Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.308
Filtrar
1.
J Environ Sci (China) ; 147: 244-258, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003044

RESUMO

4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, ß-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.


Assuntos
Caenorhabditis elegans , Estrogênios , Nitrofenóis , Reprodução , Transdução de Sinais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nitrofenóis/toxicidade , Estrogênios/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos
2.
Elife ; 132024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949652

RESUMO

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Assuntos
Caenorhabditis elegans , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Acetilação , Axônios/metabolismo , Axônios/fisiologia , Fosforilação , Regeneração Nervosa , Cinesinas/metabolismo , Cinesinas/genética
3.
Klin Onkol ; 38(3): 184-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960674

RESUMO

BACKGROUND: Early diagnosis of cancer is essential for its effective treatment. Currently, established screening tests are cancer-specific and require screening for each type of cancer separately. The primary objective of cancer research is to develop methods that can detect multiple types of tumors from a single body fluid sample. Multicancer early detection tests aim to detect fragments of circulating tumor DNA, cell-free DNA, circulating microRNAs, or proteins released by cancer cells in the patient's body fluids. However, these tests are not suitable for routine cancer prevention due to their high cost. Therefore, in recent years, cancer screening tests have been developed to detect volatile organic compounds in urine using living organisms, such as nematodes, Caenorhabditis elegans. Measuring only 1 mm in length, C. elegans has the potential to offer a new, efficient, cost-effective, quick, and painless method to detect the presence of tumor. PURPOSE: The purpose of this review is to present an overview of the literature on the development and validation of C. elegans-based cancer detection methods. The potential benefits of these assays are significant, as they could become a valuable tool for the early identification and diagnosis of cancer, even though this research is still in its initial stages of development.


Assuntos
Caenorhabditis elegans , Detecção Precoce de Câncer , Neoplasias , Animais , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias/diagnóstico , Biomarcadores Tumorais
4.
Sci Rep ; 14(1): 15093, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956179

RESUMO

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Assuntos
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolissacarídeos , Macrófagos , Choque Séptico , Animais , Caenorhabditis elegans/efeitos dos fármacos , Camundongos , Acinetobacter baumannii/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Choque Séptico/tratamento farmacológico , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , NF-kappa B/metabolismo , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Caenorhabditis elegans
5.
Elife ; 122024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963411

RESUMO

Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Fatores de Transcrição , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Núcleo Celular/metabolismo
6.
Curr Protoc ; 4(7): e1098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967546

RESUMO

Orsay virus infection in the nematode Caenorhabditis elegans presents an opportunity to study host-virus interactions in an easily culturable, whole-animal host. Previously, a major limitation of C. elegans as a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen, C. elegans has emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability of C. elegans enables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection of C. elegans, and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of Orsay virus filtrate Support Protocol: Synchronize C. elegans development by bleaching Basic Protocol 2: Orsay virus infection Basic Protocol 3: Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT-PCR Basic Protocol 4: Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensity Basic Protocol 5: Immunofluorescent labeling of dsRNA in virus-infected intestinal tissue.


Assuntos
Caenorhabditis elegans , Animais , Caenorhabditis elegans/virologia , Caenorhabditis elegans/genética , Interações Hospedeiro-Patógeno/genética
7.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984542

RESUMO

In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Biossíntese de Proteínas , RNA Mensageiro , Proteínas de Ligação a RNA , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente
8.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984540

RESUMO

Germ granules have been hypothesized to deliver mRNAs of germ cell fate determinants to primordial germ cells. Now, a new study in Development finds that many mRNAs enriched in germ granules are not involved in germline development in Caenorhabditis elegans. To find out more about the story behind the paper, we caught up with first author Alyshia Scholl, second author Yihong Liu and corresponding author Geraldine Seydoux, Professor at Johns Hopkins University School of Medicine.


Assuntos
Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Biologia do Desenvolvimento/história , História do Século XXI , História do Século XX , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética
9.
Elife ; 122024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994733

RESUMO

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ATPases Vacuolares Próton-Translocadoras , Caenorhabditis elegans/genética , Animais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Divisão Celular Assimétrica , Apoptose , Epigênese Genética , Nucleossomos/metabolismo
10.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960623

RESUMO

In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.


Assuntos
Anáfase , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Oócitos , Fuso Acromático , Tubulina (Proteína) , Animais , Caenorhabditis elegans/metabolismo , Tubulina (Proteína)/metabolismo , Fuso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Oócitos/metabolismo , Prometáfase , Meiose/fisiologia , Proteína ran de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Cromatina/metabolismo , Segregação de Cromossomos
11.
Appl Microbiol Biotechnol ; 108(1): 418, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012538

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.


Assuntos
4-Butirolactona , Biofilmes , Caenorhabditis elegans , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/metabolismo , Antibacterianos/farmacologia , Perfilação da Expressão Gênica , Homosserina/análogos & derivados , Homosserina/metabolismo , Homosserina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
12.
Curr Biol ; 34(14): R693-R696, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39043144

RESUMO

Cells experience dynamic internal and external forces during animal development. Two new studies reveal critical and unexpected roles for cytoskeletal regulators and nuclear positioning in maintaining the physical integrity of migrating leader cells during Caenorhabditis elegans organogenesis.


Assuntos
Caenorhabditis elegans , Movimento Celular , Organogênese , Animais , Caenorhabditis elegans/fisiologia , Movimento Celular/fisiologia , Organogênese/fisiologia , Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética
13.
Curr Biol ; 34(14): R682-R684, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39043140

RESUMO

A new analysis of cytokinetic furrow ingression in the Caenorhabditis elegans zygote at high spatiotemporal resolution demonstrates that, rather than being a process of steady, spatially uniform constriction, furrow ingression is modulated by complex contractile oscillations that move around the furrow, possibly in the form of propagating waves.


Assuntos
Actomiosina , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Actomiosina/metabolismo , Citocinese/fisiologia , Zigoto/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética
14.
Sci Prog ; 107(3): 368504241264998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39043378

RESUMO

Establishing a functional nervous system is a complex process requiring tightly controlled gene expression programs to achieve the correct differentiation of distinct neuronal subtypes. The molecular programs required for neurons to acquire neuron-type-specific, and core pan-neuronal features mostly rely on sequence-specific transcription factors (TFs), which recognize and bind to cis-regulatory motifs present in the promoters of target genes. Recently, we investigated the role and mode of action of the NF-Y complex, a ubiquitously expressed transcriptional master regulator, in the Caenorhabditis elegans nervous system. We found that NFYA-1 is a pervasive regulator of neuron-specific and pan-neuronal gene batteries that are essential for neuronal development and function. Furthermore, we concluded that NFYA-1 acts cell autonomously by either directly binding to conserved motifs in target gene promoter regions or indirectly by regulating other transcriptional regulators to fine-tune gene expression. However, further studies are required to fully define the impact of the NF-Y complex on nervous system regulatory networks and how NF-Y coordinates with other TFs in this regard.


Assuntos
Fator de Ligação a CCAAT , Caenorhabditis elegans , Regulação da Expressão Gênica , Neurônios , Animais , Neurônios/metabolismo , Fator de Ligação a CCAAT/metabolismo , Fator de Ligação a CCAAT/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regiões Promotoras Genéticas , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
15.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39043420

RESUMO

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.


Assuntos
Ácido Fólico , Longevidade , Animais , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Camundongos , Masculino , Feminino , Envelhecimento/metabolismo , Dieta/métodos , Camundongos Endogâmicos C57BL , Metotrexato/farmacologia , Deficiência de Ácido Fólico/metabolismo , Caenorhabditis elegans , Saccharomyces cerevisiae/metabolismo
16.
Expert Opin Drug Metab Toxicol ; 20(7): 629-646, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984683

RESUMO

AREAS COVERED: This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION: The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.


Assuntos
Caenorhabditis elegans , Neurônios , Síndromes Neurotóxicas , Testes de Toxicidade , Peixe-Zebra , Animais , Neurônios/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Ratos , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Humanos , Testes de Toxicidade/métodos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Preparações de Plantas/efeitos adversos , Preparações de Plantas/toxicidade , Preparações de Plantas/farmacologia , Embrião não Mamífero/efeitos dos fármacos
17.
PLoS Genet ; 20(7): e1011345, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985845

RESUMO

The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Nucleossomos , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Animais , Caenorhabditis elegans/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Cromatina/metabolismo , Transcrição Gênica , Regulação da Expressão Gênica/genética , Heterocromatina/genética , Heterocromatina/metabolismo , RNA de Interação com Piwi
18.
PLoS Biol ; 22(7): e3002720, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991033

RESUMO

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutação , Complexo de Endopeptidases do Proteassoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Glicosilação , Nucleotídeos/metabolismo , Nucleotídeos/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
Curr Biol ; 34(14): 3201-3214.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991614

RESUMO

The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.


Assuntos
Actomiosina , Caenorhabditis elegans , Citocinese , Citocinese/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Actomiosina/metabolismo , Fenômenos Biomecânicos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Retroalimentação Fisiológica , Proteína rhoA de Ligação ao GTP/metabolismo , Embrião não Mamífero/fisiologia
20.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975828

RESUMO

Environment in general and social signals in particular could alter development. In Caenorhabditis elegans, male pheromones hasten development of hermaphrodite larvae. We show that this involves acceleration of growth and both somatic and germline development during the last larval stage (L4). Larvae exposed to male pheromones spend more time in L3 and less in the quiescent period between L3 and L4. This behavioral alteration improves provision in early L4, likely allowing for faster development. Larvae must be exposed to male pheromones in late L3 for behavioral and developmental effects to occur. Latter portions of other larval stages also contain periods of heightened sensitivity to environmental signals. Behavior during the early part of the larval stages is biased toward exploration, whereas later the emphasis shifts to food consumption. We argue that this organization allows assessment of the environment to identify the most suitable patch of resources, followed by acquisition of sufficient nutrition and salient information for the developmental events in the next larval stage. Evidence from other species indicates that such coordination of behavior and development may be a general feature of larval development.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Larva , Feromônios , Animais , Larva/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Masculino , Feromônios/metabolismo , Transtornos do Desenvolvimento Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA