Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.973
Filtrar
1.
BMC Infect Dis ; 24(1): 485, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730327

RESUMO

BACKGROUND: Neurobrucellosis (NB) is a rare and serious complication of brucellosis. Its clinical manifestations vary, with no obvious specificity. At present, there is no clear clinical diagnosis or treatment for reference. In this study, we retrospectively analyzed the clinical data for 21 patients with NB to provide reference data for its further study. METHODS: We analyzed the epidemiological and clinical manifestations, laboratory tests, imaging examinations, cerebrospinal fluid, and treatment plans of 21 patients diagnosed with NB in the Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China. RESULTS: The ages of the patients ranged from 15 to 60 years old (mean age 40.1 ± 13.33 years), the male: female ratio was 4.25:1. Thirteen patients had a history of animal (sheep, cattle) contact, three had no history of animal contact, and the contact status of four was unknown. Brucella can invade various systems of the body and show multi-system symptoms, the main general manifestations were fever (66.67%), fatigue (57.14%) and functional urination or defecation disturbance (42.86%). The main nervous system manifestations were limb weakness (52.38%) and hearing loss (47.62%).The main positive signs of the nervous system included positive pathological signs (71.43%), sensory abnormalities (52.38%), limb paralysis (42.86%). Nervous system lesions mainly included spinal cord damage (66.67%), cranial nerve involvement (61.90%), central demyelination (28.57%) and meningitis (28.57%). In patients with cranial nerve involvement, 69.23% of auditory nerve, 15.38% of optic nerve and 15.38% of oculomotor nerve were involved. The blood of eight patients was cultured for Brucella, and three (37.5%) cultures were positive and five (63.5%) negative. The cerebrospinal fluid (CSF) of eight patients was cultured for Brucella, and two (25.00%) cultures were positive and six (75.00%) negative. Nineteen of the patients underwent a serum agglutination test (SAT), 18 (94.74%) of whom were positive and one (5.26%) of whom were negative. A biochemical analysis of the CSF was performed in 21 patients, and the results were all abnormal. Nineteen patients underwent magnetic resonance imaging (MRI). Twenty-one patients were treated with doxycycline and/or rifampicin, combined with ceftriaxone, quinolone, aminoglycoside, or minocycline. After hospitalization, 15 patients improved (71.43%), two patients did not recover, and the status of four patients was unknown. CONCLUSIONS: The clinical manifestations, CSF parameters, and neurological imaging data for patients with NB show no significant specificity or correlations. When patients with unexplained neurological symptoms accompanied by fever, fatigue, and other systemic manifestations in a brucellosis epidemic area or with a history of contact with cattle, sheep, animals, or raw food are encountered in clinical practice, the possibility of NB should be considered. Treatment is based on the principles of an early, combined, and long course of treatment, and the general prognosis is good.


Assuntos
Antibacterianos , Brucelose , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/líquido cefalorraquidiano , Brucelose/diagnóstico , Brucelose/epidemiologia , Adulto , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Adolescente , Adulto Jovem , China/epidemiologia , Resultado do Tratamento , Brucella/isolamento & purificação , Animais
2.
BMC Infect Dis ; 24(1): 489, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741035

RESUMO

BACKGROUND: It is challenging to diagnose brucellosis in nonendemic regions because it is a nonspecific febrile disease. The accurate identification of Brucella spp. in clinical microbiology laboratories (CMLs) continues to pose difficulties. Most reports of misidentification are for B. melitensis, and we report a rare case of misidentified B. abortus. CASE PRESENTATION: A 67-year-old man visited an outpatient clinic complaining of fatigue, fever, and weight loss. The patient had a history of slaughtering cows with brucellosis one year prior, and his Brucella antibody tests were negative twice. After blood culture, the administration of doxycycline and rifampin was initiated. The patient was hospitalized due to a positive blood culture. Gram-negative coccobacilli were detected in aerobic blood culture bottles, but the CML's lack of experience with Brucella prevented appropriate further testing. Inaccurate identification results were obtained for a GN ID card of VITEK 2 (bioMérieux, USA) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using a MALDI Biotyper (Bruker, Germany). The strain showed 100.0% identity with Brucella spp. according to 16S rRNA sequencing. MALDI-TOF MS peaks were reanalyzed using the CDC MicrobeNet database to determine Brucella spp. (score value: 2.023). The patient was discharged after nine days of hospitalization and improved after maintaining only doxycycline for six weeks. The isolate was also identified as Brucella abortus by genomic evidence. CONCLUSION: Automated identification instruments and MALDI-TOF MS are widely used to identify bacteria in CMLs, but there are limitations in accurately identifying Brucella spp. It is important for CMLs to be aware of the possibility of brucellosis through communication with clinicians. Performing an analysis with an additional well-curated MALDI-TOF MS database such as Bruker security-relevant (SR) database or CDC MicrobeNet database is helpful for quickly identifying the genus Brucella.


