Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.698
Filtrar
1.
PLoS One ; 18(1): e0280246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652493

RESUMO

Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Tolerância ao Sal/genética , Brassicaceae/fisiologia , Arabidopsis/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Commun ; 14(1): 290, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653415

RESUMO

Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.


Assuntos
Brassicaceae , Herbicidas , Humanos , Animais , Brassicaceae/genética , Plantas Daninhas/genética , Solo , Estágios do Ciclo de Vida
3.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614228

RESUMO

Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.


Assuntos
Brassicaceae , Plasmodioforídeos , Brassicaceae/genética , Melhoramento Vegetal , Resistência à Doença/genética , Genes de Plantas , China , Plasmodioforídeos/genética , Doenças das Plantas/genética
4.
Sci Total Environ ; 863: 160940, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528102

RESUMO

Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China. In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations up to 6000 µg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8-223, while the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concentrations in plant tissues and those in the soil (r2 = 0.71-0.84). Synchrotron radiation X-ray fluorescence with focused X-ray (µ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tolerant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for phytoremediating Hg-contaminated farmlands.


Assuntos
Brassicaceae , Cardamine , Mercúrio , Selênio , Poluentes do Solo , Mercúrio/análise , Solo , Poluentes do Solo/análise
5.
Mol Plant Microbe Interact ; 35(1): 39-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34546764

RESUMO

Albugo candida is an obligate oomycete pathogen that infects many plants in the Brassicaceae family. We resequenced the genome of isolate Ac2V using PacBio long reads and constructed an assembly augmented by Illumina reads. The Ac2VPB genome assembly is 10% larger and more contiguous compared with a previous version. Our annotation of the new assembly, aided by RNA-sequencing information, revealed a 175% expansion (40 to 110) in the CHxC effector class, which we redefined as "CCG" based on motif analysis. This class of effectors consist of arrays of phylogenetically related paralogs residing in gene sparse regions, and shows signatures of positive selection and presence/absence polymorphism. This work provides a resource that allows the dissection of the genomic components underlying A. candida adaptation and, particularly, the role of CCG effectors in virulence and avirulence on different hosts.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Brassicaceae , Oomicetos , Candida/genética , Genoma , Oomicetos/genética , Doenças das Plantas
6.
PLoS One ; 17(12): e0269736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454720

RESUMO

The green peach aphid, Myzus persicae (Sulzer) is a generalist pest of various host plants, whose feeding preference and growth performance mainly depends on the quantity and quality of nutrients and defensive metabolites in host plants. Here, we studied the preference and performance of M. persicae on three major Brassicaceae vegetables in China and measured nutrient (amino acids) and defensive metabolites (glucosinolates) in these plants. We found that M. persicae preferred and performed better on Chinese cabbage than cabbage and radish, which may be due to the relatively higher concentration of amino acids and lower levels of indole glucosinolates in their leaves. The glucosinolates level in cabbage leaves was ten times higher than the other two plants, while the amino acid concentration in radish was only half of the cabbage or Chinese cabbage. The higher concentration of indole glucosinolates in cabbage and lower levels of amino acids in radish may account for the poorer preference and growth of M. persicae on these two plants. These results suggest that both amino acids and glucosinolates in plants may play important roles in the preference and performance of M. persicae, which provide new knowledge for the cultivation and breeding of Brassicaceae vegetables.


Assuntos
Antifibrinolíticos , Afídeos , Brassicaceae , Raphanus , Animais , Glucosinolatos , Verduras , Aminoácidos , Melhoramento Vegetal , Indóis
7.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500524

RESUMO

Glucosinolates (GSLs) from Sysimbrium officinale and S. orientale were analyzed qualitatively and quantitatively by their desulfo-counterparts using UHPLC-DAD-MS/MS. Eight GSLs were identified in S. officinale, including Val-derived (glucoputranjivin) and Trp-derived (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) as the major ones followed by Leu-derived (Isobutyl GSL), Ile-derived (glucocochlearin) and Phe/Tyr-derived (glucosinalbin). Different S. orientale plant parts contained six GSLs, with Met-derived (progoitrin, epiprogoitrin, and gluconapin) and homoPhe-derived (gluconasturtiin) as the major ones, followed by glucosinalbin and neoglucobrassicin. GSL breakdown products obtained by hydrodistillation (HD) and microwave-assisted distillation from S. officinale, as well as isopropyl isothiocyanate, as the major volatile in both isolates, were tested for their cytotoxic activity using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Generally, all volatile isolates showed similar activity toward the three cancer cell lines. The best activity was shown by isopropyl isothiocyanate at a concentration of 100 µg/mL after 72 h of incubation, with 53.18% for MDA-MB-231, 56.61% for A549, and 60.02% for the T24 cell line.


Assuntos
Brassicaceae , Espectrometria de Massas em Tandem , Glucosinolatos/farmacologia , Glucosinolatos/metabolismo , Isotiocianatos , Brassicaceae/metabolismo
8.
J Chem Ecol ; 48(11-12): 882-899, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36525146

RESUMO

Floral scent plays a central role in plant-pollinator interactions, as flower visitors can discriminate between scent differences to recognize and forage on rewarding flowers. Changes in scent compositions might therefore lead to recognition mismatches between host plants and flower visitors. An understanding of the phenotypic plasticity of floral scent, especially in crop species, is becoming important because of climate change, e.g., increasing drought periods, and other anthropogenic influences, e.g., nitrogen (N) deposition. We have investigated the effects of the combination of progressive water deficits (dry-down) and N supplementation on floral scent emission in three Brassicaceae species (cultivated vs. wild). Individuals were randomly assigned to one of four treatments: (1) well-watered without N supplementation; (2) well-watered with N supplementation; (3) dry-down without N supplementation; (4) dry-down with N supplementation. We collected scent on day 0, 2, 7, and 14 after the commencement of the watering treatment. All samples were analyzed using gas chromatography coupled with mass spectrometry. We found that the highly cultivated Brassica napus had the lowest overall emission rate; its scent composition was affected by the interaction of watering treatment and N supplementation. Scent bouquets of the cultivated Sinapis alba also changed under these treatments. Scent bouquets of the common weed Sinapis arvensis were affected by watering treatment, but not by time and N supplementation. Furthermore, the influence of treatments on the emission rate of single compounds was highly compound-specific. Nonetheless, our study revealed that especially terpenes were negatively affected by drought-stress.


Assuntos
Brassicaceae , Humanos , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Odorantes/análise , Polinização , Terpenos/química
9.
Nutrients ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558496

RESUMO

Plasma Activated Water (PAW) has recently emerged as a promising non-chemical and non-thermal technology for the microbial decontamination of food. However, its use as a replacement for conventional disinfection solutions needs further investigation, as the impact of reactive species generated by PAW on nutritional food quality, toxicology, and safety is still unclear. The purpose of this study is to investigate how treatment with PAW affects the health-promoting properties of fresh-cut rocket salad (Eruca sativa). Therefore, the polyphenolic profile and antioxidant activity were evaluated by a combination of UHPLC-MS/MS and in vitro assays. Moreover, the effects of polyphenolic extracts on cell viability and oxidative status in Caco2 cells were assessed. PAW caused a slight reduction in the radical scavenging activity of the amphiphilic fraction over time but produced a positive effect on the total phenolic content, of about 70% in PAW-20, and an increase in the relative percentage (about 44-50%) of glucosinolate. Interestingly, the PAW polyphenol extract did not cause any cytotoxic effect and caused a lower imbalance in the redox status compared to an untreated sample. The obtained results support the use of PAW technology for fresh-cut vegetables to preserve their nutritional properties.


Assuntos
Antioxidantes , Brassicaceae , Humanos , Antioxidantes/farmacologia , Antioxidantes/análise , Brassicaceae/química , Células CACO-2 , Espectrometria de Massas em Tandem , Folhas de Planta/química , Oxirredução , Água/análise
10.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498878

RESUMO

Camelina sativa (L.) Crantz is an indispensable oilseed crop, and its seeds contain many unsaturated fatty acids. FAD (fatty acid desaturase) regulates the synthesis of unsaturated fatty acids. In this research, we performed CsFAD gene family analysis and identified 24 CsFAD genes in Camelina, which were unevenly distributed on 14 of the 19 total chromosomes. Phylogenetic analysis showed that CsFAD includes four subfamilies, supported by the conserved structures and motifs of CsFAD genes. In addition, we investigated the expression patterns of the FAD family in the different tissues of Camelina. We found that CsFAD family genes were all expressed in the stem, and CsFAD2-2 was highly expressed in the early stage of seed development. Moreover, during low temperature (4 °C) stress, we identified that the expression level of CsFAD2-2 significantly changed. By observing the transient expression of CsFAD2-2 in Arabidopsis protoplasts, we found that CsFAD2-2 was located on the nucleus. Through the detection and analysis of fatty acids, we prove that CsFAD2-2 is involved in the synthesis of linolenic acid (C18:3). In conclusion, we identified CsFAD2-2 through the phylogenetic analysis of the CsFAD gene family and further determined the fatty acid content to find that CsFAD2-2 is involved in fatty acid synthesis in Camelina.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Brassicaceae/metabolismo , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
11.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500218

RESUMO

Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g-1; 3650 days, 23.11 ± 1.22 mg g-1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g-1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.


Assuntos
Brassicaceae , Raphanus , Saponinas , Raízes de Plantas/química , Saponinas/análise , Extratos Vegetais/química
12.
Am Nat ; 200(6): E237-E247, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36409985

RESUMO

AbstractSexual ornamentation is often assumed to be costly, allowing honest signaling of individual quality, and carotenoid-based colors have been proposed to bear significant costs. If carotenoid-based colors are costly to produce, sexually selected signals should use more concentrated carotenoid pigments and have more saturated color than nonsexual signals, where honesty-guaranteeing costs are not required. We tested this prediction comparing carotenoid-based colors across canaries, goldfinches, and allies because many of these species use yellow plumage as sexual ornamentation but also have yellow rumps that appear to be nonsexual flash marks. Only in the breast, but not the rump, was there an asymmetric codistribution of male and female color saturation, with males similarly or more saturated than females, indicating evolution of breast color by sexual selection. Yellow was not consistently more saturated in the breast than in the rump, and the codistribution of rump and breast color saturation indicated that saturated rumps can persist irrespective of breast color. This challenges the assumption that carotenoid-based colors bear significant costs. The use of carotenoid coloration as sexual signals in this clade may instead be due to social costs, cost-free index mechanisms for signaling quality, and/or socially monogamous species evolving low-cost signals to mostly discriminate against the lowest-quality mates.


Assuntos
Brassicaceae , Tentilhões , Pigmentação , Animais , Feminino , Masculino , Carotenoides
13.
RNA Biol ; 19(1): 1190-1207, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36382947

RESUMO

Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular processes, including development and stress response. Many lincRNAs have been bioinformatically identified in plants, but their evolutionary dynamics and expression characteristics are still elusive. Here, we systematically identified thousands of lincRNAs in 26 plant species, including 6 non-flowering plants, investigated the conservation of the identified lincRNAs in different levels of plant lineages based on sequence and/or synteny homology and explored characteristics of the conserved lincRNAs during plant evolution and their co-expression relationship with protein-coding genes (PCGs). In addition to confirmation of the features well documented in literature for lincRNAs, such as species-specific, fewer exons, tissue-specific expression patterns and less abundantly expressed, we revealed that histone modification signals and/or binding sites of transcription factors were enriched in the conserved lincRNAs, implying their biological functionalities, as demonstrated by identifying conserved lincRNAs related to flower development in both the Brassicaceae and grass families and ancient lincRNAs potentially functioning in meristem development of non-flowering plants. Compared to PCGs, lincRNAs are more likely to be associated with transposable elements (TEs), but with different characteristics in different evolutionary lineages, for instance, the types of TEs and the variable level of association in lincRNAs with different conservativeness. Together, these results provide a comprehensive view on the evolutionary landscape of plant lincRNAs and shed new insights on the conservation and functionality of plant lincRNAs.


Assuntos
Brassicaceae , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Elementos de DNA Transponíveis/genética , Brassicaceae/genética , Éxons
14.
Am J Bot ; 109(11): 1939-1961, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36371714

RESUMO

Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.


Assuntos
Apomixia , Arabidopsis , Brassicaceae , Estudo de Associação Genômica Ampla , Brassicaceae/fisiologia , Seleção Genética , Fenótipo , Arabidopsis/genética
15.
BMC Plant Biol ; 22(1): 535, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396992

RESUMO

BACKGROUND: The yield and quality of Pugionium cornutum (L.) Gaertn., a healthy, green vegetable with low sugar and high protein contents and high medicinal value, is severely affected by autotoxicity, which is a leading factor in the formation of plant disease. To help characterize the autotoxicity mechanism of P. cornutum (L.) Gaertn., we performed transcriptomic and metabolic analysis of the roots of P. cornutum (L.) Gaertn. response to phthalic acid, an autotoxin from P. cornutum (L.) Gaertn. RESULTS: In this study, high-throughput sequencing of nine RNA-seq libraries generated from the roots.of P. cornutum (L.) Gaertn. under different phthalic acid treatments yielded 37,737 unigenes. In total, 1085 (703 upregulated and 382 downregulated) and 5998 (4385 upregulated and 1613 downregulated) DEGs were identified under 0.1 and 10 mmol·L- 1 phthalic acid treatment, respectively, compared with the control treatment. Glutathione metabolism was among the top five important enriched pathways. In total, 457 and 435 differentially accumulated metabolites were detected under 0.1 and 10 mmol·L- 1 phthalic acid treatment compared with the control, respectively, of which 223 and 253, respectively, increased in abundance. With the increase in phthalic acid concentration, the accumulation of ten metabolites increased significantly, while that of four metabolites decreased significantly, and phthalic acid, dambonitol, 4-hydroxy-butyric acid, homocitrulline, and ethyl ß-D-glucopyranoside were 100 times more abundant under the 10 mmol·L- 1 phthalic acid treatment than under the control. Seventeen differentially expressed genes significantly associated with phthalic acid content were identified. In addition, the L-histidinol content was highest under 0.1 mmol·L- 1 phthalic acid, and a total of eleven differentially expressed genes were significantly positively correlated with the L-histidinol content, all of which were annotated to heat shock proteins, aquaporins and cysteine proteases. CONCLUSIONS: Accumulation of autotoxins altered the metabolic balance in P. cornutum (L.) Gaertn. and influenced water absorption and carbon and nitrogen metabolism. These important results provide insights into the formation mechanisms of autotoxicity and for the subsequent development of new control measures to improve the production and quality of replanted plants.


Assuntos
Brassicaceae , Transcriptoma , Regulação da Expressão Gênica de Plantas , Histidinol/metabolismo , Brassicaceae/genética , Metaboloma
16.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358933

RESUMO

Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.


Assuntos
Brassicaceae , Plantas Tolerantes a Sal , Humanos , Plantas Tolerantes a Sal/genética , Brassicaceae/metabolismo , Cloreto de Sódio/farmacologia , Adaptação Fisiológica , Desenvolvimento Vegetal
18.
Proc Biol Sci ; 289(1985): 20221810, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36285500

RESUMO

We model the post-hexaploidy evolution of four genomes from the Solanaceae, a group of flowering plants comprising tomatoes, potatoes and their relatives. The hexaploidy that these genomes descend from occurred through two sequential allopolyploidy events and was marked by the unequal losses of duplicated genes from the different progenitor subgenomes. In contrast with the hexaploid Brassiceae (broccoli and its relatives), where the subgenome with the most surviving genes arrived last in the hexaploidy, among the Solanaceae the most preserved subgenome descends from one of the original two tetraploid progenitors. In fact, the last-arriving subgenome in these plants actually has the fewest surviving genes in the modern genomes. We explore whether the distribution of repetitive elements (REs) in these genomes can explain the biases in gene losses, but while the signals we find are broadly consistent with a role for high RE density in driving gene losses, the REs turn over so quickly that little signal of the RE condition at the time of paleopolyploidy is extant in the modern genomes.


Assuntos
Brassicaceae , Solanaceae , Genes Duplicados , Poliploidia , Solanaceae/genética , Evolução Molecular , Brassicaceae/genética , Viés , Genoma de Planta
19.
Sci Adv ; 8(43): eabo7683, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306367

RESUMO

Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.


Assuntos
Brassicaceae , Brassicaceae/metabolismo , Sementes/metabolismo , Fotossíntese , Folhas de Planta , Carbono/metabolismo
20.
Plant J ; 112(5): 1298-1315, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36239071

RESUMO

Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.


Assuntos
Brassica rapa , Brassicaceae , Humanos , Brassicaceae/metabolismo , Fotossíntese/genética , Produtos Agrícolas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...