Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.735.745
Filtrar
1.
ACS Appl Mater Interfaces ; 16(8): 9669-9679, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349191

RESUMO

Cell adhesion is a central process in cellular communication and regulation. Adhesion sites are triggered by specific ligand-receptor interactions inducing the clustering of both partners at the contact point. Investigating cell adhesion using microscopy techniques requires targeted fluorescent particles with a signal sensitive to the clustering of receptors and ligands at the interface. Herein, we report on simple cell or bacterial mimics, based on liquid microparticles made of lipiodol functionalized with custom-designed fluorescent lipids. These lipids are targeted toward lectins or biotin membrane receptors, and the resulting particles can be specifically identified and internalized by cells, as demonstrated by their phagocytosis in primary murine bone marrow-derived macrophages. We also evidence the possibility to sense the binding of a multivalent lectin, concanavalin A, in solution by monitoring the energy transfer between two matching fluorescent lipids on the surface of the particles. We anticipate that these liquid particle-based sensors, which are able to report via Förster resonance energy transfer (FRET) on the movement of ligands on their interface upon protein binding, will provide a useful tool to study receptor binding and cooperation during adhesion processes such as phagocytosis.


Assuntos
Biomimética , Transferência Ressonante de Energia de Fluorescência , Animais , Camundongos , Transferência Ressonante de Energia de Fluorescência/métodos , Ligação Proteica , Glicolipídeos , Lectinas/metabolismo , Ligantes , Corantes
2.
Radiology ; 310(2): e232365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349244

RESUMO

Background Image-guided tumor ablation is the first-line therapy for early-stage hepatocellular carcinoma (HCC), with ongoing investigations into its combination with immunotherapies. Matrix metalloproteinase (MMP) inhibition demonstrates immunomodulatory potential and reduces HCC tumor growth when combined with ablative treatment. Purpose To evaluate the effect of incomplete cryoablation with or without MMP inhibition on the local immune response in residual tumors in a murine HCC model. Materials and Methods Sixty 8- to 10-week-old female BALB/c mice underwent HCC induction with use of orthotopic implantation of syngeneic Tib-75 cells. After 7 days, mice with a single lesion were randomized into treatment groups: (a) no treatment, (b) MMP inhibitor, (c) incomplete cryoablation, and (d) incomplete cryoablation and MMP inhibitor. Macrophage and T-cell subsets were assessed in tissue samples with use of immunohistochemistry and immunofluorescence (cell averages calculated using five 1-µm2 fields of view [FOVs]). C-X-C motif chemokine receptor type 3 (CXCR3)- and interferon γ (IFNγ)-positive T cells were assessed using flow cytometry. Groups were compared using unpaired Student t tests, one-way analysis of variance with Tukey correction, and the Kruskal-Wallis test with Dunn correction. Results Mice treated with incomplete cryoablation (n = 6) showed greater infiltration of CD206+ tumor-associated macrophages (mean, 1.52 cells per FOV vs 0.64 cells per FOV; P = .03) and MMP9-expressing cells (mean, 0.89 cells per FOV vs 0.11 cells per FOV; P = .03) compared with untreated controls (n = 6). Incomplete cryoablation with MMP inhibition (n = 6) versus without (n = 6) led to greater CD8+ T-cell (mean, 15.8% vs 8.29%; P = .04), CXCR3+CD8+ T-cell (mean, 11.64% vs 8.47%; P = .004), and IFNγ+CD8+ T-cell infiltration (mean, 11.58% vs 5.18%; P = .02). Conclusion In a mouse model of HCC, incomplete cryoablation and systemic MMP inhibition showed increased cytotoxic CD8+ T-cell infiltration into the residual tumor compared with either treatment alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Gemmete in this issue.


Assuntos
Carcinoma Hepatocelular , Criocirurgia , Neoplasias Hepáticas , Feminino , Animais , Camundongos , Carcinoma Hepatocelular/cirurgia , Inibidores de Metaloproteinases de Matriz , Neoplasias Hepáticas/cirurgia , Linfócitos T CD8-Positivos , Metaloproteinases da Matriz
3.
Diabetologia ; 67(4): 623-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349399

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is a T cell-mediated autoimmune disease characterised by pancreatic beta cell destruction. In this study, we explored the pathogenic immune responses in initiation of type 1 diabetes and new immunological targets for type 1 diabetes prevention and treatment. METHODS: We obtained peripheral blood samples from four individuals with newly diagnosed latent autoimmune diabetes in adults (LADA) and from four healthy control participants. Single-cell RNA-sequencing (scRNA-seq) was performed on peripheral blood mononuclear cells to uncover transcriptomic profiles of early LADA. Validation was performed through flow cytometry in a cohort comprising 54 LADA, 17 adult-onset type 2 diabetes, and 26 healthy adults, matched using propensity score matching (PSM) based on age and sex. A similar PSM method matched 15 paediatric type 1 diabetes patients with 15 healthy children. Further flow cytometry analysis was performed in both peripheral blood and pancreatic tissues of non-obese diabetic (NOD) mice. Additionally, cell adoptive transfer and clearance assays were performed in NOD mice to explore the role of this monocyte subset in islet inflammation and onset of type 1 diabetes. RESULTS: The scRNA-seq data showed that upregulated genes in peripheral T cells and monocytes from early-onset LADA patients were primarily enriched in the IFN signalling pathway. A new cluster of classical monocytes (cluster 4) was identified, and the proportion of this cluster was significantly increased in individuals with LADA compared with healthy control individuals (11.93% vs 5.93%, p=0.017) and that exhibited a strong IFN signature marked by SIGLEC-1 (encoding sialoadhesin). These SIGLEC-1+ monocytes expressed high levels of genes encoding C-C chemokine receptors 1 or 2, as well as genes for chemoattractants for T cells and natural killer cells. They also showed relatively low levels of genes for co-stimulatory and HLA molecules. Flow cytometry analysis verified the elevated levels of SIGLEC-1+ monocytes in the peripheral blood of participants with LADA and paediatric type 1 diabetes compared with healthy control participants and those with type 2 diabetes. Interestingly, the proportion of SIGLEC-1+ monocytes positively correlated with disease activity and negatively with disease duration in the LADA patients. In NOD mice, the proportion of SIGLEC-1+ monocytes in the peripheral blood was highest at the age of 6 weeks (16.88%), while the peak occurred at 12 weeks in pancreatic tissues (23.65%). Adoptive transfer experiments revealed a significant acceleration in diabetes onset in the SIGLEC-1+ group compared with the SIGLEC-1- or saline control group. CONCLUSIONS/INTERPRETATION: Our study identified a novel group of SIGLEC-1+ monocytes that may serve as an important indicator for early diagnosis, activity assessment and monitoring of therapeutic efficacy in type 1 diabetes, and may also be a novel target for preventing and treating type 1 diabetes. DATA AVAILABILITY: RNA-seq data have been deposited in the GSA human database ( https://ngdc.cncb.ac.cn/gsa-human/ ) under accession number HRA003649.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Animais , Criança , Humanos , Lactente , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos NOD , Monócitos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
4.
ACS Appl Mater Interfaces ; 16(8): 9868-9879, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349713

RESUMO

Injectable hydrogels are receiving increasing attention as local depots for sustained anticancer drug delivery. However, most current hydrogel-based carriers lack tissue-adhesive ability, a property that is important for the immobilization of drug-loaded systems at tumor sites to increase local drug concentration. In this study, we developed a paclitaxel (PTX)-loaded injectable hydrogel with firm tissue adhesion for localized tumor therapy. PTX-loaded bovine serum albumin (BSA) nanoparticles (PTX@BN) were prepared, and the drug-loaded hydrogel was then fabricated by cross-linking PTX@BN with o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) via a condensation reaction between OPA and the amines in BSA. The hydrogel showed firm adhesion to various organs and tumor tissues ex vivo due to the condensation reaction of unreacted OPA groups and amines in the tissues. The PTX-loaded nanocomposite hydrogels sustained PTX release over 30 days following the Korsmeyer-Peppas model and exhibited notable inhibition activities against mouse C26 colon and 4T1 breast cancer cells in vitro. Following peritumoral injection into mice with C26 or 4T1 tumors, the PTX@BN-loaded hydrogel significantly enhanced the antitumor efficacy and prolonged animal survival time compared to free PTX solutions with low systemic toxicity. Therefore, the adhesive, PTX-loaded nanocomposite hydrogels have the potential for efficient localized tumor therapy.


Assuntos
Hidrogéis , Nanopartículas , Animais , Camundongos , Adesivos , Nanogéis , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Sistemas de Liberação de Medicamentos , Albuminas , Aminas , Portadores de Fármacos , Liberação Controlada de Fármacos
5.
Cell Tissue Res ; 395(3): 285-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353742

RESUMO

Leydig cell (LCs) apoptosis is responsible for decreased serum testosterone levels during late-onset hypogonadism (LOH). Our study was designed to illustrate the regulatory effect of lncRNA XIST on LCs and to clarify its molecular mechanism of action in LOH. The Leydig cells (TM3) was treated by 300 µM H2O2 for 8 h to establish Leydig cell oxidative stress model in vitro. The expression levels of lncRNA XIST in the testicular tissues of patients with LOH were measured using fluorescence in situ hybridization (FISH). The interaction between lncRNA XIST/SIRT1 and miR-145a-5p was assessed using starBase and dual-luciferase reporter gene assays. Apoptotic cells and Caspase3 activity were determined by flow cytometry (FCM) assay. Testosterone concentration was determined by ELISA. Moreover, histological assessment of testicles in mice was performed by using HE staining and the TUNEL assay was used to determine apoptosis. We found that the lncRNA XIST was downregulated in the testicular tissues of LOH patients and mice and in H2O2-induced TM3 cells. XIST siRNA significantly promoted apoptosis, enhanced Caspase3 activity and reduced testosterone levels in H2O2-stimulated TM3 cells. Further studies showed that the miR-145a-5p inhibitor reversed the effect of XIST-siRNA on H2O2-induced Leydig cell apoptosis. MiR-145a-5p negatively regulated SIRT1 expression, and SIRT1-siRNA reversed the effects of the miR-145a-5p inhibitor on H2O2 stimulated TM3 cells. The in vivo experiments indicated that silencing of the lncRNA XIST aggravated LOH symptoms in mice. Inhibition of lncRNA XIST induces Leydig cell apoptosis through the miR-145a-5p/SIRT1 axis in the progression of LOH.


Assuntos
Hipogonadismo , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Apoptose , Proliferação de Células/genética , Peróxido de Hidrogênio , Hipogonadismo/genética , Hibridização in Situ Fluorescente , Células Intersticiais do Testículo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Testosterona/farmacologia
6.
Biomaterials ; 306: 122502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354518

RESUMO

Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Traumatismo por Reperfusão , Camundongos , Animais , Humanos , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo
7.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355799

RESUMO

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Assuntos
Desenvolvimento Embrionário , Gástrula , Humanos , Gravidez , Feminino , Camundongos , Animais , Imagem com Lapso de Tempo , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Gastrulação/genética , Mamíferos
8.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355802

RESUMO

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Assuntos
Elementos de DNA Transponíveis , RNA , Masculino , Animais , Humanos , Camundongos , Elementos de DNA Transponíveis/genética , Éxons/genética , Íntrons/genética , RNA Mensageiro
9.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355795

RESUMO

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Assuntos
Medula Óssea , Plasmócitos , Camundongos , Animais , Medula Óssea/metabolismo , Transdução de Sinais , Conexinas/genética , Conexinas/metabolismo , Trifosfato de Adenosina/metabolismo , Células da Medula Óssea
10.
Sci Rep ; 14(1): 3683, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355836

RESUMO

To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.


Assuntos
Catarata , Glaucoma de Ângulo Aberto , Animais , Humanos , Camundongos , Humor Aquoso/metabolismo , Catarata/metabolismo , Estudos Transversais , Cromatografia Gasosa-Espectrometria de Massas , Glaucoma de Ângulo Aberto/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Pressão Intraocular , Ácido Láctico/metabolismo , Retina/metabolismo
11.
Mol Nutr Food Res ; 68(4): e2200771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356045

RESUMO

SCOPE: Early diabetic retinopathy (DR) is characterized by chronic inflammation, excessive oxidative stress, and retinal microvascular damage. Syringaresinol (SYR), as a natural polyphenolic compound, has been proved to inhibit many disease progression due to its antiinflammatory and antioxidant properties. The present study focuses on exploring the effect of SYR on hyperglycemia-induced early DR as well as the underlying mechanisms. METHODS AND RESULTS: Wild-type (WT) and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout C57BL/6 mice of type 1 diabetes and high glucose (HG)-induced RF/6A cells are used as in vivo and in vitro models, respectively. This study finds that SYR protects the retinal structure and function in diabetic mice and reduces the permeability and apoptosis of HG-treated RF/6A cells. Meanwhile, SYR distinctly mitigates inflammation and oxidative stress in vivo and vitro. The retinal microvascular damages are suppressed by SYR via downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Whereas, SYR-provided protective effects are diminished in Nrf2-knockout mice, indicating that SYR improves DR progression by activating Nrf2. Similarly, SYR cannot exert protective effects against HG-induced oxidative stress and endothelial injury in small interfering RNA (siRNA)-Nrf2-transfected RF/6A cells. CONCLUSION: In summary, SYR suppresses oxidative stress via activating Nrf2 antioxidant pathway, which ameliorates retinal microvascular damage by downregulating HIF-1α/VEGF, thereby alleviating early DR progression.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Furanos , Lignanas , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Inflamação , Estresse Oxidativo
12.
Cancer Res Commun ; 4(2): 588-606, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358352

RESUMO

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Assuntos
Neoplasias Colorretais , Neutrófilos , Animais , Camundongos , Humanos , Recidiva Local de Neoplasia/metabolismo , Transdução de Sinais/genética , Neoplasias Colorretais/genética , Análise de Célula Única
13.
Biomaterials ; 306: 122505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359507

RESUMO

Atherosclerosis, a chronic inflammatory disease, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a targeted delivery system for activated and inflamed endothelium lining the plaque surface. The MoNP system is used to deliver verteporfin (VP), aimed at inhibiting YAP/TAZ specifically within arterial regions prone to atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells. When administered in mice, MoNP predominantly accumulate in intima of the atheroprone artery. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, thereby suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a lesion-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP , Células Endoteliais/metabolismo , Biomimética , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Inflamação/tratamento farmacológico
14.
Front Endocrinol (Lausanne) ; 15: 1281135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362276

RESUMO

Stress is the body's physiological reaction to a dangerous or threatening situation, leading to a state of alertness. This reaction is necessary for developing an effective adaptive response to stress and maintaining the body's homeostasis. Chronic stress, caused mainly by social stress, is what primarily affects the world's population. In the last decades, the emergence of psychological disorders in humans has become more frequent, and one of the symptoms that can be observed is aggressiveness. In the brain, stress can cause neuronal circuit alterations related to the action of hormones in the central nervous system. Leptin, for example, is a hormone capable of acting in brain regions and neuronal circuits important for behavioral and emotional regulation. This study investigated the correlation between chronic social stress, neuroendocrine disorders, and individual behavioral changes. Then, leptin and its receptors' anatomical distribution were evaluated in the brains of mice subjected to a protocol of chronic social stress. The model of spontaneous aggression (MSA) is based on grouping young mice and posterior regrouping of the same animals as adults. According to the regrouping social stress, we categorized the mice into i) harmonic, ii) attacked, and iii) aggressive animals. For leptin hormone evaluation, we quantified plasma and brain concentrations by ELISA and evaluated its receptor and isoform expression by western blotting. Moreover, we verified whether stress or changes in leptin levels interfered with the animal's body weight. Only attacked animals showed reduced plasma leptin concentration and weight gain, besides a higher expression of the high-molecular-weight leptin receptor in the amygdala and the low-molecular-weight receptor in the hippocampal region. Aggressive animals showed a reduction in the cerebral concentration of leptin in the hippocampus and a reduced high-and low-molecular-weight leptin receptor expression in the amygdala. The harmonic animals showed a reduction in the cerebral concentration of leptin in the pituitary and a reduced expression of the high-molecular-weight leptin receptor in the amygdala. We then suggest that leptin and its receptors' expression in plasma and specific brain areas are involved in how individuals react in stressful situations, such as regrouping stress in MSA.


Assuntos
Leptina , Receptores para Leptina , Adulto , Animais , Camundongos , Peso Corporal , Leptina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo
15.
Sci Immunol ; 9(92): eadj3945, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363830

RESUMO

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations, including cancer cells, with distinct cellular functions, such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here, using a polymeric STING-activating nanoparticle (PolySTING) with a shock-and-lock dual activation mechanism, we show that conventional type 1 dendritic cells (cDC1s) are essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells (Tmem173-/-) is important for antitumor efficacy. Specific depletion of cDC1 (Batf3-/-) or STING deficiency in cDC1 (XCR1creSTINGfl/fl) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wild-type cDC1 in Batf3-/- mice restored antitumor efficacy, whereas transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wild-type but not Batf3-/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival. Furthermore, STING-cDC1 signature was increased after neoadjuvant pembrolizumab therapy in patients with non-small cell lung cancer. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Células Dendríticas , DNA/metabolismo , Interferon Tipo I/metabolismo , Nanopartículas/uso terapêutico , Imunoterapia/métodos
16.
ACS Appl Mater Interfaces ; 16(8): 9640-9655, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364050

RESUMO

The successful treatment of diabetic wounds requires strategies that promote anti-inflammation, angiogenesis, and re-epithelialization of the wound. Excessive oxidative stress in diabetic ulcers (DUs) inhibits cell proliferation and hinders timely vascular formation and macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2, resulting in a persistent inflammatory environment and a nonhealing wound. We designed arginine-nanoenzyme (FTA) with mimic-catalase and arginine-loading. 2,3,4-trihydroxy benzaldehyde and arginine (Arg) were connected by a Schiff base bond, and the nanoassembly of Arg to FTA was driven by the coordination force between a ferric ion and polyphenol and noncovalent bond force such as a hydrogen bond. FTA could remove excess reactive oxygen species at the wound site in situ and convert it to oxygen to improve hypoxia. Meanwhile, Arg was released and catalytically metabolized by NO synthase in M1 to promote vascular repair in the early phase. In the late phase, the metabolite of Arg catalyzed by arginase in M2 was mainly ornithine, which played a vital role in promoting tissue repair, which implemented angiogenesis timely and prevented hypertrophic scars. Mechanistically, FTA activated the cAMP signaling pathway combined with reducing inflammation and ameliorating angiogenesis, which resulted in excellent therapeutic effects on a DU mice model.


Assuntos
Arginina , Diabetes Mellitus Experimental , Camundongos , Animais , Arginina/farmacologia , Arginina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização , Reepitelização
17.
ACS Appl Mater Interfaces ; 16(8): 9680-9689, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364813

RESUMO

Nitric oxide (NO) generated within the tumor microenvironment is an established driver of cancer progression and metastasis. Recent efforts have focused on leveraging this feature to target cancer through the development of diagnostic imaging agents and activatable chemotherapeutics. In this context, porphyrins represent an extraordinarily promising class of molecules, owing to their demonstrated use within both modalities. However, the remodeling of a standard porphyrin to afford a responsive chemical that can distinguish elevated NO from physiological levels has remained a significant research challenge. In this study, we employed a photoinduced electron transfer strategy to develop a panel of NO-activatable porphyrin photosensitizers (NOxPorfins) augmented with real-time fluorescence monitoring capabilities. The lead compound, NOxPorfin-1, features an o-phenylenediamine trigger that can effectively capture NO (via N2O3) to yield a triazole product that exhibits a 7.5-fold enhancement and a 70-fold turn-on response in the singlet oxygen quantum yield and fluorescence signal, respectively. Beyond demonstrating excellent in vitro responsiveness and selectivity toward NO, we showcase the potent photodynamic therapy (PDT) effect of NOxPorfin-1 in murine breast cancer and human non-small cellular lung cancer cells. Further, to highlight the in vivo efficacy, two key studies were executed. First, we utilized NOxPorfin-1 to ablate murine breast tumors in a site-selective manner without causing substantial collateral damage to healthy tissue. Second, we established a nascent human lung cancer model to demonstrate the unprecedented ability of NOxPorfin-1 to halt tumor growth and progression completely. The results of the latter study have tremendous implications for applying PDT to target metastatic lesions.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Humanos , Animais , Camundongos , Óxido Nítrico , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
18.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365636

RESUMO

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Assuntos
Neoplasias Encefálicas , Proteínas que Contêm Bromodomínio , Glioblastoma , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudos Prospectivos , Sindecana-1/antagonistas & inibidores , Fatores de Transcrição/genética
19.
J Transl Med ; 22(1): 161, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365674

RESUMO

BACKGROUND: The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS: Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS: Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS: Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.


Assuntos
Cardiopatias , Proteína Sequestossoma-1 , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Endotélio/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Fibrose/genética , Fibrose/metabolismo
20.
J Transl Med ; 22(1): 163, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365700

RESUMO

BACKGROUND: Soluble oligomeric forms of Tau protein have emerged as crucial players in the propagation of Tau pathology in Alzheimer's disease (AD). Our objective is to introduce a single-domain antibody (sdAb) named 2C5 as a novel radiotracer for the efficient detection and longitudinal monitoring of oligomeric Tau species in the human brain. METHODS: The development and production of 2C5 involved llama immunization with the largest human Tau isoform oligomers of different maturation states. Subsequently, 2C5 underwent comprehensive in vitro characterization for affinity and specificity via Enzyme-Linked Immunosorbent Assay and immunohistochemistry on human brain slices. Technetium-99m was employed to radiolabel 2C5, followed by its administration to healthy mice for biodistribution analysis. RESULTS: 2C5 exhibited robust binding affinity towards Tau oligomers (Kd = 6.280 nM ± 0.557) and to Tau fibers (Kd = 5.024 nM ± 0.453), with relatively weaker binding observed for native Tau protein (Kd = 1791 nM ± 8.714) and amyloid peptide (Kd > 10,000 nM). Remarkably, this SdAb facilitated immuno-histological labeling of pathological forms of Tau in neurons and neuritic plaques, yielding a high-contrast outcome in AD patients, closely mirroring the performance of reference antibodies AT8 and T22. Furthermore, 2C5 SdAb was successfully radiolabeled with 99mTc, preserving stability for up to 6 h post-radiolabeling (radiochemical purity > 93%). However, following intravenous injection into healthy mice, the predominant uptake occurred in kidneys, amounting to 115.32 ± 3.67, 97.70 ± 43.14 and 168.20 ± 34.52% of injected dose per gram (% ID/g) at 5, 10 and 45 min respectively. Conversely, brain uptake remained minimal at all measured time points, registering at 0.17 ± 0.03, 0.12 ± 0.07 and 0.02 ± 0.01% ID/g at 5, 10 and 45 min post-injection respectively. CONCLUSION: 2C5 demonstrates excellent affinity and specificity for pathological Tau oligomers, particularly in their early stages of oligomerization. However, the current limitation of insufficient blood-brain barrier penetration necessitates further modifications before considering its application in nuclear medicine imaging for humans.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/patologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Proteínas tau/química , Proteínas tau/imunologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...