Assuntos
Bacteriemia , Brucella abortus , Brucelose , Idoso , Humanos , Masculino , Brucelose/diagnóstico , Brucelose/microbiologia , Brucelose/tratamento farmacológico , Brucella abortus/isolamento & purificação , Brucella abortus/genética , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Diagnóstico Tardio , Antibacterianos/uso terapêutico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais
3.
Int Immunopharmacol ; 133: 112119, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648715

RESUMO

The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.


Assuntos
Brucelose , Flagelina , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fatores de Virulência , Animais , Camundongos , Células RAW 264.7 , Flagelina/metabolismo , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Brucelose/imunologia , Brucelose/microbiologia , Caspase 1/metabolismo , Brucella suis/patogenicidade , Brucella suis/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Inflamassomos/metabolismo , Inflamassomos/imunologia , NF-kappa B/metabolismo , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência
4.
Vet Microbiol ; 293: 110089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678845

RESUMO

Brucellosis is a zoonotic disease that affects wild and domestic animals. It is caused by members of the bacterial genus Brucella. Guanylate-binding protein 1 (GBP1) is associated with microbial infections. However, the role of GBP1 during Brucella infection remains unclear. This investigation aimed to identify the association of GBP1 with brucellosis. Results showed that Brucella infection induced GBP1 upregulation in RAW 264.7 murine macrophages. Small interfering GBP1 targeting RNAs were utilized to explore how GBP1 regulates the survival of Brucella intracellularly. Results revealed that GBP1 knockdown promoted Brucella's survival ability, activated Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammatory corpuscles, and induced pro-inflammatory cytokines IFN-γ and IL-1ß. Furthermore, Brucella stimulated the expression of GBP1 in bone marrow-derived macrophages (BMDMs) and mice. During the inhibition of GBP1 in BMDMs, the intracellular growth of Brucella increased. In comparison, GBP1 downregulation enhanced the accumulation of Brucella-induced reactive oxygen species (ROS) in macrophages. Overall, the data indicate a significant role of GBP1 in regulating brucellosis and suggest the function underlying its suppressive effect on the survival and growth of Brucella intracellularly.


Assuntos
Brucelose , Proteínas de Ligação ao GTP , Macrófagos , Animais , Camundongos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Macrófagos/microbiologia , Brucelose/microbiologia , Células RAW 264.7 , Brucella/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
5.
Mikrobiyol Bul ; 58(2): 217-223, 2024 Apr.
Artigo em Turco | MEDLINE | ID: mdl-38676588

RESUMO

Brucellosis is a zoonotic disease endemic in many developing countries, including Türkiye. Among the species that are pathogenic for humans; Brucella melitensis is isolated from livestock animals like sheep and goats, Brucella abortus from cattle and Brucella suis from pigs. Laboratory diagnosis of infection caused by Brucella species with gram-negative coccobacillus morphology; can be made through characteristic culture features, serological tests and molecular methods. Brucellosis, which has a wide distribution of clinical signs and symptoms; can cause various complications by affecting many organs and systems. Among all complications, the probability of thyroid abscess is less than 1%. In this case report; an example of thyroid abscess, one of the rare complications of brucellosis that is not frequently encountered in the literature, was presented. During the physical examination of a 45-year-old female patient who admitted with the complaint of pain in the neck area, fever, neck swelling, redness and pain that increased with palpation were detected. Leukocytosis, lymphopenia, high sedimentation and CRP, low TSH and high T4 values were detected in laboratory tests and subacute thyroiditis was considered as the preliminary diagnosis. Surgical abscess drainage was planned as the patient's clinical findings progressed during follow-up and spontaneous pus discharged from the midline of the neck. The abscess aspirate sample taken during surgical intervention and the blood culture samples taken before were evaluated microbiologically. Microorganisms that did not grow on EMB agar but grew on 5% sheep blood and chocolate agar at the 72-96th hour of incubation of culture plates; were detected to have gram-negative coccobacillus morphology and positive for catalase, oxidase and urease. Although the Wright test was negative with a titer of 1/20, the Rose Bengal test was positive, Coombs test was positive with a titer of 1/160 and the Brucellacapt test was positive with a titer of >1/5120. Microorganisms growing on culture plates were identified as B.melitensis at the species level with specific antisera. As a result of antibiotic susceptibility tests evaluated according to the European Committee on Antimicrobial Susceptibility Testing version 14.0 (EUCAST v14.0), the isolate was susceptible to rifampicin, doxycycline, gentamicin and trimethoprim-sulfamethoxazole at standart dosing regimen and susceptible to ciprofloxacin and levofloxacin at increased exposure. The patient, who was started on doxycycline and rifampicin combination treatment, was discharged without any complaints. In the diagnosis of infection due to Brucella species, which is one of the pathogens that early diagnosis and initiation of treatment greatly affects the prognosis; in addition to culture, which is the gold standard method, serological tests are also very important. If diagnosis is delayed, complications may develop due to involvement in almost every part of the body, depending on the affected organs and systems. In areas where brucellosis is endemic, patients with symptoms such as neck swelling, shortness of breath and difficulty in swallowing, thyroid tissue involvement due to brucellosis should definitely be considered etiologically.


Assuntos
Abscesso , Brucella melitensis , Brucelose , Brucella melitensis/isolamento & purificação , Brucelose/diagnóstico , Brucelose/microbiologia , Brucelose/tratamento farmacológico , Humanos , Feminino , Abscesso/microbiologia , Abscesso/diagnóstico , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Drenagem , Tireoidite Subaguda/diagnóstico , Tireoidite Subaguda/microbiologia , Tireoidite Subaguda/complicações , Doenças da Glândula Tireoide/microbiologia , Doenças da Glândula Tireoide/diagnóstico
6.
Front Immunol ; 15: 1341464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404575

RESUMO

Introduction: Guanylate-binding proteins (GBPs) are produced in response to pro-inflammatory signals, mainly interferons. The most studied cluster of GBPs in mice is on chromosome 3. It comprises the genes for GBP1-to-3, GBP5 and GBP7. In humans, all GBPs are present in a single cluster on chromosome 1. Brucella abortus is a Gram-negative bacterium known to cause brucellosis, a debilitating disease that affects both humans and animals. Our group demonstrated previously that GBPs present on murine chromosome 3 (GBPchr3) is important to disrupt Brucella-containing vacuole and GBP5 itself is important to Brucella intracellular LPS recognition. In this work, we investigated further the role of GBPs during B. abortus infection. Methods and results: We observed that all GBPs from murine chromosome 3 are significantly upregulated in response to B. abortus infection in mouse bone marrow-derived macrophages. Of note, GBP5 presents the highest expression level in all time points evaluated. However, only GBPchr3-/- cells presented increased bacterial burden compared to wild-type macrophages. Brucella DNA is an important Pathogen-Associated Molecular Pattern that could be available for inflammasome activation after BCV disruption mediated by GBPs. In this regard, we observed reduced IL-1ß production in the absence of GBP2 or GBP5, as well as in GBPchr3-/- murine macrophages. Similar result was showed by THP-1 macrophages with downregulation of GBP2 and GBP5 mediated by siRNA. Furthermore, significant reduction on caspase-1 p20 levels, LDH release and Gasdermin-D conversion into its mature form (p30 N-terminal subunit) was observed only in GBPchr3-/- macrophages. In an in vivo perspective, we found that GBPchr3-/- mice had increased B. abortus burden and higher number of granulomas per area of liver tissue, indicating increased disease severity. Discussion/conclusion: Altogether, these results demonstrate that although GBP5 presents a high expression pattern and is involved in inflammasome activation by bacterial DNA in macrophages, the cooperation of multiple GBPs from murine chromosome 3 is necessary for full control of Brucella abortus infection.


Assuntos
Brucelose , Proteínas de Ligação ao GTP , Animais , Camundongos , Brucella abortus/genética , Brucelose/microbiologia , Proteínas de Transporte/metabolismo , DNA Bacteriano , Inflamassomos/genética , Inflamassomos/metabolismo , Proteínas de Ligação ao GTP/genética
7.
Microbiol Spectr ; 12(4): e0338323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376367

RESUMO

Brucella is a zoonotic intracellular bacterium that poses threats to human health and economic security. Intracellular infection is a hallmark of the agent Brucella and a primary cause of distress, through which the bacterium regulates the host intracellular environment to promote its own colonization and replication, evading host immunity and pharmaceutical killing. Current studies of Brucella intracellular processes are typically premised on bacterial phenotype such as intracellular bacterial survival, followed by biochemical or molecular biological approaches to reveal detailed mechanisms. While such processes can deepen the understanding of Brucella-host interaction, the insights into host alterations in infection would be easily restricted to known pathways. In the current study, we applied CRISPR Cas9 screen to identify host genes that are most affected by Brucella infection on cell viability at the genomic level. As a result of CRISPR screening, we firstly identified that knockout of the negatively selected genes GOLGA6L6, DEFB103B, OR4F29, and ERCC6 attenuate the viability of both the host cells and intracellular Brucella, suggesting these genes to be potential therapeutic targets for Brucella control. In particular, knockout of DEFB103B diminished Brucella intracellular survival by altering host cell autophagy. Conversely, knockout of positive screening genes promoted intracellular proliferation of Brucella. In summary, we screened host genes at the genomic level throughout Brucella infection, identified host genes that are previously not recognized to be involved in Brucella infection, and provided targets for intracellular infection control.IMPORTANCEBrucella is a Gram-negative bacterium that infects common mammals causing arthritis, myalgia, neuritis, orchitis, or miscarriage and is difficult to cure with antibiotics due to its intracellular parasitism. Therefore, unraveling the mechanism of Brucella-host interactions will help controlling Brucella infections. CRISPR-Cas9 is a gene editing technology that directs knockout of individual target genes by guided RNA, from which genome-wide gene-knockout cell libraries can be constructed. Upon infection with Brucella, the cell library would show differences in viability as a result of the knockout and specific genes could be revealed by genomic DNA sequencing. As a result, genes affecting cell viability during Brucella infection were identified. Further testing of gene function may reveal the mechanisms of Brucella-host interactions, thereby contributing to clinical therapy.


Assuntos
Brucella , Brucelose , Animais , Humanos , Brucella/genética , Brucelose/microbiologia , Edição de Genes , Mamíferos
8.
Braz J Microbiol ; 55(1): 429-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228936

RESUMO

INTRODUCTION: Aminoglycosides are vital antibiotics for treating Brucella infections, because they interfere with bacterial protein production and are often combined with other antibiotics. They are cost-effective, have fewer side effects, and can penetrate biofilms. The prevalence of brucellosis has increased in recent years, increasing the need for effective treatments. In addition, the emergence of multidrug-resistant Brucella strains has highlighted the need for an updated and comprehensive understanding of aminoglycoside resistance. This systematic review aimed to provide a comprehensive overview of the global prevalence of aminoglycoside resistance in B. melitensis and B. abortus. METHODS: A systematic search of online databases was conducted and eligible studies met certain criteria and were published in English. Quality assessment was performed using the JBI Checklist. A random-effects model was fitted to the data, and meta-regression, subgroup, and outlier/influential analyses were performed. The analysis was performed using R and the metafor package. RESULTS: The results of this systematic review and meta-analysis suggested that the average prevalence rates of streptomycin, gentamicin, and amikacin resistance were 0.027 (95% confidence interval [CI], 0.015-0.049), 0.023 (95% CI, 0.017-0.032), and 0.008 (95% CI, 0.002-0.039), respectively. The prevalence of streptomycin resistance was higher in the unidentified Brucella group than in the B. abortus and B. melitensis groups (0.234, 0.046, and 0.017, respectively; p < 0.02). The prevalence of gentamicin resistance increased over time (r = 0.064; 95% CI, 0.018 to 0.111; p = 0.007). The prevalence of resistance did not correlate with the quality score for any antibiotic. Funnel plots showed a potential asymmetry for streptomycin and gentamicin. These results suggest a low prevalence of antibiotic resistance in the studied populations. CONCLUSION: The prevalence of aminoglycoside resistance in B. melitensis and B. abortus was low. However, gentamicin resistance has increased in recent years. This review provides a comprehensive and updated understanding of aminoglycoside resistance in B. melitensis and B. abortus.


Assuntos
Brucella melitensis , Brucelose , Humanos , Brucella melitensis/genética , Brucella melitensis/metabolismo , Brucella abortus/genética , Brucella abortus/metabolismo , Aminoglicosídeos/farmacologia , Prevalência , Brucelose/epidemiologia , Brucelose/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Estreptomicina/metabolismo , Gentamicinas/farmacologia
9.
Infect Genet Evol ; 118: 105552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218390

RESUMO

The role of the Toll-like receptor 4 (TLR4) is of recognising intracellular and extracellular pathogens and of activating the immune response. This process can be compromised by single nucleotide polymorphisms (SNPs) which might affect the activity of several TLRs. The aim of this study is of ascertaining whether SNPs in the TLR4 of Bubalus bubalis infected by Brucella abortus, compromise the protein functionality. For this purpose, a computational analysis was performed. Next, computational predictions were confirmed by performing genotyping analysis. Finally, NMR-based metabolomics analysis was performed to identify potential biomarkers for brucellosis. The results indicate two SNPs (c. 672 A > C and c. 902 G > C) as risk factor for brucellosis in Bubalus bubalis, and three metabolites (lactate, 3-hydroxybutyrate and acetate) as biological markers for predicting the risk of developing the disease. These metabolites, together with TLR4 structural modifications in the MD2 interaction domain, are a clear signature of the immune system alteration during diverse Gram-negative bacterial infections. This suggests the possibility to extend this study to other pathogens, including Mycobacterium tuberculosis. In conclusion, this study combines multidisciplinary approaches to evaluate the biological and structural effects of SNPs on protein function.


Assuntos
Brucelose , Receptor 4 Toll-Like , Animais , Humanos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Búfalos/microbiologia , Brucelose/microbiologia , Brucella abortus , Biomarcadores
10.
Infect Immun ; 92(2): e0028923, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38174929

RESUMO

Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.


Assuntos
Brucella melitensis , Brucella , Brucelose , Animais , Humanos , Camundongos , Proteases Específicas de Ubiquitina/metabolismo , Macrófagos/microbiologia , Brucelose/microbiologia , Proteínas de Bactérias/genética , Mamíferos , Endopeptidases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
11.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139102

RESUMO

Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.


Assuntos
Brucella , Brucelose , Nanopartículas de Magnetita , Animais , Brucella/genética , Brucelose/diagnóstico , Brucelose/microbiologia , DNA , Primers do DNA/genética , Sensibilidade e Especificidade
12.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139181

RESUMO

Catalase, an antioxidant enzyme widely produced in mammalian cells and bacteria, is crucial to mitigating oxidative stress in hostile environments. This function enhances the intracellular survivability of various intracellular growth pathogens, including Brucella (B.) abortus. In this study, to determine whether the suppression of catalase can inhibit the intracellular growth of B. abortus, we employed 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, in both RAW 264.7 macrophage cells and an ICR mouse model during Brucella infection. The intracellular growth assay indicated that 3-AT exerts growth-inhibitory effects on B. abortus within macrophages. Moreover, it contributes to the accumulation of reactive oxygen species and the formation of nitric oxide. Notably, 3-AT diminishes the activation of the nucleus transcription factor (NF-κB) and modulates the cytokine secretion within infected cells. In our mouse model, the administration of 3-AT reduced the B. abortus proliferation within the spleens and livers of infected mice. This reduction was accompanied by a diminished immune response to infection, as indicated by the lowered levels of TNF-α, IL-6, and IL-10 and altered CD4+/CD8+ T-cell ratio. These results suggest the protective and immunomodulatory effects of 3-AT treatment against Brucella infection.


Assuntos
Brucella abortus , Brucelose , Animais , Camundongos , Amitrol (Herbicida)/farmacologia , Catalase , Camundongos Endogâmicos ICR , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Imunidade , Mamíferos
13.
Sci Rep ; 13(1): 20086, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973848

RESUMO

Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.


Assuntos
Brucelose , Microbiota , Humanos , Gravidez , Feminino , Animais , Cabras/microbiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Brucelose/microbiologia , Bactérias/genética , Ubiquitina Tiolesterase/genética
14.
Biomed Pharmacother ; 169: 115875, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979375

RESUMO

Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.


Assuntos
Brucella melitensis , Brucelose , Quitosana , Humanos , Quitosana/farmacologia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/prevenção & controle , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos
15.
Drug Discov Today ; 28(12): 103809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923166

RESUMO

Brucellosis, a zoonotic intracellular bacterial infection primarily transmitted through the consumption of unpasteurized milk from infected animals, remains a challenging condition to clinically control. This is mainly because of the limited effectiveness of conventional antibiotics in targeting intracellular Brucella. Micro- and nanoformulations of antibiotics, whether used as a mono- or combination therapy, have the potential to reduce the antibiotic doses required and treatment duration. Extensive research has been conducted on various organic, semiorganic, and inorganic nanomaterials with different morphologies, such as nanoparticles (NPs), nanotubes, nanowires, and nanobelts. Metal/metal oxide, lipidic, polymeric, and carbonic NPs have been widely explored to overcome the limitations of traditional formulations. In this review, we discuss the advances and challenges of these novel formulations based on recent investigations.


Assuntos
Brucella , Brucelose , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Brucelose/tratamento farmacológico , Brucelose/microbiologia
16.
Microb Biotechnol ; 16(12): 2345-2366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882474

RESUMO

Human infections caused by Brucella (called brucellosis) are among the most common zoonoses worldwide with an estimated 500,000 cases each year. Since chronic Brucella infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As a facultative intracellular bacterium, Brucella is strictly parasitic in the host cell. Here, we performed proteomic and transcriptomic and metabolomic analyses on Brucella infected patients, mice and cells that provided an extensive "map" of physiological changes in brucellosis patients and characterized the metabolic pathways essential to the response to infection, as well as the associated cellular response and molecular mechanisms. This is the first report utilizing multi-omics analysis to investigate the global response of proteins and metabolites associated with Brucella infection, and the data can provide a comprehensive insight to understand the mechanism of Brucella infection. We demonstrated that Brucella increased nucleotide synthesis in the host, consistent with increased biomass requirement. We also identified IMPDH2, a key regulatory complex that controls nucleotide synthesis during Brucella infection. Pharmacological targeting of IMPDH2, the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits B. abortus growth both in vitro and in vivo. Through screening a library of natural products, we identified oxymatrine, an alkaloid obtained primarily from Sophora roots, is a novel and selective IMPDH2 inhibitor. In further in vitro bacterial inhibition assays, oxymatrine effectively inhibited the growth of B. abortus, which was impaired by exogenous supplementation of guanosine, a salvage pathway of purine nucleotides. This moderately potent, structurally novel compound may provide clues for further design and development of efficient IMPDH2 inhibitors and also demonstrates the potential of natural compounds from plants against Brucella.


Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Camundongos , Brucella abortus/metabolismo , Proteômica , Multiômica , Brucelose/microbiologia , Brucelose/prevenção & controle , Nucleotídeos/metabolismo
17.
Prev Vet Med ; 219: 106017, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37669604

RESUMO

Stray animals are unowned free roaming, homeless, abandoned, street or sheltered animals, particularly dogs, cats and cattle. They could act as carrier of several zoonotic pathogens such as rabies virus, Mycobacterium and Brucella species. However, comprehensive information on the prevalence of zoonotic pathogens in stray animals is very limited. We conducted a systematic review as per Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) 2020 guidelines to estimate the prevalence of brucellosis in stray dogs, cats and cattle. Eligibility criteria for the study were determined using the PECOS classification (population, exposure, comparison, outcome, study design) as a tool to guide the research and adjust the search strategy. Major bibliographic databases [Web of Science, Medline, Scopus, ScienceDirect, Google Scholar and PubMed] were searched using predefined keywords for published epidemiological studies on brucellosis in stray animals (dogs, cats and cattle). Systematic assessments of all the studies since 1990-2022 were conducted and those reporting the prevalence of brucellosis in stray dogs, cats and cattle using appropriate diagnostic tests (culture, molecular, serological) were included. Studies reporting prevalence of brucellosis (Brucella infection or exposure) in kennel dogs, dairy herds, livestock farms, humans or marine species were excluded. The apparent individual test- wise prevalence along with 95% confidence intervals (CI) was estimated using Epitools. Out of 2689 studies, 37 met the inclusion criteria and were included in the systematic review. Of 37 studies, 28 (75.7%) were conducted in stray dogs, 7 (18.9%) in cattle and 2 (5.4%) in cats. Furthermore, only 21.62% studies (8/37) used probabilistic random sampling approaches and 13.51% studies (5/37) explained and justified the study sample size using appropriate methods for estimation of disease prevalence in the study populations. Higher sero-prevalence in stray dogs has been reported in studies conducted in Jordan (38.0% (95% CI: 24.0-54.0) and Pakistan (38.0% (95% CI: 31.0-45.0) whereas no sero-positivity was recorded in the studies conducted in Brazil, North Colombia, Cyprus, South Korea and USA. All studies on brucellosis (n = 7) in stray cattle were from India; conducted in stray cattle reared in cow-shelters. Sero-prevalence in the range of 4.3%- 64.3% was reported in stray cattle. Differences in diagnostic tests and host species, as well as limited number and non-randomized studies and high statistical heterogeneity did not allow us to determine combined meta-analysed prevalence estimates. Stray animals are likely to pose a zoonotic and disease spillover risk to human and livestock populations.


Assuntos
Brucella , Brucelose , Doenças do Gato , Doenças dos Bovinos , Doenças do Cão , Feminino , Animais , Bovinos , Cães , Gatos , Humanos , Prevalência , Estudos Soroepidemiológicos , Estudos Transversais , Brucelose/epidemiologia , Brucelose/veterinária , Brucelose/microbiologia , Animais Selvagens , Gado , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia
18.
Proteomics Clin Appl ; 17(6): e2200116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532634

RESUMO

PURPOSE: Brucella canis is pathogenic for dogs and humans. Serological diagnosis is a cost-effective approach for disease surveillance, but a major drawback of current serological tests is the cross-reactivity with other bacteria that results in false positive reactions. Development of indirect tests with improved sensitivity and specificity that use selected B. canis proteins instead of the whole antigen remain a priority. EXPERIMENTAL DESIGN: A western blotting assay was developed to define the serum antibody patterns associated to infection using a panel of positive and negative dog sera. B. canis positive sera recognized immunogenic bands ranging from 7 to 30 kDa that were then submitted to ESI-LC-MS/MS and analyzed by bioinformatics tools. RESULTS: A total of 398 B. canis proteins were identified. Bioinformatics tools identified 16 non cytoplasmic immunogenic proteins predicted as non-homologous with the most important Brucella cross-reactive bacteria and nine B. canis proteins non-homologous to B. ovis; among the latter, one resulted non-homologous to B. melitensis. Data are available via ProteomeXchange with identifier PXD042682. CONCLUSIONS AND CLINICAL RELEVANCE: The western blotting test developed was able to distinguish between infected and non-infected animals and may serve as a confirmatory test for the serological diagnosis of B. canis. The mass spectrometry and in silico results lead to the identification of specific candidate antigens that pave the way for the development of more accurate indirect diagnostic tests.


Assuntos
Brucelose , Proteômica , Animais , Cães , Anticorpos Antibacterianos , Antígenos de Bactérias/análise , Brucelose/diagnóstico , Brucelose/veterinária , Brucelose/microbiologia , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Espectrometria de Massas em Tandem
19.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395662

RESUMO

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Assuntos
Brucella , Ochrobactrum , Ochrobactrum/classificação , Ochrobactrum/genética , Ochrobactrum/patogenicidade , Ochrobactrum/fisiologia , Brucella/classificação , Brucella/genética , Brucella/patogenicidade , Brucella/fisiologia , Terminologia como Assunto , Filogenia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Infecções Oportunistas/microbiologia
20.
EMBO Rep ; 24(9): e55376, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37503678

RESUMO

Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.


Assuntos
Brucella , Brucelose , Humanos , Brucelose/metabolismo , Brucelose/microbiologia , Macrófagos/metabolismo , Morte Celular , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...