Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.665
Filtrar
1.
Physiol Plant ; 176(4): e14432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981735

RESUMO

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Assuntos
Botrytis , Brassica , Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Proteínas de Plantas , Botrytis/fisiologia , Botrytis/patogenicidade , Ciclopentanos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Brassica/microbiologia , Brassica/genética , Brassica/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas
2.
Sci Rep ; 14(1): 15794, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982208

RESUMO

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Assuntos
Biofortificação , Brassica , Hidroponia , Iodatos , Iodo , Iodo/metabolismo , Iodo/análise , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Iodatos/metabolismo , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Compostos de Potássio/metabolismo , Clorofila/metabolismo
3.
Planta ; 260(2): 49, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985323

RESUMO

MAIN CONCLUSION: We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Brassica/genética , Brassica/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Família Multigênica , Filogenia , Genoma de Planta/genética , Perfilação da Expressão Gênica
4.
Planta ; 260(2): 50, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990341

RESUMO

MAIN CONCLUSION: BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.


Assuntos
Etilenos , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Brassica/genética , Brassica/fisiologia , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo
5.
Sci Rep ; 14(1): 16555, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019971

RESUMO

Mechanized biochar field application remains challenging due to biochar's poor flowability and bulk density. Granulation of biochar with fertilizer provides a product ready for application with well-established machinery. However, it's unknown whether granulated biochar-based fertilizers (gBBF) are as effective as co-application of non-granulated biochar with fertilizer. Here, we compared a gBBF with a mineral compound fertilizer (control), and with a non-granulated biochar that was co-applied at a rate of 1.1 t ha-1 with the fertilizer in a white cabbage greenhouse pot trial. Half the pots received heavy rain simulation treatments to investigate nutrient leaching. Crop yields were not significantly increased by biochar without leaching compared to the control. With leaching, cabbage yield increased with gBBF and biochar-co-application by 14% (p > 0.05) and 34% (p < 0.05), respectively. Nitrogen leaching was reduced by 26-35% with both biochar amendments. Biochar significantly reduced potassium, magnesium, and sulfur leaching. Most nitrogen associated with gBBF was released during the trial and the granulated biochar regained its microporosity. Enriching fertilizers with biochar by granulation or co-application can improve crop yields and decrease nutrient leaching. While the gBBF yielded less biomass compared to biochar co-application, improved mechanized field application after granulation could facilitate the implementation of biochar application in agriculture.


Assuntos
Carvão Vegetal , Produtos Agrícolas , Fertilizantes , Minerais , Carvão Vegetal/química , Produtos Agrícolas/crescimento & desenvolvimento , Minerais/química , Nitrogênio/química , Brassica/crescimento & desenvolvimento , Solo/química , Nutrientes , Agricultura/métodos , Magnésio/química
6.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954148

RESUMO

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Assuntos
Brassica , Celulose , Cucumis sativus , Raios gama , Extratos Vegetais , Brassica/microbiologia , Brassica/química , Celulose/química , Cucumis sativus/microbiologia , Cucumis sativus/química , Cucumis sativus/efeitos da radiação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Microbiologia de Alimentos , Bactérias/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Embalagem de Alimentos/métodos , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Irradiação de Alimentos/métodos , Contagem de Colônia Microbiana
7.
J Med Food ; 27(7): 627-635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976324

RESUMO

Type 2 diabetes (T2D) is a serious health problem, and its prevalence is expected to increase worldwide in the years ahead. Cruciferous vegetables such as Brassica oleracea var. capitata L. (green cabbage) and Raphanus sativus L. (radish) have therapeutic properties that can be used to support the treatment of T2D. This study evaluated the effect of B. oleracea (BAE) and R. sativus (RAE) aqueous extracts on zoometric parameters, glycemic profiles, and pancreas and liver in prediabetic rats induced by a high-sucrose diet (HSD). BAE and RAE were administered to male HSD-induced Wistar rats (n = 35) at 5 and 10 mg/kg doses for 5 weeks. Zoometric and biochemical changes were measured, and then the pancreas and liver histological preparations were analyzed to observe the protective effect. BAE decreased feed intake and weight gain. Both extracts decreased fasting glucose and insulin levels compared with control (not treated), although not significantly (P > .05). The extracts significantly (P < .05) reduced homeostatic model assessment for insulin resistance, homeostasis model assessment of ß-cell function, and glucose intolerance, similar to metformin control. In addition, minor damage occurred in the pancreas and liver. The results indicated that BAE and RAE decreased weight gain, improved glucose regulation, and protected the pancreas and liver in HSD rats. Therefore, they have multiple therapeutical properties and may be helpful in the prevention of T2D.


Assuntos
Glicemia , Brassica , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Insulina , Fígado , Extratos Vegetais , Estado Pré-Diabético , Raphanus , Ratos Wistar , Animais , Brassica/química , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Ratos , Estado Pré-Diabético/tratamento farmacológico , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Raphanus/química , Insulina/sangue , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Humanos , Resistência à Insulina , Modelos Animais de Doenças
8.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004738

RESUMO

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Assuntos
Antioxidantes , Citocininas , Cinetina , Reguladores de Crescimento de Plantas , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Brassica/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Purinas , Fotossíntese/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-39016536

RESUMO

A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37  °C, pH 5.5-8.5, and with up to 2  % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3  % sequence similarity), Lacrimispora saccharolytica WM1T (98.1  %), and Lacrimispora algidixylanolytica SPL73T (98.1  %). The average nucleotide identity based on blast (below 87.8  %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.


Assuntos
Técnicas de Tipagem Bacteriana , Brassica , DNA Bacteriano , Ácidos Graxos , Fermentação , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Brassica/microbiologia , DNA Bacteriano/genética , Composição de Bases , Clostridiales/classificação , Clostridiales/isolamento & purificação , Clostridiales/genética , Indóis/metabolismo
10.
J Agric Food Chem ; 72(28): 16032-16044, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975781

RESUMO

Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Transcriptoma , Glucosinolatos/metabolismo , Glucosinolatos/genética , Brassica/genética , Brassica/química , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolômica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/química
11.
Sci Rep ; 14(1): 13761, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877054

RESUMO

Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.


Assuntos
Biodegradação Ambiental , Cidades , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Pennisetum/metabolismo , Clima Desértico , Solo/química , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Metais Pesados/metabolismo , Metais Pesados/análise
12.
PLoS One ; 19(6): e0304005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935598

RESUMO

Iodine deficiency in the diet globally continues to be a cause of many diseases and disabilities. Kale is a vegetable that has health-promoting potential because of many nutrients and bioactive compounds (ascorbic acid, carotenoids, glucosinolates and phenolic compounds). Brassica vegetables, including kale, have been strongly recommended as dietary adjuvants for improving health. The nutrient and health-promoting compounds in kale are significantly affected by thermal treatments. Changes in phytochemicals upon such activities may result from two contrary phenomena: breakdown of nutrients and bioactive compounds and a matrix softening effect, which increases the extractability of phytochemicals, which may be especially significant in the case of iodine-fortified kale. This study investigated changes of basic composition, iodine, vitamin C, total carotenoids and polyphenols contents as well as antioxidant activity caused by steaming, blanching and boiling processes in the levels of two cultivars of kale (green and red) non-biofortified and biofortified via the application to nutrient solutions in hydroponic of two iodoquinolines [8-hydroxy-7-iodo-5-quinolinesulfonic acid (8-OH-7-I-5QSA) and 5-chloro-7-iodo-8-quinoline (5-Cl-7-I-8-Q)] and KIO3. Thermal processes generally significantly reduced the content of the components in question and the antioxidant activity of kale, regardless of cultivar and enrichment. It was observed that the red cultivar of kale had a greater ability to accumulate and reduce iodine losses during the culinary processes. 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a protective effect against the treatments used, compared to other enrichments, thus contributing to the preservation of high iodine content.


Assuntos
Antioxidantes , Brassica , Temperatura Alta , Iodo , Brassica/química , Brassica/metabolismo , Iodo/análise , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Polifenóis/análise , Alimentos Fortificados/análise
13.
Plant Physiol Biochem ; 213: 108854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901228

RESUMO

The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Sementes , Fatores de Transcrição , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo
14.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936069

RESUMO

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Assuntos
Chumbo , Proteínas de Plantas , Proteômica , Tetrapirróis , Chumbo/toxicidade , Chumbo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Tetrapirróis/metabolismo , Tetrapirróis/biossíntese , Mostardeira/metabolismo , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Brassica/metabolismo , Brassica/efeitos dos fármacos , Brassica/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
15.
Sci Total Environ ; 945: 174013, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880131

RESUMO

Traditional heavy metal pollution, such as cadmium, impacts the transformation and risks of bisphenol pollutants (like bisphenol A, BPA), in plants, especially due to the ubiquitous presence of bromide ion. Although it has been discovered that the bromination of phenolic pollutants occurs in plants, thereby increasing the associated risks, the influence and mechanisms of bromination under complex contamination conditions involving both heavy metals and phenolic compounds remain poorly understood. This study addresses the issue by exposing Brassica chinensis L. to cadmium ion (Cd2+, 25-100 µM), with the hydroponic solution containing BPA (15 mg/L) and bromide ion (0.5 mM) in this work. It was observed that Cd2+ primarily enhanced the bromination of BPA by elevating the levels of reactive oxygen species (ROS) and the activity of peroxidase (POD) in Brassica chinensis L. The variety of bromination products within Brassica chinensis L. increased as the concentration of Cd2+ rose from 25 to 100 µM. The substitution positions of bromine were determined using Gaussian calculations and mass spectrometry analysis. The toxicity of bromination products derived from BPA was observed to increase based on Ecological Structure-Activity Relationships analysis and HepG2 cytotoxicity assays. This study provides new insights into the risks and health hazards associated with cadmium pollution, particularly its role in enhancing the bromination of bisphenol pollutants in plants.


Assuntos
Compostos Benzidrílicos , Brassica , Cádmio , Halogenação , Fenóis , Brassica/metabolismo , Brassica/efeitos dos fármacos , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/toxicidade , Fenóis/metabolismo , Fenóis/toxicidade , Cádmio/metabolismo , Cádmio/toxicidade
16.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931232

RESUMO

Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.


Assuntos
Homeostase , Isotiocianatos , Sulfóxidos , Isotiocianatos/farmacologia , Isotiocianatos/administração & dosagem , Humanos , Homeostase/efeitos dos fármacos , Animais , Glucose/metabolismo , Brassica/química , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Disponibilidade Biológica
17.
Biomolecules ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927041

RESUMO

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Assuntos
Antioxidantes , Brassica , Sequestradores de Radicais Livres , Extratos Vegetais , Folhas de Planta , Células RAW 264.7 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Folhas de Planta/química , Animais , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Brassica/química , Antioxidantes/farmacologia , Antioxidantes/química , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/química , Sicília , Glucosinolatos/farmacologia , Glucosinolatos/química
18.
Genes (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927604

RESUMO

Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.


Assuntos
Brassica , Sistemas CRISPR-Cas , Edição de Genes , Plantas Geneticamente Modificadas , Brassica/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928029

RESUMO

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Assuntos
Brassica , Ácidos Erúcicos , Ésteres , Engenharia Metabólica , Plantas Geneticamente Modificadas , Sementes , Ceras , Ácidos Erúcicos/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Huan Jing Ke Xue ; 45(6): 3543-3552, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897774

RESUMO

In order to explore the effect of Rosa roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties and realize the resource utilization of R. roxburghii pomace, a pot experiment was conducted to study the effect of R. roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties by setting five biochar application rates of 0 % (CK), 1 % (T1), 3 % (T2), 5 % (T3), and 7 % (T4). The results showed that:① The application of R. roxburghii pomace biochar could significantly improve the yield and quality of Chinese cabbage, and the effect was the best at a 5 % biochar application rate. The yield, soluble solids, soluble sugar, vitamin C, total nitrogen, total phosphorus, and total potassium content of Chinese cabbage increased by 71.51 %, 40.14 %, 33.65 %, 38.08 %, 9.03 %, 28.85 %, and 35.38 %, respectively, compared with those in CK. ② The application of biochar from R. roxburghii pomace could significantly improve soil properties and increase soil nutrient content and availability. The effect was better at a 5 % biochar application rate. The soil pH, organic matter, total nitrogen, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium content increased by 41.06 %, 134.84 %, 157.48 %, 140.79 %, 341.75 %, and 627.13 %, respectively, compared with those in CK. The contents of available Fe, Mn, Cu, and Zn and exchangeable Ca and Mg increased by 37.68 %, 61.69 %, 400.00 %, 4 648.84 %, 617.17 %, and 351.42 %, respectively, compared with those in CK. ③ The application of biochar from R. roxburghii pomace could significantly enhance soil enzyme activity. Compared with those in the CK treatment, soil urease, acid phosphatase, catalase, and sucrase increased by 51.43 %-362.86 %, 90.63 %-134.14 %, 21.40 %-85.12 %, and 82.92 %-218.43 %, respectively. ④ Redundancy analysis showed that soil AK; exchangeable Ca, SOM, and AP; and available Zn were the main factors affecting the yield and quality of Chinese cabbage, and there was a significant positive correlation between them. In summary, the application of R. roxburghii pomace biochar can significantly increase the yield and quality of Chinese cabbage and improve soil properties. The preparation of R. roxburghii pomace into biochar can provide a theoretical reference for the rational utilization of R. roxburghii pomace resources.


Assuntos
Brassica , Carvão Vegetal , Rosa , Solo , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Rosa/crescimento & desenvolvimento , Solo/química , Fertilizantes , Nitrogênio , Biomassa , Controle de Qualidade , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA