RESUMO
Glacier algae, which are photosynthetic microbes growing on ice, considerably reduce the surface albedo of glaciers and accelerate their melting rate. Although the growth of glacier algae can be suppressed by parasitic chytrids, the impact of chytrids on algal populations is still largely unknown. In this study, we described the morphology of the chytrid infecting the glacier alga Ancylonema nordenskioeldii and quantified the prevalence of infection in different habitats on a mountain glacier in Alaska, USA. Microscopic observations revealed three different morphological types of chytrids with distinct rhizoid shapes. Variations in the size of the sporangia were probably because of their different growth stages, indicating that they actively propagated on the glacier. The prevalence of infection did not vary among sites with different elevations but was substantially higher in cryoconite holes (20%) than on ice surfaces (4%) at all sites. This indicates that cryoconite holes are hot spots for chytrid infections of glacier algae, and the dynamics of cryoconite holes might affect the host-parasite interactions between chytrids and the glacier algae, which may in turn alter surface albedo and ice melting.
Assuntos
Ecossistema , Camada de Gelo , Alaska/epidemiologia , PrevalênciaRESUMO
The Arctic region is experiencing drastic climatic changes bringing about potential ecological shifts. Here, we explored marine biodiversity and potential species associations across eight Arctic marine areas between 2000 and 2019. We compiled species occurrences for a subset of 69 marine taxa (i.e., 26 apex predators and 43 mesopredators) and environmental factors to predict taxon-specific distributions using a multi-model ensemble approach. Arctic-wide temporal trends of species richness increased in the last 20 years and highlighted potential emerging areas of species accrual due to climate-driven species redistribution. Further, regional species associations were dominated by positive co-occurrences among species pairs with high frequencies in the Pacific and Atlantic Arctic areas. Comparative analyses of species richness, community composition, and co-occurrence between high and low summer sea ice concentrations revealed contrasting impacts of and detected areas vulnerable to sea ice changes. In particular, low (high) summer sea ice generally resulted in species gains (loss) in the inflow and loss (gains) in the outflow shelves, accompanied by substantial changes in community composition and therefore potential species associations. Overall, the recent changes in biodiversity and species co-occurrences in the Arctic were driven by pervasive poleward range shifts, especially for wide-ranging apex predators. Our findings highlight the varying regional impacts of warming and sea ice loss on Arctic marine communities and provide important insights into the vulnerability of Arctic marine areas to climate change.
Assuntos
Biodiversidade , Mudança Climática , Regiões Árticas , Camada de Gelo , Estações do Ano , EcossistemaRESUMO
Water resources sustainability in High Mountain Asia (HMA) surrounding the Tibetan Plateau (TP)-known as Asia's water tower-has triggered widespread concerns because HMA protects millions of people against water stress1,2. However, the mechanisms behind the heterogeneous trends observed in terrestrial water storage (TWS) over the TP remain poorly understood. Here we use a Lagrangian particle dispersion model and satellite observations to attribute about 1 Gt of monthly TWS decline in the southern TP during 2003-2016 to westerlies-carried deficit in precipitation minus evaporation (PME) from the southeast North Atlantic. We further show that HMA blocks the propagation of PME deficit into the central TP, causing a monthly TWS increase by about 0.5 Gt. Furthermore, warming-induced snow and glacial melt as well as drying-induced TWS depletion in HMA weaken the blocking of HMA's mountains, causing persistent northward expansion of the TP's TWS deficit since 2009. Future projections under two emissions scenarios verified by satellite observations during 2020-2021 indicate that, by the end of the twenty-first century, up to 84% (for scenario SSP245) and 97% (for scenario SSP585) of the TP could be afflicted by TWS deficits. Our findings indicate a trajectory towards unsustainable water systems in HMA that could exacerbate downstream water stress.
Assuntos
Altitude , Mudança Climática , Dessecação , Previsões , Abastecimento de Água , Humanos , Ásia , Mudança Climática/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Tibet , Congelamento , Neve , Imagens de Satélites , Chuva , Oceano Atlântico , Camada de Gelo , Conservação dos Recursos HídricosRESUMO
BACKGROUND: Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS: We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS: While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS: These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Assuntos
Bactérias , Camada de Gelo , Teorema de Bayes , Estações do Ano , Bactérias/genética , BiodiversidadeRESUMO
Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; blaAmpC 6 (100%), blaVIM-1, blaSHV and blaDHA 5 (100%) each, blaOXA-1 1 (100%), blaCMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for blaKPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in blaNDM-1, blaOXA-1, blaSHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance.
Assuntos
Antibacterianos , Camada de Gelo , Antibacterianos/farmacologia , Paquistão , Prevalência , RNA Ribossômico 16S/genética , Bactérias , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.
Assuntos
Ecossistema , Água Doce , Humanos , América do Norte , Migração Humana , Oceanos e Mares , Camada de GeloRESUMO
Under very cold conditions, delicate ice-crystal structures called frost flowers emerge on the surface of newly formed sea ice. These understudied, ephemeral structures include saline brine, organic material, inorganic nutrients, and bacterial and archaeal communities in their brine channels. Hitherto, only a few frost flowers have been studied during spring and these have been reported to be dominated by Rhizobia or members of the SAR11 clade. Here we report on the microbiome of frost flowers sampled during the winter and polar night in the Barents Sea. There was a distinct difference in community profile between the extracted DNA and RNA, but both were dominated by members of the SAR11 clade (78% relative abundance and 41.5% relative activity). The data further suggested the abundance and activity of Cand. Nitrosopumilus, Nitrospinia, and Nitrosomonas. Combined with the inference of marker genes based on the 16S rRNA gene data, this indicates that sulfur and nitrogen cycling are likely the major metabolism in these ephemeral structures.
Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Regiões Árticas , Archaea/genética , Flores , Camada de Gelo/microbiologiaRESUMO
Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.
Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Camada de Gelo , Microbiologia do SoloRESUMO
Cryoconite holes, ponds full of melting water with sediment on the bottom, are hotspots of biodiversity on glacier surfaces and host dynamic micro-ecosystems. They have been extensively investigated in different areas of the world (e.g., the Arctic, Antarctic, Alps, and Himalaya), but so far no study has described the bacterial communities of the glaciers in the Andes, the world's longest mountain range. In this study, we describe the bacterial communities of three small (< 2 km2) high-elevation (< 4200 m a.s.l.) glaciers of the Central Andes (Iver, East Iver and Morado glaciers) and two large (> 85 km2) glaciers of the Patagonian Andes (Exploradores and Perito Moreno glaciers) whose ablation tongues reach low altitude (< 300 m a.s.l.). Results show that the bacterial communities were generally similar to those observed in the cryoconite holes of other continents, but with few cyanobacteria (0.5% of sequences). The most abundant orders were Betaproteobacteriales, Cytophagales, Chitinophagales, Acetobacterales, Frankiales, Armatimonadales, Sphingobacteriales, Rhizobiales, Bacteroidales, Sphingomonadales, and Micrococcales. The bacterial communities differed between glaciers and both water pH and O2 concentration appeared to influence the bacterial community composition. This work thus provides the first description of the bacterial communities in cryoconite holes of South American glaciers.
Assuntos
Alphaproteobacteria , Cianobactérias , Ecossistema , Biodiversidade , Bacteroidetes , Camada de Gelo/microbiologia , ÁguaRESUMO
Knowledge about glacier extent, dynamics, and characteristics are important for climate change attribution and prediction. Understanding on long-term dynamics and glacier inventory is crucial, particularly for the melt-dominated and latitudinally-diverse western Himalayan glacier basins. In this study, a temporal inventory is prepared for Warwan-sub basin (WSB), utilizing satellite imageries since the 1993 (Landsat TM: 1993; ETM+: 2001, 2008; OLI: 2020) and elevation model (SRTM DEM: 2000). The base inventory was generated for the year 2001 and systematically adjusted to the glacier situations in 1993, 2008, and 2020. Results indicate that in the year 2001, WSB in the western Himalaya included 84 glaciers (> 0.02 km2) covering an area of 187.9 ± 5.8 km2. The mapping (2001) further revealed a supraglacial debris cover of 15% of the glacierized area (28.2 ± 0.9 km2). Overall, the debris cover increased by 6% between 1993 and 2020. Temporal analyses clearly suggest a period of gain in the glacierized area (2001-2008) interspersed by the two phases of decline (1993-2001 and 2008-2020). Results specify a stronger decline in the glacierized area during 1993 to 2001 (197.03 ± 6.1 to 187.9 ± 5.8 km2) than between 2008 and 2020 (188.4 ± 5.9 to 182.8 ± 5.66 km2). Remarkably, the glacierized area increased from 187.9 ± 5.8 to 188.4 ± 5.8 km2 during 2001 to 2008. In view of widespread recession of regional glaciers, the gain in the area between 2001 and 2008 represents a peculiar characteristic of WSB that needs further detailed investigation. Further analyses suggest that low-altitude, east-facing, debris-free, steep-sloped, and small glaciers experienced greater loss in the area than large, debris-covered, north-facing, gently sloped, and high-altitude glaciers. Overall, the study at the sub-basin scale reveals inherent glacier dynamics with periodic increase and decrease in the glacierized area and a notable influence of non-climatic factors in regulating spatial heterogeneity and the rate of glacier changes.
Assuntos
Monitoramento Ambiental , Camada de Gelo , Monitoramento Ambiental/métodos , Mudança Climática , Imagens de Satélites , AltitudeRESUMO
While population declines among Adélie penguins and population increases among gentoo penguins on the Western Antarctic Peninsula are well established, the logistical challenges of operating in the sea ice-heavy northern tip of the Antarctic Peninsula have prohibited reliable monitoring of seabirds in this region. Here we describe the findings of an expedition to the northern and eastern sides of the Antarctic Peninsula-a region at the nexus of two proposed Marine Protected Areas-to investigate the distribution and abundance of penguins in this region. We discovered several previously undocumented penguin colonies, completed direct surveys of three colonies initially discovered in satellite imagery, and re-surveyed several colonies last surveyed more than a decade ago. Whereas our expectation had been that the Peninsula itself would divide the areas undergoing ecological transition and the apparently more stable Weddell Sea region, our findings suggest that the actual transition zone lies in the so-called "Adélie gap," a 400-km stretch of coastline in which Adélies are notably absent. Our findings suggest that the region north and east of this gap represents a distinct ecoregion whose dynamics stand in sharp contrast to surrounding areas and is likely to be impacted by future conservation measures.
Assuntos
Spheniscidae , Animais , Regiões Antárticas , Dinâmica Populacional , Camada de Gelo , Imagens de SatélitesRESUMO
Glacier retreat raises global concerns but brings about the moment to study soil and ecosystem development. In nutrient-limited glacier forelands, the adaptability of pioneering plant and microbial species is facilitated by their interactions, including rhizosphere effects, but the details of this adaptability are not yet understood. In the rhizosphere of five pioneering plants, we comprehensively deciphered the microbial taxonomic and functional compositions. Two nitrogen-fixing microbial genera, Bradyrhizobium and Mesorhizobium, were among the most abundant taxa in the rhizomicrobiome. Moreover, several rhizobial genera, including Rhizobium, Pararhizobium, Allohrizobium, and Sinorhizobium, head the list of major modules in microbial co-occurrence networks, highlighting the vital roles of nitrogen-cycling taxa in the rhizomicrobiome of pioneering plants. Microbial genes involved in nitrogen, sulfur, phosphorus, and methane cycles were simultaneously correlated with microbial community dissimilarity, and 12 functional pathways were detected with distinct relative abundances among soils. Zooming in on the nitrogen-cycling genes, nifW, narC, nasA, nasB, and nirA were mainly responsible for the significant differences between soils. Furthermore, soil pH and the carbon/nitrogen ratio were among the topsoil properties interacting with nitrogen and sulfur cycling gene dissimilarity. These results explicitly linked biogeochemical cycling genes to the rhizomicrobiome and soil properties, revealing the roles of these genes as microbial drivers in mediating rhizosphere soil-plant-microbiome interactions.
Assuntos
Microbiota , Rizosfera , Camada de Gelo , Solo/química , Genes Microbianos , Nitrogênio/análise , Microbiologia do SoloRESUMO
Episodic failures of ice-dammed lakes have produced some of the largest floods in history, with disastrous consequences for communities in high mountains1-7. Yet, estimating changes in the activity of ice-dam failures through time remains controversial because of inconsistent regional flood databases. Here, by collating 1,569 ice-dam failures in six major mountain regions, we systematically assess trends in peak discharge, volume, annual timing and source elevation between 1900 and 2021. We show that extreme peak flows and volumes (10 per cent highest) have declined by about an order of magnitude over this period in five of the six regions, whereas median flood discharges have fallen less or have remained unchanged. Ice-dam floods worldwide today originate at higher elevations and happen about six weeks earlier in the year than in 1900. Individual ice-dammed lakes with repeated outbursts show similar negative trends in magnitude and earlier occurrence, although with only moderate correlation to glacier thinning8. We anticipate that ice dams will continue to fail in the near future, even as glaciers thin and recede. Yet widespread deglaciation, projected for nearly all regions by the end of the twenty-first century9, may bring most outburst activity to a halt.
Assuntos
Camada de Gelo , Lagos , Desastres Naturais , Inundações/história , História do Século XX , História do Século XXI , Desastres Naturais/história , Fatores de Tempo , Altitude , Estações do AnoRESUMO
Seasonally ice-covered reservoirs have both freeze-thaw and artificial regulation characteristics which could cause the accumulation of antibiotics. Florfenicol, one of the most widely used veterinary antibiotics, with an environmental persistence due to its fluorinated substituents has been detected in the suburban drinking water source reservoirs. In this study, a four-level fugacity model that is appropriate for ice-water-sediment systems was developed to predict the fate of florfenicol and assess its ecological risk in seasonally ice-covered reservoirs. The effects of freeze-thaw and artificial regulation processes on the volume variation of ice and water were considered by the model. The simulation accuracies in ice and water in the model were improved by 3.9% and 17.7%, respectively, compared with the traditional model. The results of mass transfer analysis showed that the inflow of florfenicol in tributaries and the volume variation of ice and water were the major factors influencing the concentration variation of florfenicol in the seasonally ice-covered reservoir. Additionally, ecological risk analysis showed that the values of risk quotients ranged from 0.019 to 0.038 which was consistently at a low ecological risk level. Our findings provide a modeling tool for predicting the fate of antibiotics with persistence and assessing their ecological risks in seasonally freeze-thaw reservoirs in cold regions.
Assuntos
Água Potável , Poluentes Químicos da Água , Multimídia , Antibacterianos/toxicidade , Antibacterianos/análise , Camada de Gelo , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análiseRESUMO
Although the important role of microbes in freshwater is well understood, studies on phage-host systems in such environments during ice cover are completely lacking. Here, we describe the isolation and characterization of three new bacteriophages infecting Xylophilus sp., Caudobacter sp., and Polaromonas sp. from freshwater samples taken under the ice cover of Lake Konnevesi, Finland. Lumi, Kuura, and Tiera bacteriophages have tailed icosahedral virions and double-stranded DNA. Lumi is a siphophage with a genome of 80,496 bp, and Kuura and Tiera are podophages, and their genomes are 43,205 and 45,327 bp in length, resembling viruses in the class Caudoviricetes. Their host ranges were very limited among the winter-isolated bacterial strains from Konnevesi, each infecting only their own hosts. They can infect efficiently at 4 °C, showing that they are adapted to living in lake water under ice cover. Analysis of the viral genome sequences showed that a significant number of the gene products of each virus are unique, indicating that there is unexplored viral diversity in freshwaters. To our knowledge, Lumi and Tiera are the first phages isolated on the Xylophilus sp. and Polaromonas sp. strains, allowing their exploitation in further studies of freshwater bacterial-phage interactions.
Assuntos
Bacteriófagos , Caulobacter , Comamonadaceae , Bacteriófagos/genética , Lagos , Xylophilus , Camada de GeloRESUMO
Sea ice variability patterns are highly influenced by several large-scale ocean-atmospheric oscillations. We analysed both statistical and wavelet coherence methods to examine sea ice's interannual and interdecadal variability. During the past 42-year, the total Southern Ocean sea ice extent (SIE) has expanded, while the Amundsen-Bellingshausen Sea SIE has decreased. A wavelet coherence analysis (WCA) of El Niño Southern Oscillation (ENSO) and the SIE in various sectors revealed an out-of-phase correlation between the Indian Ocean and the Ross Sea. There are significant out-of-phase correlations between sea ice variability and Indian Ocean Dipole (IOD) on an interannual scale. A consistent phase relationship was seen between SIE and Southern Annular Mode (SAM) over the past decade, with in-phase relationships advancing to out-of-phase relationships. The Interdecadal Pacific Oscillation (IPO) shifted from positive to negative after the 1990s. In recent years, SAM has had a stronger impact on sea ice variability than ENSO.
Assuntos
El Niño Oscilação Sul , Camada de Gelo , Regiões Antárticas , Oceano ÍndicoRESUMO
The Greenland Ice Sheet has a central role in the global climate system owing to its size, radiative effects and freshwater storage, and as a potential tipping point1. Weather stations show that the coastal regions are warming2, but the imprint of global warming in the central part of the ice sheet is unclear, owing to missing long-term observations. Current ice-core-based temperature reconstructions3-5 are ambiguous with respect to isolating global warming signatures from natural variability, because they are too noisy and do not include the most recent decades. By systematically redrilling ice cores, we created a high-quality reconstruction of central and north Greenland temperatures from AD 1000 until 2011. Here we show that the warming in the recent reconstructed decade exceeds the range of the pre-industrial temperature variability in the past millennium with virtual certainty (P < 0.001) and is on average 1.5 ± 0.4 degrees Celsius (1 standard error) warmer than the twentieth century. Our findings suggest that these exceptional temperatures arise from the superposition of natural variability with a long-term warming trend, apparent since AD 1800. The disproportionate warming is accompanied by enhanced Greenland meltwater run-off, implying that anthropogenic influence has also arrived in central and north Greenland, which might further accelerate the overall Greenland mass loss.
Assuntos
Clima , Aquecimento Global , Temperatura , Aquecimento Global/estatística & dados numéricos , Groenlândia , Camada de Gelo , Atividades Humanas/tendências , Movimentos da Água , CongelamentoRESUMO
Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.
Assuntos
Biodiversidade , Microbiota , Humanos , Regiões Antárticas , Camada de Gelo , Solo , PlantasRESUMO
Janthinobacterium from cold niches has been studied broadly for bioactive violacein production. However, reports on the atypical red-pigmented Janthinobacterium strains are shallow. The bioactive red prodigiosin pigment has immense pharmacological significance, including antioxidant, antimicrobial and anticancer potential. Here, we report the first complete genome of a prodigiosin-producing Janthinobacterium sp. ERMR3:09 from Sikkim Himalaya in an attempt to elucidate its cold adaptation and prodigiosin biosynthesis. Nanopore sequencing and Flye assembly of the ERMR3:09 genome resulted in a single contig of 6,262,330 bp size and 62.26% GC content. Phylogenomic analysis and genome indices indicate that ERMR3:09 is a potentially novel species of the genus Janthinobacterium. The multicopy cold-responsive genes and gene upregulation under cold stress denoted its cold adaptation mechanisms. Genome analysis identified the unique genes, gene cluster and pathway for prodigiosin biosynthesis in ERMR3:09. Considering the notable antioxidant activity, it can be the next powerhouse of bioactive prodigiosin production.