Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.427
Filtrar
1.
Mol Cells ; 44(9): 688-695, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34518443

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , Isoquinolinas/farmacologia , SARS-CoV-2/crescimento & desenvolvimento , Sulfonamidas/farmacologia , Inibidores de Protease Viral/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Carbamatos/farmacologia , Linhagem Celular , Chlorocebus aethiops , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Células HEK293 , Hepacivirus/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Sofosbuvir/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores
2.
Inorg Chem ; 60(17): 12644-12650, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34392682

RESUMO

Designing a metal catalyst that addresses the major issues of solubility, stability, toxicity, cell uptake, and reactivity within complex biological milieu for bioorthogonal controlled transformation reactions is a highly formidable challenge. Herein, we report an organoiridium complex that is nontoxic and capable of the uncaging of allyloxycarbonyl-protected amines under biologically relevant conditions and within living cells. The potential applications of this uncaging chemistry have been demonstrated by the generation of diagnostic and therapeutic agents upon the activation of profluorophore and prodrug in a controlled fashion within HeLa cells, providing a valuable tool for numerous potential biological and therapeutic applications.


Assuntos
Carbamatos/farmacologia , Complexos de Coordenação/farmacologia , Pró-Fármacos/farmacologia , Carbamatos/síntese química , Catálise , Complexos de Coordenação/síntese química , Doxorrubicina/síntese química , Doxorrubicina/farmacologia , Células HeLa , Humanos , Irídio/química , Pró-Fármacos/síntese química , Rodaminas/síntese química , Rodaminas/farmacologia
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299330

RESUMO

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amidoidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Citocinas/metabolismo , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Camundongos , Microglia/patologia , Alcamidas Poli-Insaturadas/metabolismo
4.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34303192

RESUMO

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Amidas/farmacologia , Antivirais/química , Benzimidazóis/farmacologia , COVID-19/virologia , Carbamatos/farmacologia , Domínio Catalítico , Simulação por Computador , RNA-Polimerase RNA-Dependente de Coronavírus/química , Ciclopropanos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Fluorenos/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Prolina/análogos & derivados , Prolina/farmacologia , Conformação Proteica , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia
5.
Epilepsia ; 62(7): 1744-1758, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085706

RESUMO

OBJECTIVE: About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hKV ) channel hKV 7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hKV 7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hKV 7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. METHODS: Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. RESULTS: Fourteen resin acid derivatives were tested on hKV 7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hKV 7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hKV 7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hKV 11.1, hNaV 1.5, or hCaV 1.2, or on the amplitude of hKV 11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. SIGNIFICANCE: The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/prevenção & controle , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Resinas Sintéticas/farmacologia , Convulsões/prevenção & controle , Animais , Carbamatos/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Larva , Oócitos , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Especificidade por Substrato , Xenopus laevis , Peixe-Zebra
6.
Future Med Chem ; 13(15): 1285-1299, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075799

RESUMO

Aim: The aim of this study was to identify inhibition of carbonic anhydrase I and II (CA I and II) isozymes by azido sulfonyl carbamates through both in vitro and in silico approaches and also to determine the drug-likeness properties and antibacterial activities of azido sulfonyl carbamates. Methods & Results: In vitro inhibition and molecular docking studies of azido sulfonyl carbamate derivatives (1-4) on isozymes were performed. Except for derivative 4, all derivatives inhibited human CA I and II. Almost all compounds had antibacterial effects. The docking results showed that compound 3 had the best results, with binding energy of -8.20 kcal/mol for human CA I and -8.24 kcal/mol for human CA II. Conclusion: Molecule 4 inhibited only CA I. Its usage as a potential chemotherapeutic agent specific to the CA I isozyme may be considered.


Assuntos
Antibacterianos/química , Carbamatos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Carbamatos/metabolismo , Carbamatos/farmacologia , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Termodinâmica
7.
Int J Nanomedicine ; 16: 3661-3678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093011

RESUMO

Introduction: Brain ischemia is a common neurological disorder worldwide that activates a cascade of pathophysiological events involving decreases in oxygen and glucose levels. Despite substantial efforts to explore its pathogenesis, the management of ischemic neuronal injury remains an enormous challenge. Accumulating evidence suggests that VEGF modified nanofiber (NF) materials and the fatty-acid amide hydrolase (FAAH) inhibitor URB597 exert an influence on alleviating ischemic brain damage. We aimed to further investigate their effects on primary hippocampal neurons, as well as the underlying mechanisms following oxygen-glucose deprivation (OGD). Methods: Different layers of VEGF-A loaded polycaprolactone (PCL) nanofibrous membranes were first synthesized by using layer-by-layer (LBL) self-assembly of electrospinning methods. The physicochemical and biological properties of VEGF-A NF membranes, and their morphology, hydrophilicity, and controlled-release of VEGF-A were then estimated. Furthermore, the effects of VEGF-A NF and URB597 on OGD-induced mitochondrial oxidative stress, inflammatory responses, neuronal apoptosis, and endocannabinoid signaling components were assessed. Results: The VEGF-A NF membrane and URB597 can not only promote hippocampal neuron adhesion and viability following OGD but also exhibited antioxidant/anti-inflammatory and mitochondrial membrane potential protection. The VEGF-A NF membrane and URB597 also inhibited OGD-induced cellular apoptosis through activating CB1R signaling. These results indicate that VEGF-A could be controlled-released by LBL self-assembled NF membranes. Discussion: The VEGF-A NF membrane and URB597 displayed positive synergistic neuroprotective effects through the inhibition of mitochondrial oxidative stress and activation of CB1R/PI3K/AKT/BDNF signaling, suggesting that a VEGF-A loaded NF membrane and the FAAH inhibitor URB597 could be of therapeutic value in ischemic cerebrovascular diseases.


Assuntos
Benzamidas/farmacologia , Carbamatos/farmacologia , Nanofibras/química , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Endocanabinoides/metabolismo , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Membranas Artificiais , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/química
8.
Int J Mol Sci ; 22(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063297

RESUMO

Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.


Assuntos
Amidoidrolases/efeitos dos fármacos , Amidoidrolases/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Endocanabinoides/metabolismo , Hipertensão Essencial/metabolismo , Hipertensão Essencial/terapia , Acetilcolina , Animais , Aorta , Ácidos Araquidônicos , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Nitroprussiato , Alcamidas Poli-Insaturadas , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Canabinoides , Vasoconstrição , Vasodilatação/efeitos dos fármacos
9.
Molecules ; 26(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070869

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Assuntos
Dissulfiram/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Amidoidrolases/química , Ácidos Araquidônicos/química , Carbamatos/farmacologia , Dissulfiram/análogos & derivados , Endocanabinoides/química , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Hidrólise , Monoglicerídeos/química , Relação Estrutura-Atividade
10.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071439

RESUMO

In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aß42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aß42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.


Assuntos
Canabinoides/química , Receptores Colinérgicos/química , Doença de Alzheimer/tratamento farmacológico , Amidoidrolases , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Carbamatos/farmacologia , Química Farmacêutica/métodos , Colinérgicos , Cumarínicos/uso terapêutico , Desenho de Fármacos , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Conformação Proteica , Ratos , Receptores de Canabinoides , Rivastigmina/farmacologia
11.
J Med Chem ; 64(13): 9444-9457, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138573

RESUMO

Screening of a library of small polar molecules against Mycobacterium tuberculosis (Mtb) led to the identification of a potent benzoheterocyclic oxime carbamate hit series. This series was subjected to medicinal chemistry progression underpinned by structure-activity relationship studies toward identifying a compound for proof-of-concept studies and defining a lead optimization strategy. Carbamate and free oxime frontrunner compounds with good stability in liver microsomes and no hERG channel inhibition liability were identified and evaluated in vivo for pharmacokinetic properties. Mtb-mediated permeation and metabolism studies revealed that the carbamates were acting as prodrugs. Toward mechanism of action elucidation, selected compounds were tested in biology triage assays to assess their activity against known promiscuous targets. Taken together, these data suggest a novel yet unknown mode of action for these antitubercular hits.


Assuntos
Antituberculosos/farmacologia , Carbamatos/farmacologia , Compostos Heterocíclicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oximas/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oximas/química , Oximas/metabolismo , Relação Estrutura-Atividade
13.
Sci Rep ; 11(1): 10290, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986405

RESUMO

As the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic engulfs millions worldwide, the quest for vaccines or drugs against the virus continues. The helicase protein of SARS-CoV-2 represents an attractive target for drug discovery since inhibition of helicase activity can suppress viral replication. Using in silico approaches, we have identified drugs that interact with SARS-CoV-2 helicase based on the presence of amino acid arrangements matching binding sites of drugs in previously annotated protein structures. The drugs exhibiting an RMSD of ≤ 3.0 Å were further analyzed using molecular docking, molecular dynamics (MD) simulation, and post-MD analyses. Using these approaches, we found 12 drugs that showed strong interactions with SARS-CoV-2 helicase amino acids. The analyses were performed using the recently available SARS-CoV-2 helicase structure (PDB ID: 5RL6). Based on the MM-GBSA approach, out of the 12 drugs, two drugs, namely posaconazole and grazoprevir, showed the most favorable binding energy, - 54.8 and - 49.1 kcal/mol, respectively. Furthermore, of the amino acids found conserved among all human coronaviruses, 10/11 and 10/12 were targeted by, respectively, grazoprevir and posaconazole. These residues are part of the crucial DEAD-like helicase C and DEXXQc_Upf1-like/ DEAD-like helicase domains. Strong interactions of posaconazole and grazoprevir with conserved amino acids indicate that the drugs can be potent against SARS-CoV-2. Since the amino acids are conserved among the human coronaviruses, the virus is unlikely to develop resistance mutations against these drugs. Since these drugs are already in use, they may be immediately repurposed for SARS-CoV-2 therapy.


Assuntos
Amidas/farmacologia , Carbamatos/farmacologia , Ciclopropanos/farmacologia , Reposicionamento de Medicamentos , Inibidores Enzimáticos/farmacologia , Quinoxalinas/farmacologia , RNA Helicases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Sulfonamidas/farmacologia , Triazóis/farmacologia , Antivirais/farmacologia , COVID-19/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios Proteicos/efeitos dos fármacos , RNA Helicases/química , RNA Helicases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/metabolismo
14.
Sci Rep ; 11(1): 7307, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790352

RESUMO

Outcomes of various clinical studies for the coronavirus disease 2019 (COVID-19) treatment indicated that the drug acts via inhibition of multiple pathways (targets) is likely to be more successful and promising. Keeping this hypothesis intact, the present study describes for the first-time, Grazoprevir, an FDA approved anti-viral drug primarily approved for Hepatitis C Virus (HCV), mediated multiple pathway control via synergistic inhibition of viral entry targeting host cell Angiotensin-Converting Enzyme 2 (ACE-2)/transmembrane serine protease 2 (TMPRSS2) and viral replication targeting RNA-dependent RNA polymerase (RdRP). Molecular modeling followed by in-depth structural analysis clearly demonstrated that Grazoprevir interacts with the key residues of these targets. Futher, Molecular Dynamics (MD) simulations showed stability and burial of key residues after the complex formation. Finally, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis identified the governing force of drug-receptor interactions and stability. Thus, we believe that Grazoprevir could be an effective therapeutics for the treatment of the COVID-19 pandemic with a promise of unlikely drug resistance owing to multiple inhibitions of eukaryotic and viral proteins, thus warrants further clinical studies.


Assuntos
Amidas/metabolismo , Amidas/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Carbamatos/metabolismo , Carbamatos/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Ciclopropanos/metabolismo , Ciclopropanos/farmacologia , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Enzima de Conversão de Angiotensina 2/química , Antivirais/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/química , Reposicionamento de Medicamentos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos
15.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810550

RESUMO

A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl (3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl {3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure-activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Ácido Aminossalicílico/química , Butirilcolinesterase/metabolismo , Carbamatos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Análise por Conglomerados , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Solventes , Relação Estrutura-Atividade , Células THP-1
16.
Biomolecules ; 11(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810505

RESUMO

Growing evidence shows that the immune system is critically involved in Alzheimer's disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment.


Assuntos
Doença de Alzheimer/patologia , Amidoidrolases/metabolismo , Macrófagos/metabolismo , Idoso , Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Feminino , Humanos , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Bioorg Chem ; 110: 104778, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684713

RESUMO

Carbonic anhydrase (CA) IX, and XII isoforms are known to be highly expressed in various human tissues and malignancies. CA IX is a prominent target for some cancers because it is overexpressed in hypoxic tumors and this overexpression leads to poor prognosis. Novel twenty-seven compounds in two series (sulfamoylcarbamate-based quinoline (2a-2o) and sulfamide-based quinoline (3a-3l)) were synthesized and characterized by means of IR, NMR, and mass spectra. Their inhibitory activities were evaluated against CA I, CA II, CA IX, and CA XII isoforms. 2-Phenylpropyl (N-(quinolin-8-yl)sulfamoyl)carbamate (2m) exhibited the highest hCA IX inhibition with the Ki of 0.5 µM. In addition, cytotoxic effects of the synthesized compounds on human colorectal adenocarcinoma (HT-29; HTB-38), human breast adenocarcinoma (MCF7; HTB-22), human prostate adenocarcinoma (PC3; CRL-1435) and human healthy skin fibroblast (CCD-986Sk; CRL-1947) cell lines were examined. The cytotoxicity results showed that 2j, 3a, 3e, 3f are most active compounds in all cell lines (HT-29, MCF7, PC3, and CCD-986Sk).


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Carbamatos/química , Carbamatos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia
18.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652675

RESUMO

A priority of modern agriculture is to use novel and environmentally friendly plant-growth promoter compounds to increase crop yields and avoid the indiscriminate use of synthetic fertilizers. Brassinosteroids are directly involved in the growth and development of plants and are considered attractive candidates to solve this problem. Obtaining these metabolites from their natural sources is expensive and cumbersome since they occur in extremely low concentrations in plants. For this reason, much effort has been dedicated in the last decades to synthesize brassinosteroids analogs. In this manuscript, we present the synthesis and characterization of seven steroidal carbamates starting from stigmasterol, ß-sitosterol, diosgenin and several oxygenated derivatives of it. The synthesis route for functionalization of diosgenin included epoxidation and epoxy opening reactions, reduction of carbonyl groups, selective oxidation of hydroxyl groups, among others. All the obtained compounds were characterized by 1H and 13C NMR, HRMS, and their melting points are also reported. Rice lamina inclination test performed at different concentrations established that all reported steroidal carbamates show plant-growth-promoting activity. A molecular docking study evaluated the affinity of the synthesized compounds towards the BRI1-BAK1 receptor from Arabidopsis thaliana and three of the docked compounds displayed a binding energy lower than brassinolide.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Carbamatos , Simulação de Acoplamento Molecular , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas , Brassinosteroides/química , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Esteroides Heterocíclicos/química
19.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649839

RESUMO

Hepatic fibrosis, a common pathological manifestation of chronic liver injury, is generally considered to be the end result of an increase in extracellular matrix produced by activated hepatic stellate cells (HSCs). The aim of the present study was to target the mechanisms underlying HSC activation in order to provide a powerful therapeutic strategy for the prevention and treatment of liver fibrosis. In the present study, a high­throughput screening assay was established, and the histone deacetylase inhibitor givinostat was identified as a potent inhibitor of HSC activation in vitro. Givinostat significantly inhibited HSC activation in vivo, ameliorated carbon tetrachloride­induced mouse liver fibrosis and lowered plasma aminotransferases. Transcriptomic analysis revealed the most significantly regulated genes in the givinostat treatment group in comparison with those in the solvent group, among which, dermokine (Dmkn), mesothelin (Msln) and uroplakin­3b (Upk3b) were identified as potential regulators of HSC activation. Givinostat significantly reduced the mRNA expression of Dmkn, Msln and Upk3b in both a mouse liver fibrosis model and in HSC­LX2 cells. Knockdown of any of the aforementioned genes inhibited the TGF­ß1­induced expression of α­smooth muscle actin and collagen type I, indicating that they are crucial for HSC activation. In summary, using a novel strategy targeting HSC activation, the present study identified a potential epigenetic drug for the treatment of hepatic fibrosis and revealed novel regulators of HSC activation.


Assuntos
Carbamatos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Animais , Tetracloreto de Carbono , Linhagem Celular , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Uroplaquina III/genética , Uroplaquina III/metabolismo
20.
Cancer Res ; 81(8): 2029-2043, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33574086

RESUMO

Despite recent promising advances in targeted therapies and immunotherapies, patients with melanoma incur substantial mortality. In particular, inhibitors targeting BRAF-mutant melanoma can lead to resistance, and no targeted therapies exist for NRAS-mutant melanoma, motivating the search for additional therapeutic targets and vulnerable pathways. Here we identify a regulator of Wnt/ß-catenin signaling, PLEKHA4, as a factor required for melanoma proliferation and survival. PLEKHA4 knockdown in vitro decreased Dishevelled levels, attenuated Wnt/ß-catenin signaling, and blocked progression through the G1-S cell-cycle transition. In mouse xenograft and allograft models, inducible PLEKHA4 knockdown attenuated tumor growth in BRAF- and NRAS-mutant melanomas and exhibited an additive effect with the clinically used inhibitor encorafenib in a BRAF-mutant model. As an E3 ubiquitin ligase regulator with both lipid- and protein-binding partners, PLEKHA4 presents several opportunities for targeting with small molecules. Our work identifies PLEKHA4 as a promising drug target for melanoma and clarifies a controversial role for Wnt/ß-catenin signaling in the control of melanoma proliferation. SIGNIFICANCE: This study establishes that melanoma cell proliferation requires the protein PLEKHA4 to promote pathologic Wnt signaling for proliferation, highlighting PLEKHA4 inhibition as a new avenue for the development of targeted therapies.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Homeodomínio/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Via de Sinalização Wnt/fisiologia , Animais , Carbamatos/farmacologia , Linhagem Celular Tumoral , Proteínas Desgrenhadas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fase G1/fisiologia , GTP Fosfo-Hidrolases/genética , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/mortalidade , Proteínas de Membrana/genética , Camundongos , Terapia de Alvo Molecular , Mutação , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Fase S/fisiologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Sulfonamidas/farmacologia , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...