Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.661
Filtrar
1.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748314

RESUMO

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Assuntos
Celulose , Mucosa Intestinal , Intestino Delgado , Nanopartículas Metálicas , Nanofibras , Ratos Wistar , Prata , Alicerces Teciduais , Cicatrização , Animais , Prata/química , Celulose/análogos & derivados , Celulose/química , Cicatrização/efeitos dos fármacos , Nanopartículas Metálicas/química , Ratos , Nanofibras/química , Alicerces Teciduais/química , Mucosa Intestinal/metabolismo , Masculino , Intestino Delgado/metabolismo , Bovinos , Fator de Crescimento Transformador beta/metabolismo , Engenharia Tecidual/métodos , Colágeno
2.
Curr Microbiol ; 81(6): 161, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700667

RESUMO

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett-Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.


Assuntos
Biocombustíveis , Celulose , Etanol , Fermentação , Saccharum , Saccharum/metabolismo , Etanol/metabolismo , Celulose/metabolismo , Gerenciamento de Resíduos/métodos , Agricultura , Xilose/metabolismo , Vitis/microbiologia , Hypocreales/metabolismo
3.
Sci Rep ; 14(1): 10848, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740945

RESUMO

Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.


Assuntos
Celulose , Raízes de Plantas , Rhizobium , Celulose/biossíntese , Celulose/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/metabolismo , Acetobacteraceae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese
4.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710545

RESUMO

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Assuntos
Celulose , Embalagem de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompostos , Nanofibras , Resistência à Tração , Madeira , Xilanos , Embalagem de Alimentos/métodos , Lignina/química , Nanocompostos/química , Celulose/química , Celulose/análogos & derivados , Madeira/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
5.
J Mol Model ; 30(5): 156, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693294

RESUMO

CONTEXT: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites. METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.


Assuntos
Celulose , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Seda , Aranhas , Celulose/química , Aranhas/química , Animais , Seda/química , Adsorção , Ligação Proteica , Fibroínas/química
6.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709299

RESUMO

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Assuntos
Bactérias , Esgotos , Águas Residuárias , Biopolímeros/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Esgotos/microbiologia , Águas Residuárias/microbiologia , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Celulose/metabolismo , Biofilmes/crescimento & desenvolvimento , Quitina/metabolismo , Nitrificação , Purificação da Água/métodos
7.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38690785

RESUMO

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Assuntos
Arabidopsis , Celulose , Glucosilceramidas , Glucosiltransferases , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Celulose/metabolismo , Celulose/biossíntese , Glucosilceramidas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Parede Celular/metabolismo
8.
Sci Rep ; 14(1): 10012, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693138

RESUMO

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Assuntos
Biomassa , Lagos , beta-Glucosidase , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , beta-Glucosidase/química , Lagos/microbiologia , Metagenômica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Clonagem Molecular , Estabilidade Enzimática , Hidrólise , Concentração de Íons de Hidrogênio , Celulose/metabolismo , Temperatura , Glucose/metabolismo
9.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732196

RESUMO

The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials.


Assuntos
Celulose , Etanol , Umidade , Nanopartículas , Óxido de Zinco , Celulose/química , Óxido de Zinco/química , Etanol/química , Nanopartículas/química , Nanocompostos/química
10.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731545

RESUMO

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Assuntos
Antibacterianos , Antifúngicos , Antivirais , Cobre , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antivirais/farmacologia , Antivirais/química , Cobre/química , Cobre/farmacologia , Celulose/química , Celulose/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Têxteis , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/efeitos dos fármacos , Lignina/química , Lignina/farmacologia , Humanos
11.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731558

RESUMO

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Assuntos
Celulose , Escherichia coli , Nanopartículas Metálicas , Prata , Staphylococcus aureus , Prata/química , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Celulose/química , Celulose/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Nanofibras/química , Nanocompostos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732136

RESUMO

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lignina , Proteínas de Plantas , Lignina/biossíntese , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Parede Celular/genética , Celulose/biossíntese , Celulose/metabolismo , Vias Biossintéticas
13.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634234

RESUMO

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Assuntos
Celulose , Celulose/química , Fibra de Algodão , Cromatografia em Gel/métodos
14.
Biomacromolecules ; 25(5): 3018-3032, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38648261

RESUMO

Different cellulose nanocrystal (CNC) forms (dried vs never-dried) can lead to different degrees of CNC reassembly, the formation of nanofibril-like structures, in nanocomposite latex-based pressure-sensitive adhesive (PSA) formulations. CNC reassembly is also affected by CNC sonication and loading as well as the protocol used for CNC addition to the polymerization. In this study, carboxylated CNCs (cCNCs) were incorporated into a seeded, semibatch, 2-ethylhexyl acrylate/methyl methacrylate/styrene emulsion polymerization and cast as pressure-sensitive adhesive (PSA) films. The addition of CNCs led to a simultaneous increase in tack strength, peel strength, and shear adhesion, avoiding the typical trade-off between the adhesive and cohesive strength. Increased CNC reassembly resulted from the use of dried, redispersed, and sonicated cCNCs, along with increased cCNC loading and addition of the cCNCs at the seed stage of the polymerization. The increased degree of CNC reassembly was shown to significantly increase the shear adhesion by enhancing the elastic modulus of the PSA films.


Assuntos
Adesivos , Celulose , Látex , Nanopartículas , Celulose/química , Adesivos/química , Nanopartículas/química , Látex/química , Polimerização , Nanocompostos/química , Pressão
15.
Bioresour Technol ; 401: 130728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657827

RESUMO

This study investigated a lignin-first approach to produce furan-modified lignin from sugarcane bagasse (SB), rice hull (RH), and sunn hemp biomass (SHB) using 5 methylfurfural (MF) and 5 methul-2-furanmethanol (MFM). The reaction time (5 h) was selected based on the delignification of SB using methanol and Ru/C catalyst which yielded the highest hydroxyl content. Delignification of SB with various MF weight ratios (1:1, 1:2, 1:3, 2:1, and 3:1) revealed that 1:1 and 2:1 ratios produced the highest hydroxyl content (7.7 mmol/g) and bio-oil yield (23.2 % wt% total weight). Further exploration identified that RH and MF at 1:1 ratio and SHB and MF at a 2:1 ratio produced the highest hydroxyl content (13.0 mmol/g) and bio-oil yield (31.6 % wt% tot. weight). This study developed a one-step method to extract and modify lignin with furan compounds simultaneously while opening new avenues for developing value-added products.


Assuntos
Furanos , Lignina , Lignina/química , Furanos/química , Biomassa , Agricultura , Oryza/química , Celulose/química , Saccharum/química , Biocombustíveis , Resíduos , Cannabis/química
16.
Bioresour Technol ; 401: 130744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677384

RESUMO

Paper sludge biomass represents an underutilized feedstock rich in pulped and processed cellulose which is currently a waste stream with significant disposal cost to industry for landfilling services. Effective fractionation of the cellulose from paper sludge presents an opportunity to yield cellulose as feedstock for value-added processes. A novel approach to cellulose fractionation is the sidehill screening system, herein studied at the pilot-plant scale. Composition analysis determined ash removal and carbohydrate retention of both sidehill and high-performance benchtop screening systems. Sidehill screening resulted in greater carbohydrates retention relative to benchtop screening (90% vs 66%) and similar ash removal (95% vs 98%). Techno-economic analysis for production of sugar syrup yielded a minimum selling price of $331/metric ton of sugar syrup including disposal savings, significantly less than a commercial sugar syrup without fractionation. Sensitivity analysis showed that screening conditions played a significant role in economic feasibility for cellulosic yield and downstream processes.


Assuntos
Biomassa , Celulose , Papel , Esgotos , Projetos Piloto , Celulose/química , Fracionamento Químico
17.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604012

RESUMO

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Assuntos
Parede Celular , Frutas , Persea , Espécies Reativas de Oxigênio , Persea/metabolismo , Parede Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas/metabolismo , Armazenamento de Alimentos/métodos , Temperatura Baixa , Congelamento , Etilenos/metabolismo , Pectinas/metabolismo , Celulose/metabolismo
18.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580029

RESUMO

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.


Assuntos
Celulose , Colite , Fibras na Dieta , Algas Comestíveis , Microbioma Gastrointestinal , Laminaria , Celulose/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fibras na Dieta/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Masculino , Solubilidade , Inflamação/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças
19.
Int J Biol Macromol ; 267(Pt 1): 131406, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582472

RESUMO

Starch and plant fibers are abundant natural polymers that offer biodegradability, making them potential substitutes for plastics in certain applications, but are usually limited by its high hydrophilicity, and low mechanical performance. To address this issue, polylactic acid (PLA) is blended with cellulose and chitosan to create a waterproof film that can be applied to starch-fiber foaming biodegradable composites to enhance their water resistance properties. Here, plant fibers as a reinforcement is incorporated to the modified starch by foaming mold at 260 °C, and PLA based hydrophobic film is coated onto the surface to prepare the novel hydrophobic bio-composites. The developed bio-composite exhibits comprehensive water barrier properties, which is significantly better than that of traditional starch and cellulose based materials. Introducing PLA films decreases water vapor permeability from 766.83 g/m2·24h to 664.89 g/m2·24h, and reduce hysteresis angles from 15.57° to 8.59° within the first five minutes after exposure to moisture. The water absorption rate of PLA films also decreases significantly from 12.3 % to 7.9 %. Additionally, incorporating hydrophobic films not only enhances overall waterproof performance but also improves mechanical properties of the bio-composites. The fabricated bio-composite demonstrates improved tensile strength from 2.09 MPa to 3.53 MPa.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poliésteres , Amido , Resistência à Tração , Água , Poliésteres/química , Amido/química , Água/química , Permeabilidade , Quitosana/química , Celulose/química , Vapor , Propriedades de Superfície
20.
Int J Biol Macromol ; 267(Pt 1): 131374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582474

RESUMO

Frequent change of wound dressings introduces wound inflammation and infections. In this study, we electrospun phenytoin (PHT) loaded ethyl cellulose (EC) microfibers and solvent cast tetracycline hydrochloride (TCH) loaded carboxymethyl cellulose (CMC) films with the aim to demonstrate tailorable in vitro drug release behaviors suitable for long-term use of wound dressings. Results from tensile testing showed a significant decrease in average elastic moduli from 8.8 ± 0.6 to 3.3 ± 0.3 MPa after incorporating PHT into EC fibers. PHT-loaded EC fibers displayed a slow and zero-ordered release up to 80 % of the total drug at 48 h, while TCH-loaded CMC films demonstrated a rapid and complete release within 30 min. Furthermore, drug-loaded EC/CMC composites were fabricated into fiber-in-film and fiber-on-film composites. Fiber-in-film composites showed stage release of TCH and PHT at 8 h, while fiber-on-film composites demonstrated simultaneous release of PHT and TCH with a prolonged release of TCH from CMC films. In general, electrospun PHT-loaded EC microfibers, solvent cast TCH-loaded CMC films, and their composites were studied to provide a fundamental scientific understanding on the novelty of the ability to modulate drug release characteristics based on the composite designs.


Assuntos
Carboximetilcelulose Sódica , Celulose , Celulose/análogos & derivados , Liberação Controlada de Fármacos , Celulose/química , Carboximetilcelulose Sódica/química , Solventes/química , Fenitoína/química , Tetraciclina/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...