shell colors indicated that most sox genes exhibited their highest expression levels in orange clams, followed by zebra, white zebra, and white clams, and the results of transcriptomes analysis in different tissues indicated that 8 Sox genes (except RpSox17) were highly expressed in the mantle tissue. Moreover, qPCR was used to detect the expression of Sox gene in R. philippinarum at different developmental periods, different shell colors and different tissues, and the results showed consistency with those of the transcriptomes. This study's findings lay the groundwork for additional exploration into the role of the Sox gene in melanin production in R. philippinarum shells.


Assuntos
Bivalves , Filogenia , Fatores de Transcrição SOX , Animais , Bivalves/genética , Bivalves/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Transcriptoma , Genoma , Perfilação da Expressão Gênica , Família Multigênica
10.
Sci Rep ; 14(1): 12527, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822023

RESUMO

Invasive species are often generalists that can take advantage of formerly unexploited resources. The existence of such vacant niches is more likely in species-poor systems like the Baltic Sea. The suspension feeding wedge clam, Rangia cuneata, native to estuarine environments in the Gulf of Mexico, was sighted for the first time in the southeastern Baltic in 2010 and a few years later in the northern Baltic along the Swedish coast. To explore possible competition for food resources between R. cuneata and the three native clams inhabiting Baltic shallow soft bottoms, stable isotope and fatty acid analyses were conducted. There was no overlap between R. cuneata and any of the native species in either stable isotope or fatty acid niches. This suggests efficient partitioning of resources; multivariate analyses indicate that separation was driven mainly by δ13C and by fatty acids reflecting diatoms and cyanobacteria, respectively (e.g. 16:1ω7 and 18:3ω3). R. cuneata reflected seasonal variation in phytoplankton more than other clams reflecting higher trophic plasticity. In conclusion, the addition of R. cuneata to the Baltic shallow soft bottoms suggests the existence of a vacant trophic niche in these sediment habitats, however the long-term effects on other species and nutrient cycling requires further studies focusing on the population dynamics of R. cuneata and its impact on the Baltic Sea ecosystem.


Assuntos
Bivalves , Ecossistema , Sedimentos Geológicos , Animais , Sedimentos Geológicos/análise , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Isótopos de Carbono/análise , Espécies Introduzidas , Estações do Ano , Cadeia Alimentar , Oceanos e Mares , Fitoplâncton
11.
J Hazard Mater ; 472: 134617, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749247

RESUMO

The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.


Assuntos
Bivalves , Monitoramento Ambiental , Microplásticos , Espécies Sentinelas , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , China , Humanos , Aquicultura
12.
Sci Total Environ ; 933: 173184, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750754

RESUMO

Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 µg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.


Assuntos
Bivalves , Cádmio , Mineração , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cádmio/toxicidade , Bivalves/efeitos dos fármacos , Bivalves/fisiologia , Brânquias/efeitos dos fármacos , Monitoramento Ambiental/métodos , Cobre/toxicidade , Biomarcadores/metabolismo
13.
J Hazard Mater ; 472: 134619, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754228

RESUMO

Classified as marine debris, man made materials are polluting the world's oceans. Recently, glass reinforced plastic (GRP) has been shown to degrade and contaminate the coasts. In this pioneering study, fibreglass particles have been detected in the soft parts of oysters and mussels collected from natural populations, in front of an active boatyard. The presence of particulate glass, with concentrations up to 11,220 particles/kg ww in Ostrea edulis and 2740 particles/kg ww in Mytilus edulis, was confirmed by micro Raman spectroscopy. The results showed higher accumulation during the winter months, when boat maintenance activities are peaking and, through repair work, the release of glass fibres in the environment is more likely. Bivalves are considered high risk species due to their sessile nature and extensive filter feeding behaviour. The microparticle inclusion may contribute to adverse impacts on physiological processes and eventually to a decline in the overall health and subsequent death of the animal. The high costs involved in the proper GRP disposal and the lack of recycling facilities worldwide lead to boat abandonement and further contamination of the coasts. For the first time this study presents the extensive fibreglass contamination of natural bivalve populations, in a popular South England sailing harbour, designated a biological and geological site of specific scientific interest (SSRI).


Assuntos
Vidro , Plásticos , Animais , Vidro/química , Plásticos/química , Monitoramento Ambiental , Bivalves , Mytilus edulis , Ostrea , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 937: 173538, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38802009

RESUMO

Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.


Assuntos
Aquicultura , Bivalves , Sequestro de Carbono , Carbono , Sedimentos Geológicos , Animais , Bivalves/metabolismo , Sedimentos Geológicos/química , Carbono/análise , Ecossistema , Monitoramento Ambiental , Fitoplâncton
15.
Sci Rep ; 14(1): 11958, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796489

RESUMO

Freshwater mussels (Mollusca: Unionidae) play a crucial role in freshwater river environments where they live in multi-species aggregations and often serve as long-lived benthic ecosystem engineers. Many of these species are imperiled and it is imperative that we understand their basic needs to aid in the reestablishment and maintenance of mussel beds in rivers. In an effort to expand our knowledge of the diet of these organisms, five species of mussel were introduced into enclosed systems in two experiments. In the first, mussels were incubated in water from the Clinch River (Virginia, USA) and in the second, water from a manmade pond at the Commonwealth of Virginia's Aquatic Wildlife Conservation Center in Marion, VA. Quantitative PCR and eDNA metabarcoding were used to determine which planktonic microbes were present before and after the introduction of mussels into each experimental system. It was found that all five species preferentially consumed microeukaryotes over bacteria. Most microeukaryotic taxa, including Stramenopiles and Chlorophytes were quickly consumed by all five mussel species. We also found that they consumed fungi but not as quickly as the microalgae, and that one species of mussel, Ortmanniana pectorosa, consumed bacteria but only after preferred food sources were depleted. Our results provide evidence that siphon feeding Unionid mussels can select preferred microbes from mixed plankton, and mussel species exhibit dietary niche differentiation.


Assuntos
Bactérias , Bivalves , Fungos , Animais , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bivalves/microbiologia , Água Doce/microbiologia , Dieta , Rios/microbiologia , Ecossistema , Virginia
16.
Mar Pollut Bull ; 204: 116523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815474

RESUMO

Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.


Assuntos
Bivalves , Água do Mar , Animais , Bivalves/fisiologia , Água do Mar/química , Concentração de Íons de Hidrogênio , Mudança Climática , Oceanos e Mares , Ecossistema , Clima Extremo
17.
PLoS One ; 19(5): e0302518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820525

RESUMO

Predation by invasive species can threaten local ecosystems and economies. The European green crab (Carcinus maenas), one of the most widespread marine invasive species, is an effective predator associated with clam and crab population declines outside of its native range. In the U.S. Pacific Northwest, green crab has recently increased in abundance and expanded its distribution, generating concern for estuarine ecosystems and associated aquaculture production. However, regionally-specific information on the trophic impacts of invasive green crab is very limited. We compared the stomach contents of green crabs collected on clam aquaculture beds versus intertidal sloughs in Willapa Bay, Washington, to provide the first in-depth description of European green crab diet at a particularly crucial time for regional management. We first identified putative prey items using DNA metabarcoding of stomach content samples. We compared diet composition across sites using prey presence/absence and an index of species-specific relative abundance. For eight prey species, we also calibrated metabarcoding data to quantitatively compare DNA abundance between prey taxa, and to describe an 'average' green crab diet at an intertidal slough versus a clam aquaculture bed. From the stomach contents of 61 green crabs, we identified 54 unique taxa belonging to nine phyla. The stomach contents of crabs collected from clam aquaculture beds were significantly different from the stomach contents of crabs collected at intertidal sloughs. Across all sites, arthropods were the most frequently detected prey, with the native hairy shore crab (Hemigrapsus oregonensis) the single most common prey item. Of the eight species calibrated with a quantitative model, two ecologically-important native species-the sand shrimp (Crangon franciscorum) and the Pacific staghorn sculpin (Leptocottus armatus)-had the highest average DNA abundance when detected in a stomach content sample. In addition to providing timely information on green crab diet, our research demonstrates the novel application of a recently developed model for more quantitative DNA metabarcoding. This represents another step in the ongoing evolution of DNA-based diet analysis towards producing the quantitative data necessary for modeling invasive species impacts.


Assuntos
Braquiúros , Código de Barras de DNA Taxonômico , Estuários , Espécies Introduzidas , Comportamento Predatório , Animais , Braquiúros/genética , Braquiúros/fisiologia , Washington , Código de Barras de DNA Taxonômico/métodos , Conteúdo Gastrointestinal/química , Bivalves/genética , Ecossistema , Cadeia Alimentar
18.
J Chromatogr A ; 1728: 465018, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38815478

RESUMO

Municipal wastewater treatment plants are required to monitor persistent organic pollutants (POPs) in their wastewater treatment related discharges and to assess the impact of the discharges on the environment and public health. One tool for monitoring chlorinated organic pollutants particularly is a gas chromatographic (GC) system coupled to a pair of halogen-specific electron capture detectors (ECDs) with helium (He) as the mobile phase. He supplies, however, has become inconsistent and unreliable lately. In its place, N2 gas is evaluated in this study as a potential substitute for He in quantifying organochlorine pesticides, polychlorinated biphenyls, chlordane congeners and toxaphene in wastewater treatment related matrices (influent, effluent, benthic sediment, mussel tissue, and biosolids/sludge). N2 is inert, inexpensive and requires no additional hardware to incorporate into the basic functions of a GC-ECD. Our results show that, with the usual data quality controls (blank, laboratory control, matrix spike/duplicate and proficiency testing samples, and the fact that certified reference materials data met requirements), N2 can replace He for regulatory purposes. And when necessary, the N2-based retention times (tN) can be predicted reliably from He-based retention times (tHe), irrespective of column chemistry or POPs (here: tN = 1.90tHe + 0.04, R2 = 0.996).


Assuntos
Hélio , Nitrogênio , Águas Residuárias , Poluentes Químicos da Água , Cromatografia Gasosa/métodos , Águas Residuárias/química , Águas Residuárias/análise , Hélio/química , Nitrogênio/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes/química , Hidrocarbonetos Clorados/análise , Bifenilos Policlorados/análise , Animais , Bivalves/química , Praguicidas/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-38797003

RESUMO

Low temperature in winter poses a threat to the Manila clam Ruditapes philippinarum in North China. However, a number of low-temperature-tolerant clams could survive such condition. It is therefore of interest to explore the survival mechanisms underlying the cold tolerance of R. philippinarum. The Zebra II population of R. philippinarum (Zebra II) from North China and the native Putian population from South China were used as experimental materials. Both populations were stressed with low-temperature and the differences in their survival rates, energy metabolism and transcriptional responses were compared. The results shown that after cold treatment at -1.9 °C, survival rate of Zebra II was higher than that of the Putian group. For both groups, the respiration, ammonia excretion, and ingestion rates continuously decreased till 0 with reductions temperature. In addition, RNA-seq revealed that as compared with the Putian group, there were 3682 up-regulated differentially expressed genes (DEGs) and 3361 down-regulated DEGs in Zebra II group. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mostly enriched in the purine, pyrimidine, and pyruvate metabolism pathways in Zebra II under low-temperature stress. Furthermore, qRT-PCR analysis further confirmed that Zebra II responded to low-temperature stress through upregulating genes involved in purine, pyrimidine, and pyruvate metabolism pathways. Taken together, all these results indicated that Zebra II has higher cold tolerance than the Putian group. Therefore, Zebra II is capable for overwintering in the intertidal zone of North China.


Assuntos
Bivalves , Metabolismo Energético , Transcriptoma , Animais , Bivalves/genética , Bivalves/fisiologia , Bivalves/metabolismo , Resposta ao Choque Frio , Temperatura Baixa , Perfilação da Expressão Gênica
20.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...