Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156.890
Filtrar
1.
Cell Biol Int ; 46(3): 475-487, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34939719

RESUMO

Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was downregulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases.


Assuntos
Cálcio , Cardiomiopatia Dilatada , Animais , Cardiomiopatia Dilatada/genética , Homeostase , Camundongos , Camundongos Knockout , Miócitos Cardíacos/fisiologia , Retículo Sarcoplasmático
2.
Cell Rep ; 40(5): 111150, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926464

RESUMO

Intestinal nematode parasites can cross the epithelial barrier, causing tissue damage and release of danger-associated molecular patterns (DAMPs) that may promote host protective type 2 immunity. We investigate whether adenosine binding to the A2B adenosine receptor (A2BAR) on intestinal epithelial cells (IECs) plays an important role. Specific blockade of IEC A2BAR inhibits the host protective memory response to the enteric helminth, Heligmosomoides polygyrus bakeri (Hpb), including disruption of granuloma development at the host-parasite interface. Memory T cell development is blocked during the primary response, and transcriptional analyses reveal profound impairment of IEC activation. Extracellular ATP is visualized 24 h after inoculation and is shown in CD39-deficient mice to be critical for the adenosine production mediating the initiation of type 2 immunity. Our studies indicate a potent adenosine-mediated IEC pathway that, along with the tuft cell circuit, is critical for the activation of type 2 immunity.


Assuntos
Adenosina , Receptor A2B de Adenosina , Adenosina/metabolismo , Trifosfato de Adenosina , Animais , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2B de Adenosina/metabolismo
3.
Signal Transduct Target Ther ; 7(1): 264, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918322

RESUMO

Metastasis is the leading cause of cancer-related death. The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis. Surgery is a common intervention for most primary solid tumors. However, surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells (ECs). Currently, there are no effective interventions to prevent distant metastasis. Here, we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models. HECTD3 depletion downregulates expression of adhesion molecules, such as VCAM-1, ICAM-1 and E-selectin, in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo. We demonstrate that HECTD3 promotes stabilization, nuclear localization and kinase activity of IKKα by ubiquitinating IKKα with K27- and K63-linked polyubiquitin chains at K296, increasing phosphorylation of histone H3 to promote NF-κB target gene transcription. Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization, while conditional knockin promotes that. IKKα kinase inhibitors prevented LPS-induced pulmonary metastasis. These findings reveal the promotional role of the HECTD3-IKKα axis in tumor hematogenous metastasis and provide a potential strategy for tumor metastasis prevention.


Assuntos
Células Endoteliais , Neoplasias , Animais , Células Endoteliais/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS One ; 17(8): e0272079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921269

RESUMO

Atherosclerosis is one of the leading causes of death worldwide. Biomathematical modelling of the underlying disease and therapy processes might be a useful aid to develop and improve preventive and treatment concepts of atherosclerosis. We here propose a biomathematical model of murine atherosclerosis under different diet and treatment conditions including lipid modulating compound and antibiotics. The model is derived by translating known biological mechanisms into ordinary differential equations and by assuming appropriate response kinetics to the applied interventions. We explicitly describe the dynamics of relevant immune cells and lipid species in atherosclerotic lesions including the degree of blood vessel occlusion due to growing plaques. Unknown model parameters were determined by fitting the predictions of model simulations to time series data derived from mice experiments. Parameter fittings resulted in a good agreement of model and data for all 13 experimental scenarios considered. The model can be used to predict the outcome of alternative treatment schedules of combined antibiotic, immune modulating, and lipid lowering agents under high fat or normal diet. We conclude that we established a comprehensive biomathematical model of atherosclerosis in mice. We aim to validate the model on the basis of further experimental data.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/etiologia , Dieta Hiperlipídica , Lipídeos , Camundongos , Camundongos Knockout , Placa Aterosclerótica/complicações
5.
Proc Natl Acad Sci U S A ; 119(32): e2106830119, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930667

RESUMO

The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.


Assuntos
Giro Denteado , Neurônios , Animais , Giro Denteado/fisiologia , Memória de Curto Prazo , Camundongos , Camundongos Knockout , Neurônios/fisiologia
6.
J Neuroinflammation ; 19(1): 201, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933343

RESUMO

BACKGROUND: Histone deacetylases (HDACs) are believed to exacerbate traumatic brain injury (TBI) based on studies using pan-HDAC inhibitors. However, the HDAC isoform responsible for the detrimental effects and the cell types involved remain unknown, which may hinder the development of specific targeting strategies that boost therapeutic efficacy while minimizing side effects. Microglia are important mediators of post-TBI neuroinflammation and critically impact TBI outcome. HDAC3 was reported to be essential to the inflammatory program of in vitro cultured macrophages, but its role in microglia and in the post-TBI brain has not been investigated in vivo. METHODS: We generated HDAC3LoxP mice and crossed them with CX3CR1CreER mice, enabling in vivo conditional deletion of HDAC3. Microglia-specific HDAC3 knockout (HDAC3 miKO) was induced in CX3CR1CreER:HDAC3LoxP mice with 5 days of tamoxifen treatment followed by a 30-day development interval. The effects of HDAC3 miKO on microglial phenotype and neuroinflammation were examined 3-5 days after TBI induced by controlled cortical impact. Neurological deficits and the integrity of white matter were assessed for 6 weeks after TBI by neurobehavioral tests, immunohistochemistry, electron microscopy, and electrophysiology. RESULTS: HDAC3 miKO mice harbored specific deletion of HDAC3 in microglia but not in peripheral monocytes. HDAC3 miKO reduced the number of microglia by 26%, but did not alter the inflammation level in the homeostatic brain. After TBI, proinflammatory microglial responses and brain inflammation were markedly alleviated by HDAC3 miKO, whereas the infiltration of blood immune cells was unchanged, suggesting a primary effect of HDAC3 miKO on modulating microglial phenotype. Importantly, HDAC3 miKO was sufficient to facilitate functional recovery for 6 weeks after TBI. TBI-induced injury to axons and myelin was ameliorated, and signal conduction by white matter fiber tracts was significantly enhanced in HDAC3 miKO mice. CONCLUSION: Using a novel microglia-specific conditional knockout mouse model, we delineated for the first time the role of microglial HDAC3 after TBI in vivo. HDAC3 miKO not only reduced proinflammatory microglial responses, but also elicited long-lasting improvement of white matter integrity and functional recovery after TBI. Microglial HDAC3 is therefore a promising therapeutic target to improve long-term outcomes after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Histona Desacetilases , Substância Branca , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Substância Branca/metabolismo
7.
Behav Brain Funct ; 18(1): 8, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933444

RESUMO

BACKGROUND: Spinocerebellar ataxia 38 (SCA38) is a rare autosomal neurological disorder characterized by ataxia and cerebellar atrophy. SCA38 is caused by mutations of ELOVL5 gene. ELOVL5 gene encodes a protein, which elongates long chain polyunsaturated fatty acids (PUFAs). Knockout mice lacking Elovl5 recapitulate SCA38 symptoms, including motor coordination impairment and disruption of cerebellar architecture. We asked whether, in Elovl5 knockout mice (Elovl5-/-), a diet with both ω3 and ω6 PUFAs downstream Elovl5 can prevent the development of SCA38 symptoms, and at which age such treatment is more effective. Elovl5-/- mice were fed either with a diet without or containing PUFAs downstream the Elovl5 enzyme, starting at different ages. Motor behavior was assessed by the balance beam test and cerebellar structure by morphometric analysis. RESULTS: The administration from birth of the diet containing PUFAs downstream Elovl5 led to a significant amelioration of the motor performance in the beam test of Elovl5-/- mice, with a reduction of foot slip errors at 6 months from 2.2 ± 0.3 to 1.3 ± 0.2 and at 8 months from 3.1 ± 0.5 to 1.9 ± 0.3. On the contrary, administration at 1 month of age or later had no effect on the motor impairment. The cerebellar Purkinje cell layer and the white matter area of Elovl5-/ -mice were not rescued even by the administration of diet from birth, suggesting that the improvement of motor performance in the beam test was due to a functional recovery of the cerebellar circuitry. CONCLUSIONS: These results suggest that the dietary intervention in SCA38, whenever possible, should be started from birth or as early as possible.


Assuntos
Ácidos Graxos , Ataxias Espinocerebelares , Animais , Cerebelo , Modelos Animais de Doenças , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos Insaturados , Camundongos , Camundongos Knockout , Ataxias Espinocerebelares/dietoterapia
8.
J Neuroinflammation ; 19(1): 202, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941644

RESUMO

BACKGROUND: Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/Mϕ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. METHODS: Mi/Mϕ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/Mϕ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/Mϕ in contact with apoptotic neurons, as well as neuronal damage. RESULTS: ASK1 was highly expressed in Mi/Mϕ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/Mϕ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/Mϕ. Conditional knockout of ASK1 increased Mi/Mϕ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. CONCLUSION: Conditional knockout of ASK1 in Mi/Mϕ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy.


Assuntos
Epilepsia , Microglia , Animais , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/metabolismo , Ácido Caínico/toxicidade , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo
9.
Elife ; 112022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942676

RESUMO

Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.


Hypoxic-ischaemic brain injury is the most common cause of disability in newborn babies. This happens when the blood supply to the brain is temporarily blocked during birth and cells do not receive the oxygen and nutrients they need to survive. Cooling the babies down after the hypoxic-ischemic attack (via a technique called hypothermic treatment) can to some extent reduce the damage caused by the injury. However, doctors still need new drugs that can protect the brain and improve its recovery after the injury has occurred. Research in mice suggests that a chemical called lactate might help the brain to recover. Lactate is produced by muscles during hard exercise to provide energy to cells when oxygen levels are low. Recent studies have shown that it can also act as a signalling molecule that binds to a receptor called HCAR1 (short for hydroxycarboxylic acid receptor) on the surface of cells. However, it is poorly understood what role HCAR1 plays in the brain and whether it helps the brain recover from a hypoxic-ischaemic injury. To investigate, Kennedy et al. compared newborn mice with and without the gene that codes for HCAR1 that had undergone a hypoxic-ischaemic brain injury. While HCAR1 did not protect the mice from the disease, it did help their brains to heal. Mice with the gene for HCAR1 partly recovered some of their damaged brain tissue six weeks after the injury. Their cells switched on thousands of genes involved in the immune system and cell cycle, resulting in new brain cells being formed that could repopulate the injured areas. In contrast, the brain tissue of mice lacking HCAR1 barely produced any new cells. These findings suggest that HCAR1 may help with brain recovery after hypoxia-ischemia in newborn mice. This could lead to the development of drugs that might reduce or repair brain damage in newborn babies. However, further studies are needed to investigate whether HCAR1 has the same effect in humans.


Assuntos
Ácido Láctico , Microglia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Hipóxia/metabolismo , Isquemia/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neurogênese , Receptores Acoplados a Proteínas G/metabolismo
10.
Oxid Med Cell Longev ; 2022: 1392896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910846

RESUMO

Although it is an essential nutrient, high choline intake directly or indirectly via its metabolite is associated with increased risk of cardiovascular disease, the mechanism of which remains to be elucidated. The present study was performed to investigate whether hydrogen sulfide (H2S) was involved in high choline-induced cardiac dysfunction and explore the potential mechanisms. We found that ejection fraction (EF) and fractional shortening (FS), the indicators of cardiac function measured by echocardiography, were significantly decreased in mice fed a diet containing 1.3% choline for 4 months as compared to the control, while applying 3,3-dimethyl-1-butanol (DMB) to suppress trimethylamine N-oxide (TMAO, a metabolite of choline) generation ameliorated the cardiac function. Subsequently, we found that feeding choline or TMAO significantly increased the protein levels of cyclic GMP-AMP (cGAMP) synthase (cGAS), stimulator of interferon genes (STING), NOD-like receptor protein 3 (NLRP3), caspase-1, and interleukin-1ß (IL-1ß) as compared to the control, which indicated the activation of cGAS-STING-NLRP3 inflammasome axis. Moreover, the protein expression of cystathionine γ-lyase (CSE), the main enzyme for H2S production in the cardiovascular system, was significantly increased after dietary supplementation with choline, but the plasma H2S levels were significantly decreased. To observe the effect of endogenous H2S, CSE knockout (KO) mice were used, and we found that the EF, FS, and plasma H2S levels in WT mice were significantly decreased after dietary supplementation with choline, while there was no difference between CSE KO + control and CSE KO + choline group. To observe the effect of exogenous H2S, mice were intraperitoneally injected with sodium hydrosulfide (NaHS, a H2S donor) for 4 months, and we found that NaHS improved the cardiac function and reduced the protein levels of cGAS, STING, NLRP3, caspase-1, and IL-1ß in mice receiving dietary choline. In conclusion, our studies revealed that high choline diet decreased plasma H2S levels and induced cardiac dysfunction via cGAS-STING-NLRP3 inflammasome axis while H2S treatment could restore the cardiac function by inhibiting cGAS-STING-NLRP3 inflammasome axis.


Assuntos
Cardiopatias , Sulfeto de Hidrogênio , Animais , Caspase 1/metabolismo , Colina/toxicidade , Cistationina gama-Liase/metabolismo , Cardiopatias/induzido quimicamente , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Inflamassomos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Nucleotidiltransferases
11.
Front Immunol ; 13: 898039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911682

RESUMO

The NLRP3 inflammasome plays an important role in intestinal homeostasis as well as inflammation. However, in vivo studies investigating the role of the NLRP3 inflammasome in inflammatory bowel disease (IBD) report contrasting results, leaving it unclear if the NLRP3 inflammasome augments or attenuates intestinal inflammation. To investigate the role of the NLRP3/caspase-1 pathway in a model of acute intestinal inflammation, we modified a previously established in vitro triple culture model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1). Using THP-1 knockout cell lines, we analyzed how the NLRP3 inflammasome and its downstream enzyme caspase-1 (CASP1) affect inflammatory parameters including barrier integrity and cytotoxicity, as well as gene expression and secretion of pro-inflammatory cytokines and mucus. Furthermore, we investigated differences in inflammation-mediated cytotoxicity towards enterocyte-like (Caco-2) or goblet-like (HT29-MTX-E12) epithelial cells. As a complementary approach, inflammation-related cytotoxicity and gene expression of cytokines was analyzed in intestinal tissue explants from wildtype (WT) and Nlrp3-/- mice. Induction of intestinal inflammation impaired the barrier, caused cytotoxicity, and altered gene expression of pro-inflammatory cytokines and mucins in vitro, while the knockout of NLRP3 and CASP1 in THP 1 cells led to attenuation of these inflammatory parameters. The knockout of CASP1 tended to show a slightly stronger attenuating effect compared to the NLRP3 knockout model. We also found that the inflammation-mediated death of goblet-like cells is NLRP3/caspase-1 dependent. Furthermore, inflammation-related cytotoxicity and upregulation of pro-inflammatory cytokines was present in ileal tissue explants from WT, but not Nlrp3-/- mice. The here presented observations indicate a pro-inflammatory and adverse role of the NLRP3 inflammasome in macrophages during acute intestinal inflammation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Células CACO-2 , Caspase 1/genética , Caspase 1/metabolismo , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Intestinos/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1
12.
Cell Rep ; 40(5): 111158, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926458

RESUMO

Dendritic cell immunoreceptor (DCIR; Clec4a2), a member of the C-type lectin receptor family, plays important roles in homeostasis of the immune and bone systems. However, the intestinal role of this molecule is unclear. Here, we show that dextran sodium sulfate (DSS)-induced colitis and azoxymethane-DSS-induced intestinal tumors are reduced in Clec4a2-/- mice independently of intestinal microbiota. STAT5 phosphorylation and expression of Csf2 and tight junction genes are enhanced, while Il17a and Cxcl2 are suppressed in the Clec4a2-/- mouse colon, which exhibits reduced infiltration of neutrophils and myeloid-derived suppressor cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) administration ameliorates DSS colitis associated with reduced Il17a and enhanced tight junction gene expression, whereas anti-GM-CSF exacerbates symptoms. Furthermore, anti-NA2, a ligand for DCIR, ameliorates colitis and prevents colorectal tumors. These observations indicate that blocking DCIR signaling ameliorates colitis and suppresses colonic tumors, suggesting DCIR as a possible target for the treatment of these diseases.


Assuntos
Colite , Neoplasias Colorretais , Animais , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo
13.
J Pharmacol Sci ; 150(1): 1-8, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926944

RESUMO

Ceramide, a central molecule of sphingolipid metabolism, is phosphorylated to ceramide-1-phosphate (C1P) by ceramide kinase (CerK). The CerK/C1P pathway regulates many cellular functions, but its roles in immune/inflammation-related (IIR) diseases in vivo are not well known. Sepsis is an acute systemic inflammatory disease accompanied by damage/dysfunction in multiple organs. In the present study, we investigated the effects of CerK knockout on the onset/progression of sepsis-related events in lipopolysaccharide (LPS)-treated sepsis-model mice. In CerK-null mice, the lethality at 48 h after i.v. injection of LPS was significantly increased compared with that in wild-type (WT) mice. The increased lethality by CerK knockout was reproduced in mice treated with i.p. injections of LPS. Changes in serum levels of 23 IIR molecules, including cytokines and chemokines, were measured. In WT mice, levels of these molecules increased 4 and/or 20 h after i.v. injection of LPS. Although the basal levels of IIR molecules were not affected, LPS-induced increases in interleukin-17 (IL-17), C-C motif chemokine ligands (CCL-2 and CCL-11), and tumor necrosis factor-α were significantly up-regulated, whereas IL-2 levels were slightly down-regulated by CerK knockout. Putative mechanisms for the CerK/C1P pathway-mediated regulation of IIR molecules and increased lethality in LPS-treated mice are discussed.


Assuntos
Lipopolissacarídeos , Sepse , Animais , Ceramidas/metabolismo , Quimiocinas , Citocinas , Deleção de Genes , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sepse/genética
14.
Sci Rep ; 12(1): 13161, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915220

RESUMO

Scientific evidence suggests that not only murine scent communication is regulated by major urinary proteins, but that their expression may also vary in response to metabolism via a yet unknown mechanism. Major urinary proteins are expressed mainly in the liver, showing a sexually dimorphic pattern with substantially higher expression in males. Here, we investigate the metabolic implications of a major urinary protein knockout in twelve-week-old male and female C57BL/6N mice during ad libitum feeding. Despite both sexes of major urinary protein knockout mice displayed numerically increased body weight and visceral adipose tissue proportions compared to sex-matched wildtype mice, the main genotype-specific metabolic differences were observed exclusively in males. Male major urinary protein knockout mice exhibited plasma and hepatic lipid accumulation accompanied by a hepatic transcriptome indicating an activation of lipogenesis. These findings match the higher major urinary protein expression in male compared to female wildtype mice, suggesting a more distinct reduction in energy requirements in male compared to female major urinary protein knockout mice. The observed sex-specific anabolic phenotype confirms a role of major urinary protein in metabolism and, since major urinary proteins are not expressed in humans, suggests the major urinary protein knockout mouse as a potential alternative model for translational metabolism research which needs to be further elucidated.


Assuntos
Fígado , Proteínas , Animais , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Proteínas/metabolismo
15.
Cell Metab ; 34(8): 1081-1082, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921814

RESUMO

Obesity is linked to inflammation and downstream metabolic dysregulation. In this issue of Cell Metabolism, Hägglöf et al. show that iNKT cells enable the accumulation of T-bet+ B cells in white adipose tissue, which in turn produce chemokine and antibody mediators that exacerbate the onset and severity of metabolic disease.


Assuntos
Doenças Metabólicas , Células T Matadoras Naturais , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Obesidade/metabolismo
16.
Oxid Med Cell Longev ; 2022: 7896371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910841

RESUMO

The period circadian regulator 2 (Per2) gene is important for the modulations of rhythmic homeostasis in the gut and liver; disruption will cause metabolic diseases, such as obesity, diabetes, and fatty liver. Herein, we investigated the alterations in intestinal metabolic and hepatic functions in Per2 knockout (Per2 -/-, KO) and wild-type (Per2 +/+, WT) mice. Growth indices, intestinal metabolomics, hepatic circadian rhythms, lipid metabolism, inflammation-related genes, antioxidant capacity, and transcriptome sequencing were performed after euthanasia. Data indicated that KO decreased the intestinal concentrations of amino acids such as γ-aminobutyric acid, aspartic acid, glycine, L-allothreonine, methionine, proline, serine, and valine while it increased the concentrations of carbohydrates such as cellobiose, D-talose, fucose, lyxose, and xylose compared with WT. Moreover, the imbalance of intestinal metabolism further seemed to induce liver dysfunction. Data indicated that Per2 knockout altered the expression of hepatic circadian rhythm genes, such as Clock, Bmal1, Per1, Per3, Cry1, and Cry2. KO also induced hepatic lipid metabolism, because of the increase of liver index and serum concentrations of low-density lipoprotein, and the upregulated expression of Pparα, Cyp7a1, and Cpt1. In addition, KO improved hepatic antioxidant capacity due to the increase activities of SOD and GSH-Px and the decrease in concentrations of MDA. Lastly, KO increased the relative expression levels of hepatic inflammation-related genes, such as Il-1ß, Il-6, Tnf-α, Myd88, and Nf-κB p65, which may potentially lead to hepatic inflammation. Overall, Per2 knockout induces gut metabolic dysregulation and may potentially trigger alterations in hepatic antioxidant and inflammation responses.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Antioxidantes/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Inflamação/genética , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 917356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937793

RESUMO

Increasing evidence suggests that aldosterone (Aldo) plays an essential role in vascular calcification which is a serious threat to cardiovascular disease (CVD) developed from chronic kidney disease (CKD). However, the exact pathogenesis of vascular calcification is still unclear. First, we established CKD-associated vascular calcification mice model and knockout mice model to investigate the causal relationship between allograft inflammatory factor 1 (AIF-1) and vascular calcification. Then, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) co-culture experiments were performed to further explore the mechanisms of calcification. The results of the Aldo intervention mice model and transgenic mice model showed that Aldo could cause calcification by increasing the AIF-1 level. The results of in vitro co-culture model of ECs and VSMCs showed that AIF-1 silence in ECs may alleviate Aldo-induced calcification of VSMCs. In conclusion, our study indicated that Aldo may induce vascular calcification related to chronic renal failure via the AIF-1 pathway which may provide a potential therapeutic target.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Aldosterona/metabolismo , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/induzido quimicamente
18.
Front Endocrinol (Lausanne) ; 13: 931318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937800

RESUMO

To study the role of Claudin (CLDN)12 in bone, we developed mice with a targeted deletion of exon2 in the Cldn12 gene for skeletal phenotype analysis. Micro-CT analysis of the secondary spongiosa of distal femurs of mice with targeted disruption of the Cldn12 gene and control littermates showed no significant genotype-specific differences in either cortical or trabecular bone parameters for either gender in 13-week-old mice. Immunohistochemistry revealed that while CLDN12 was expressed in both differentiating chondrocytes and osteoblasts of the secondary spongiosa of 3-week-old wild-type mice, its expression was restricted to differentiating chondrocytes in the articular cartilage and growth plate in adult mice. Articular cartilage area at the knee were increased by 47% in Cldn12 knockout (KO) mice compared to control littermates. Micro-CT analyses found that while the trabecular number was increased by 9% and the trabecular spacing was reduced by 9% in the femoral epiphysis of Cldn12 KO mice, neither bone volume nor bone volume adjusted for tissue volume was different between the two genotypes. The expression levels of Clusterin, Lubricin and Mmp13 were increased by 56%, 46%, and 129%, respectively, in primary articular chondrocytes derived from KO compared to control mice. Our data indicate that targeted deletion of the Cldn12 gene in mice increases articular cartilage, in part, by promoting articular chondrocyte phenotype.


Assuntos
Cartilagem Articular , Animais , Diferenciação Celular/genética , Condrócitos , Camundongos , Camundongos Knockout , Osteoblastos
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(3): 357-365, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35791930

RESUMO

Objective To explore the effects of interleukin-6 (IL-6) gene knockout on the cognitive function and pathological changes in 5×FAD transgenic mice of Alzheimer's disease.Methods IL-6+/- mice were crossed with 5×FAD mice to establish the 5×FAD;IL-6-/- mouse model,and 3-month-old and 10-month-old mice were selected for experiments.The cognitive function of mice was detected by behavioral tests,and HE staining and ß-amyloid (Aß) immunohistochemical staining were performed to detect the pathological changes of mouse brain tissue.Results The number of 5×FAD;IL-6-/- model mice (3 months old,n=20;10 months old,n=5) and 5×FAD littermate control (3 months old,n=26;10 months old,n=24) conformed to the Mendel's law.Compared with that of the 5×FAD mice at the same age,the discrimination ratio of 3-month-old 5×FAD;IL-6-/- mice increased in the novel object recognition test (q=3.890,P=0.002).Morris water maze test results showed that the 3-month-old 5×FAD;IL-6-/- mice had longer time spent in target quadrant (q=3.797,P=0.012) and more times of crossing platform (q=2.505,P=0.017) than the 5×FAD mice at the same age.The results of immunohistochemical staining showed that IL-6 knockout reduced the Aß deposition in the hippocampus (q=13.490,P=0.002;q=45.680,P<0.001) and cortex (q=16.830,P=0.001;q=14.180,P=0.001) of 5×FAD mice.Conclusion IL-6 gene knockout can significantly improve the spatial memory and reduce the Aß deposition in the brain of 5×FAD mice.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Animais , Cognição , Modelos Animais de Doenças , Flavina-Adenina Dinucleotídeo , Técnicas de Inativação de Genes , Interleucina-6 , Camundongos , Camundongos Knockout
20.
Mediators Inflamm ; 2022: 1756395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846105

RESUMO

Allergic rhinitis (AR) is an immunoglobulin E-mediated type 2 inflammation of the nasal mucosa that is mainly driven by type 2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). CD226 is a costimulatory molecule associated with inflammatory response and is mainly expressed on T cells, natural killer cells, and monocytes. This study is aimed at elucidating the role of CD226 in allergic inflammatory responses in murine AR using global and CD4+ T cell-specific Cd226 knockout (KO) mice. AR nasal symptoms were assessed based on the frequency of nose rubbing and sneezing. Hematoxylin and eosin and periodic acid-Schiff staining and quantitative real-time PCR methods were used to determine eosinophils, goblet cells, and ILC2-associated mRNA levels in the nasal tissues of mice. CD226 levels on ILC2s were detected using flow cytometry, and an immunofluorescence double staining assay was employed to determine the number of ILC2s in the nasal mucosa. The results showed that global Cd226 KO mice, but not CD4+ T cell-specific Cd226 KO mice, exhibited attenuated AR nasal symptoms. Eosinophil recruitment, goblet cell proliferation, and Th2-inflammatory cytokines were significantly reduced, which resulted in the alleviation of allergic and inflammatory responses. ILC2s in the murine nasal mucosa expressed higher levels of CD226 after ovalbumin stimulation, and CD226 deficiency led to a reduction in the proportion of nasal ILC2s and ILC2-related inflammatory gene expression. Hence, the effect of CD226 on the AR mouse model may involve the regulation of ILC2 function rather than CD4+ T cells.


Assuntos
Imunidade Inata , Rinite Alérgica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mucosa Nasal/metabolismo , Ovalbumina , Rinite Alérgica/metabolismo , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...