Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.561
Filtrar
1.
Mediators Inflamm ; 2024: 5821996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045230

RESUMO

Background: Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods: Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results: The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion: According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.


Assuntos
Catelicidinas , Modelos Animais de Doenças , Encefalinas , Imiquimode , Camundongos Endogâmicos C57BL , Precursores de Proteínas , Psoríase , beta-Defensinas , Psoríase/induzido quimicamente , Psoríase/metabolismo , Animais , Camundongos , Feminino , beta-Defensinas/metabolismo , beta-Defensinas/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Encefalinas/metabolismo , Encefalinas/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Biomarcadores/metabolismo
2.
Skin Res Technol ; 30(7): e13630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988131

RESUMO

OBJECTIVE: To investigate the role of NEAT1 targeted regulation of miR-125/ADAM9 mediated NF-κB pathway in inflammatory response in rosacea. METHOD: HaCaT cell rosacea phenotype was induced by LL37. The connection targeted by NEAT1 and miR-125a-5p was confirmed by Double-Luciferase report analysis. qPCR was employed to assess the levels of expression for NEAT1, miR-125a-5p, and ADAM9 genes. The levels of expression for ADAM9/TLR2/NF-κB P65 pathway proteins in each batch of cells were determined by Western blotting. The levels of expression for inflammatory factors, including TNF-α, IL-1ß, IL-6, and IL-18, were measured through ELISA experimentation. RESULTS: LL37 could successfully induce HaCaT cells to exhibit rosacea phenotype. The luciferase report experiment confirmed that NEAT1 could target and bind miR-125a-5p and inhibit its expression. ADAM9 exhibited increased expression in LL37-induced HaCaT cells, showing a positive association with NEAT1 expression and inverse relationship with miR-125a-5p activation. LL37 treatment promoted the expression of ADAM9/TLR2/NF-κB P65 pathway proteins. Silencing ADAM9 can inhibit the inflammatory signaling pathway and reduce the level of TNF-α, IL-1ß, IL-6, and IL-18 in HaCaT cells. CONCLUSION: NEAT1 can suppress the production of miR-125a-5p and activate the TLR2/NF-κB inflammatory pathway mediated by ADAM9, thereby promoting the inflammatory response in rosacea.


Assuntos
Proteínas ADAM , Proteínas de Membrana , MicroRNAs , NF-kappa B , RNA Longo não Codificante , Rosácea , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Rosácea/metabolismo , Rosácea/genética , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Células HaCaT , Catelicidinas , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética
3.
Sci Rep ; 14(1): 13928, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886476

RESUMO

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Assuntos
Catelicidinas , Infecções por Vírus Respiratório Sincicial , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Humanos , Feminino , Masculino , Lactente , Recém-Nascido , Vírus Sincicial Respiratório Humano/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Mucosa Nasal/imunologia
4.
J Extracell Vesicles ; 13(6): e12462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840457

RESUMO

Ulcerative colitis (UC) manifests clinically with chronic intestinal inflammation and microflora dysbiosis. Although biologics can effectively control inflammation, efficient delivery to the colon and colon epithelial cells remains challenging. Milk-derived extracellular vesicles (EV) show promise as an oral delivery tool, however, the ability to load biologics into EV presents challenges to therapeutic applications. Here, we demonstrate that fusing cell-penetrating peptide (TAT) to green fluorescent protein (GFP) enabled biologics loading into EV and protected against degradation in the gastrointestinal environment in vitro and in vivo after oral delivery. Oral administration of EV loaded with anti-tumour necrosis factor-α (TNF-α) nanobody (VHHm3F) (EVVHH) via TAT significantly reduced tissue TNF-α levels and alleviated pathologies in mice with acute UC, compared to VHH alone. In mice with chronic UC, simultaneously introducing VHH and an antimicrobial peptide LL37 into EV (EVLV), then administering orally improved intestinal barrier, inflammation and microbiota balance, resulted in relief of UC-induced depression and anxiety. Collectively, we demonstrated that oral delivery of EVLV effectively alleviated UC in mice and TAT efficiently loaded biologics into EV to confer protection from degradation in the gastrointestinal tract. This therapeutic strategy is promising for UC and is a simple and generalizable approach towards drug-loaded orally-administrable EV treatment for other diseases.


Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Leite , Anticorpos de Domínio Único , Fator de Necrose Tumoral alfa , Animais , Colite Ulcerativa/tratamento farmacológico , Vesículas Extracelulares/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico , Peptídeos Antimicrobianos/farmacologia , Catelicidinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Humanos , Administração Oral , Masculino , Feminino
5.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38842874

RESUMO

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Retinopatia Diabética , Armadilhas Extracelulares , Camundongos Endogâmicos C57BL , Neutrófilos , Receptores de Formil Peptídeo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Armadilhas Extracelulares/metabolismo , Animais , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Humanos , Neutrófilos/metabolismo , Camundongos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Masculino , Receptores de Lipoxinas/metabolismo , Receptores de Lipoxinas/genética , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Feminino , Pessoa de Meia-Idade
6.
Sci Rep ; 14(1): 13497, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866982

RESUMO

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Assuntos
Apoptose , Neoplasias da Mama , Catelicidinas , Quinase 4 Dependente de Ciclina , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Apoptose/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Feminino , Coelhos , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
7.
Arch Virol ; 169(7): 135, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839691

RESUMO

Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.


Assuntos
Catelicidinas , Monócitos , Replicação Viral , Vitamina D3 24-Hidroxilase , Infecção por Zika virus , Zika virus , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Citocinas/metabolismo , Citocinas/genética , Monócitos/virologia , Monócitos/metabolismo , Monócitos/imunologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Replicação Viral/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo
8.
Clin Immunol ; 265: 110287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909973

RESUMO

LL37 alone and in complex with self-DNA triggers inflammatory responses in myeloid cells and plays a crucial role in the development of systemic autoimmune diseases, like psoriasis and systemic lupus erythematosus. We demonstrated that LL37/self-DNA complexes induce long-term metabolic and epigenetic changes in monocytes, enhancing their responsiveness to subsequent stimuli. Monocytes trained with LL37/self-DNA complexes and those derived from psoriatic patients exhibited heightened glycolytic and oxidative phosphorylation rates, elevated release of proinflammatory cytokines, and affected naïve CD4+ T cells. Additionally, KDM6A/B, a demethylase of lysine 27 on histone 3, was upregulated in psoriatic monocytes and monocytes treated with LL37/self-DNA complexes. Inhibition of KDM6A/B reversed the trained immune phenotype by reducing proinflammatory cytokine production, metabolic activity, and the induction of IL-17-producing T cells by LL37/self-DNA-treated monocytes. Our findings highlight the role of LL37/self-DNA-induced innate immune memory in psoriasis pathogenesis, uncovering its impact on monocyte and T cell dynamics.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , DNA , Monócitos , Psoríase , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Psoríase/imunologia , DNA/imunologia , DNA/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Linfócitos T CD4-Positivos/imunologia , Reprogramação Celular/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Imunidade Inata , Masculino , Epigênese Genética , Feminino , Memória Imunológica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Interleucina-17/imunologia , Células Cultivadas
9.
Dalton Trans ; 53(23): 9942-9951, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38809157

RESUMO

The human cationic antimicrobial protein (hCAP) corresponding to the overlapping sequences of 151-162 of hCAP named KR-12 peptide is the smallest portion of the only type of human Cathelicidin, which has been shown to be modifiable into a more effective antimicrobial. In this study, an in silico analysis, supported by potentiometric titration and isothermal titration calorimetry techniques, was performed to identify potential Cu(II) binding sites of KR-12. The analysis of the presented data at the given theoretical level (GFN2-xTB/ALPB) revealed which peptide chain fragments are involved in the most favourable KR-12-Cu(II) binding mode. Based on a quantum chemical approach, the most favourable coordination modes of Cu(II) to peptides are proposed together with the discussion of the chemical nature of the interactions. The presented results demonstrated that KR-12 interacts with metal ions mostly via the main chain's oxygen atoms; however, the two types of amino acids that are expected to be vital for the interaction of Cu(II) are D (aspartic acid) and R29 (arginine). It was demonstrated that in order to explain the complexity of the interaction process in peptide-metal ion systems, the use of theoretical methods is sometimes necessary to explain the details of the experimental results and provide an in-depth understanding of these dynamic systems.


Assuntos
Catelicidinas , Cobre , Cobre/química , Humanos , Catelicidinas/química , Sítios de Ligação , Ligação Proteica , Modelos Moleculares , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos
10.
EMBO Rep ; 25(7): 2914-2949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783164

RESUMO

Neutrophil extracellular traps (NETs) are a key antimicrobial feature of cellular innate immunity mediated by polymorphonuclear neutrophils (PMNs). NETs counteract microbes but are also linked to inflammation in atherosclerosis, arthritis, or psoriasis by unknown mechanisms. Here, we report that NET-associated RNA (naRNA) stimulates further NET formation in naive PMNs via a unique TLR8-NLRP3 inflammasome-dependent pathway. Keratinocytes respond to naRNA with expression of psoriasis-related genes (e.g., IL17, IL36) via atypical NOD2-RIPK signaling. In vivo, naRNA drives temporary skin inflammation, which is drastically ameliorated by genetic ablation of RNA sensing. Unexpectedly, the naRNA-LL37 'composite damage-associated molecular pattern (DAMP)' is pre-stored in resting neutrophil granules, defining sterile NETs as inflammatory webs that amplify neutrophil activation. However, the activity of the naRNA-LL37 DAMP is transient and hence supposedly self-limiting under physiological conditions. Collectively, upon dysregulated NET release like in psoriasis, naRNA sensing may represent both a potential cause of disease and a new intervention target.


Assuntos
Alarminas , Catelicidinas , Armadilhas Extracelulares , Inflamação , Neutrófilos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Neutrófilos/imunologia , Inflamação/metabolismo , Inflamação/genética , Animais , Humanos , Camundongos , Alarminas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Queratinócitos/metabolismo , RNA/genética , RNA/metabolismo , Psoríase/genética , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Ativação de Neutrófilo/genética , Imunidade Inata/genética
11.
Front Cell Infect Microbiol ; 14: 1390934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812753

RESUMO

Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 µg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 µg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.


Assuntos
Antibacterianos , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas
12.
Int Immunopharmacol ; 134: 112201, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718660

RESUMO

Osteoarthritis (OA) is a chronic degenerative disease with a significant prevalence that causes cartilage damage and can lead to disability. The main factors contributing to the onset and progression of OA include inflammation and degeneration of the extracellular matrix. Cathelicidin-BF (BF-30), a natural peptide derived from Bungarus fasciatus venom, has shown multiple important pharmacological effects. However, the action mechanism of BF-30 in OA treatment remains to be elucidated. In this research, X-ray and Safranin O staining were employed to evaluate the imageology and histomorphology differences in the knee joints of mice in vivo. Techniques such as Western blot analysis, RT-qPCR, ELISA, and immunofluorescence staining were applied to examine gene and protein level changes in in vitro experiments. It was found that BF-30 significantly decreased inflammation and enhanced extracellular matrix metabolism. For the first time, it was demonstrated that the positive effects of BF-30 are mediated through the activation of the AMPK/SIRT1/NF-κB pathway. Moreover, when BF-30 was co-administered with Compound C, an AMPK inhibitor, the therapeutic benefits of BF-30 were reversed in both in vivo and in vitro settings. In conclusion, the findings suggest that BF-30 could be a novel therapeutic agent for OA improvement.


Assuntos
Proteínas Quinases Ativadas por AMP , Catelicidinas , Condrócitos , NF-kappa B , Osteoartrite , Transdução de Sinais , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , NF-kappa B/metabolismo , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Masculino , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos
13.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740721

RESUMO

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Assuntos
Antibacterianos , Bandagens , Quitosana , Escherichia coli , Hidrogéis , Microesferas , Pseudomonas aeruginosa , Staphylococcus aureus , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/prevenção & controle , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Catelicidinas , Testes de Sensibilidade Microbiana/métodos , Toxinas Bacterianas , Liberação Controlada de Fármacos , Movimento Celular/efeitos dos fármacos , Carbono/química , Biofilmes/efeitos dos fármacos
14.
Int J Biol Macromol ; 270(Pt 1): 132277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735611

RESUMO

The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.


Assuntos
Antibacterianos , Infecções Bacterianas , Ácido Hialurônico , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Cicatrização/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Camundongos , Diabetes Mellitus Experimental , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Hialuronoglucosaminidase/metabolismo , Catelicidinas , Humanos , Complicações do Diabetes/tratamento farmacológico , Nanopartículas/química
15.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732603

RESUMO

BACKGROUND: Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS: We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS: In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS: This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Catelicidinas , Sistema de Sinalização das MAP Quinases , Macrófagos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Humanos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células CACO-2 , Calcitriol/farmacologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Paratuberculose/microbiologia , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Células THP-1 , Receptor 2 Toll-Like/metabolismo , Vitamina D/farmacologia
16.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(1): 98-104, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38604693

RESUMO

Parasitic diseases caused by protozoan and helminth infections are still widespread across the world, notably in tropical and subtropical areas, which threaten the children and adult health. Long-term use of anti-parasitic drugs may result in reduced drug susceptibility and even drug resistance. Antimicrobial peptides have been demonstrated to inhibit parasite growth and development, which has potential antiparasitic values. LL-37, the only human antimicrobial peptide in the cathelicidin family, has been widely investigated. This paper reviews the progress of researches on the antiparasitic activity of LL-37, and discusses the prospects of LL-37 in the research of parasites.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Catelicidinas/farmacologia
17.
Oral Health Prev Dent ; 22: 159-170, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687028

RESUMO

PURPOSE: To study the therapeutic effect of hemagglutinin-2 and fimbrial (HA2-FimA) vaccine on experimental periodontitis in rats. MATERIALS AND METHODS: The first batch of rats was divided into two groups and immunised with pure water or pVAX1-HA2-FimA at the age of 6, 7, and 9 weeks. After sacrificing the animals, total RNA was extracted from the spleens for RNA high-throughput sequencing (RNA-Seq) analysis. The second batch of rats was divided into four groups (A, B, C, D), and an experimental periodontitis rat model was established by suturing silk thread around the maxillary second molars of rats in groups B, C, and D for 4 weeks. The rats were immunised with pure water, pVAX1-HA2-FimA vaccine, empty pVAX1 vector, and pure water at 10, 11, and 13 weeks of age, respectively. Secretory immunoglobulin A (SIgA) antibodies and cathelicidin antimicrobial peptide (CAMP) levels in saliva were measured by enzyme-linked immunosorbent assay (ELISA). All rats were euthanised at 17 weeks of age, and alveolar bone loss was examined using micro-computed tomography (Micro-CT). RESULTS: Through sequencing analysis, six key genes, including Camp, were identified. Compared with the other three groups, the rats in the periodontitis+pVAX1-HA2-FimA vaccine group showed higher levels of SIgA and CAMP (p < 0.05). Micro-CT results showed significantly less alveolar bone loss in the periodontitis+pVAX1-HA2-FimA vaccine group compared to the periodontitis+pVAX1 group and periodontitis+pure water group (p < 0.05). CONCLUSION: HA2-FimA DNA vaccine can increase the levels of SIgA and CAMP in the saliva of experimental periodontitis model rats and reduce alveolar bone loss.


Assuntos
Periodontite , Vacinas de DNA , Animais , Periodontite/prevenção & controle , Periodontite/imunologia , Ratos , Modelos Animais de Doenças , Imunoglobulina A Secretora/análise , Proteínas de Fímbrias/imunologia , Perda do Osso Alveolar/prevenção & controle , Catelicidinas , Ratos Sprague-Dawley , Ensaio de Imunoadsorção Enzimática , Saliva/imunologia , Hemaglutininas/imunologia , Microtomografia por Raio-X , Masculino
18.
Biochem Biophys Res Commun ; 712-713: 149962, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642493

RESUMO

The human cathelicidin LL-37 shows activity against microorganisms, but it is also cytotoxic to host cells. The CAMP gene codes for the LL-37 precursor hCAP18 which is processed extracellularly to active LL-37. It has previously been shown that vitamin D stimulates CAMP gene activity, but less information is available demonstrating that vitamin D also can increase hCAP18/LL-37 protein production. Here, we show with RT-qPCR that a physiological concentration of vitamin D (50 nM) enhances CAMP mRNA levels by about 170 times in human THP-1 monocyte cells. Stimulation with 50 nM vitamin D increases hCAP18/LL-37 protein contents 3-4 times in THP-1 cell lysates demonstrated by both dot blot analysis and ELISA applying two different hCAP18/LL-37 antibodies. Treatment with the proteasome inhibitor MG132 enhances hCAP18/LL-37 levels, suggesting that turnover of hCAP18/LL-37 protein is regulated by the proteasome. The hCAP18/LL-37 concentration in vitamin D-stimulated THP-1 cells corresponds to 1.04 µM LL-37. Interestingly, synthetic LL-37, at this concentration, reduces viability of human osteoblast-like MG63 cells, whereas the THP-1 cells are less sensitive as demonstrated by the MTT assay. In summary, we show that vitamin D enhances hCAP18/LL-37 production, and that this effect can be of physiological/pathophysiological relevance for LL-37-induced human osteoblast toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Osteoblastos , Vitamina D , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Células THP-1 , Complexo de Endopeptidases do Proteassoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos
19.
Res Vet Sci ; 172: 105240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608347

RESUMO

Antimicrobial usage (AMU) could be reduced by differentiating the causative bacteria in cases of clinical mastitis (CM) as either Gram-positive or Gram-negative bacteria or identifying whether the case is culture-negative (no growth, NG) mastitis. Immunoassays for biomarker analysis and a Tandem Mass Tag (TMT) proteomic investigation were employed to identify differences between samples of milk from cows with CM caused by different bacteria. A total of 94 milk samples were collected from cows diagnosed with CM across seven farms in Scotland, categorized by severity as mild (score 1), moderate (score 2), or severe (score 3). Bovine haptoglobin (Hp), milk amyloid A (MAA), C-reactive protein (CRP), lactoferrin (LF), α-lactalbumin (LA) and cathelicidin (CATHL) were significantly higher in milk from cows with CM, regardless of culture results, than in milk from healthy cows (all P-values <0.001). Milk cathelicidin (CATHL) was evaluated using a novel ELISA technique that utilises an antibody to a peptide sequence of SSEANLYRLLELD (aa49-61) common to CATHL 1-7 isoforms. A classification tree was fitted on the six biomarkers to predict Gram-positive bacteria within mastitis severity scores 1 or 2, revealing that compared to the rest of the samples, Gram-positive samples were associated with CRP < 9.5 µg/ml and LF ≥ 325 µg/ml and MAA < 16 µg/ml. Sensitivity of the tree model was 64%, the specificity was 91%, and the overall misclassification rate was 18%. The area under the ROC curve for this tree model was 0.836 (95% bootstrap confidence interval: 0.742; 0.917). TMT proteomic analysis revealed little difference between the groups in protein abundance when the three groups (Gram-positive, Gram-negative and no growth) were compared, however when each group was compared against the entirety of the remaining samples, 28 differentially abundant protein were identified including ß-lactoglobulin and ribonuclease. Whilst further research is required to draw together and refine a suitable biomarker panel and diagnostic algorithm for differentiating Gram- positive/negative and NG CM, these results have highlighted a potential panel and diagnostic decision tree. Host-derived milk biomarkers offer significant potential to refine and reduce AMU and circumvent the many challenges associated with microbiological culture, both within the lab and on the farm, while providing the added benefit of reducing turnaround time from 14 to 16 h of microbiological culture to just 15 min with a lateral flow device (LFD).


Assuntos
Biomarcadores , Mastite Bovina , Leite , Animais , Bovinos , Feminino , Leite/química , Leite/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/diagnóstico , Biomarcadores/metabolismo , Proteoma , Proteínas do Leite/análise , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Catelicidinas
20.
J Immunol Methods ; 529: 113670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604530

RESUMO

Cytotoxicity studies determining hemolytic properties of antimicrobial peptides or other drugs are an important step in the development of novel therapeutics for clinical use. Hemolysis is an affordable, accessible, and rapid method for initial assessment of cellular toxicity for all drugs under development. However, variability in species of red blood cells and protocols used may result in significant differences in results. AMPs generally possess higher selectivity for bacterial cells but can have toxicity against host cells at high concentrations. Knowing the hemolytic activity of the peptides we are developing contributes to our understanding of their potential toxicity. Computational approaches for predicting hemolytic activity of AMPs exist and were tested head-to-head with our experimental results. RESULTS: Starting with an observation of high hemolytic activity of LL-37 peptide against human red blood cells that were collected in EDTA, we explored alternative approaches to develop a more robust, accurate and simple hemolysis assay using defibrinated human blood. We found significant differences between the sensitivity of defibrinated red blood cells and EDTA treated red blood cells. SIGNIFICANCE: Accurately determining the hemolytic activity using human red blood cells will allow for a more robust calculation of the therapeutic index of our potential antimicrobial compounds, a critical measure in their pre-clinical development. CONCLUSION: We introduce a standardized, more accurate protocol for assessing hemolytic activity using defibrinated human red blood cells. This approach, facilitated by the increased commercial availability of de-identified human blood and defibrination methods, offers a robust tool for evaluating toxicity of emerging drug compounds, especially AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Eritrócitos , Hemólise , Humanos , Hemólise/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas , Ácido Edético/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA