Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.291
Filtrar
1.
PeerJ ; 12: e17650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952965

RESUMO

Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods: LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.


Assuntos
Ácido Acético , Acetobacter , Biomassa , Carragenina , Carragenina/química , Acetobacter/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Luffa/química , Adsorção , Celulose/metabolismo , Celulose/química , Biofilmes/crescimento & desenvolvimento
2.
Physiol Plant ; 176(4): e14430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981734

RESUMO

Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.


Assuntos
Parede Celular , Lignina , Caules de Planta , Poaceae , Estresse Salino , Parede Celular/química , Parede Celular/metabolismo , Lignina/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/química , Caules de Planta/metabolismo , Pectinas/metabolismo , Celulose/metabolismo , Genótipo , Biomassa , Cloreto de Sódio/farmacologia
3.
PeerJ ; 12: e17597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974417

RESUMO

The huhu beetle (Prionoplus reticularis) is the largest endemic beetle found throughout Aotearoa New Zealand, and is characterised by feeding on wood during its larval stage. It has been hypothesised that its gut microbiome plays a fundamental role in the degradation of wood. To explore this idea we examined the fungal and bacterial community composition of huhu grubs' frass, using amplicon sequencing. Grubs were reared on an exclusive diet of either a predominantly cellulose source (cotton) or lignocellulose source (pine) for 4 months; subsequently a diet switch was performed and the grubs were grown for another 4 months. The fungal community of cellulose-reared huhu grubs was abundant in potential cellulose degraders, contrasting with the community of lignocellulose-reared grubs, which showed abundant potential soft rot fungi, yeasts, and hemicellulose and cellulose degraders. Cellulose-reared grubs showed a less diverse fungal community, however, diet switch from cellulose to lignocellulose resulted in a change in community composition that showed grubs were still capable of utilising this substrate. Conversely, diet seemed to have a limited influence on huhu grub gut bacterial communities.


Assuntos
Besouros , Microbioma Gastrointestinal , Lignina , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Lignina/metabolismo , Besouros/microbiologia , Celulose/metabolismo , Dieta , Nova Zelândia , Fungos/genética , Fungos/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042685

RESUMO

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Assuntos
Celulose , Evolução Molecular Direcionada , Celulose/metabolismo , Celulose/biossíntese , Evolução Molecular Direcionada/métodos , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Fenótipo , Mutação
5.
J Agric Food Chem ; 72(29): 16530-16540, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001851

RESUMO

Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.


Assuntos
Brassica napus , Estudo de Associação Genômica Ampla , Caules de Planta , Polimorfismo de Nucleotídeo Único , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica napus/química , Caules de Planta/genética , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/química , Brotos de Planta/metabolismo , Genótipo , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Fenótipo , Celulose/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Locos de Características Quantitativas
6.
Sci Rep ; 14(1): 15779, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982270

RESUMO

Ascomycetes, basidiomycetes and deuteromycetes can degrade wood, but less attention has been paid to basidiomycetes involved in Esca, a major Grapevine Trunk Disease. Using a wood sawdust microcosm system, we compared the wood degradation of three grapevine cultivars inoculated with Fomitiporia mediterranea M. Fisch, a basidiomycete responsible for white-rot development and involved in Esca disease. The grapevine cultivar Ugni blanc was more susceptible to wood degradation caused by F. mediterranea than the cultivars Cabernet Sauvignon and Merlot. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy showed that F. mediterranea preferentially degrades lignin and hemicellulose over cellulose (preferential, successive or sequential white-rot). In addition, co-inoculation of sawdust with two cellulolytic and xylanolytic bacterial strains of Paenibacillus (Nakamura) Ash (Paenibacillus sp. (S231-2) and P. amylolyticus (S293)), enhanced F. mediterranea ability to degrade Ugni blanc. The NMR data further showed that the increase in Ugni blanc sawdust degradation products was greater when bacteria and fungi were inoculated together. We also demonstrated that these two bacterial strains could degrade the wood components of Ugni blanc sawdust. Genome analysis of these bacterial strains revealed numerous genes predicted to be involved in cellulose, hemicellulose, and lignin degradation, as well as several other genes related to bacteria-fungi interactions and endophytism inside the plant. The occurrence of this type of bacteria-fungus interaction could explain, at least in part, why necrosis develops extensively in certain grapevine varieties such as Ugni blanc.


Assuntos
Lignina , Paenibacillus , Vitis , Madeira , Madeira/microbiologia , Vitis/microbiologia , Lignina/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Doenças das Plantas/microbiologia , Basidiomycota/genética , Basidiomycota/metabolismo , Polissacarídeos/metabolismo , Celulose/metabolismo , Genoma Bacteriano
7.
Appl Environ Microbiol ; 90(7): e0093324, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953372

RESUMO

Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE: SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.


Assuntos
Proteínas de Bactérias , Bacteroidetes , Metagenoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Celulose/metabolismo , Polímeros/metabolismo , Quitina/metabolismo , Polietilenotereftalatos/metabolismo
8.
Bioresour Technol ; 406: 131088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981553

RESUMO

Sugarcane bagasse was recycled to produce fermentation liquid (FL) as a supplementary carbon source that was added to constructed wetlands (CWs) for regulating influent carbon to nitrogen ratio (C/N), and then being applied to investigate nitrogen transformations and greenhouse gas emissions. Results showed that this FL achieved faster NO3--N removal and lower N2O fluxes than sucrose did, and the lowest N2O flux (67.6 µg m-2h-1) was achieved when FL was added to CWs in a C/N of 3. In contrast, CH4 emissions were higher by the FL addition than by the sucrose addition, although the fluxes under both additions were in a lower range of 0.06-0.17 mg m-2h-1. The utilization of FL also induced significant variations in microbial communities and increased the abundance of denitrification genes. Results showed the application of FL from sugarcane bagasse can be an effective strategy for improving nitrogen removal and mitigating N2O emissions in CWs.


Assuntos
Carbono , Celulose , Fermentação , Nitrogênio , Óxido Nitroso , Saccharum , Águas Residuárias , Áreas Alagadas , Saccharum/química , Saccharum/metabolismo , Óxido Nitroso/metabolismo , Celulose/metabolismo , Águas Residuárias/química , Purificação da Água/métodos , Metano/metabolismo , Desnitrificação
9.
Microb Cell Fact ; 23(1): 199, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026314

RESUMO

BACKGROUND: The demand for bioplastics has increased exponentially as they have emerged as alternatives to petrochemical plastics. However, there is a substantial lack of knowledge regarding bioplastic degradation. This study developed a novel pretreatment method to improve the accessibility of a bioplastic substrate for biodegradation. In this study, cellulose acetate, a bioplastic found in the world's most littered waste, e.g. cigarette filters, was selected as a potential substrate. Before anaerobic digestion, three thermal alkaline pretreatments: TA 30 °C, TA 90 °C, and TA 121 °C, were used to evaluate their effects on the chemical alterations of cellulose acetate. RESULT: The ester groups in cellulose acetate were significantly reduced by the TA 30 °C pretreatment, as seen by a decrease in C = O stretching vibrations and shortening of C - O stretches (1,270 ∼ 1,210 cm- 1), indicating effective removal of acetyl groups. This pretreatment significantly enhanced cellulose acetate biodegradability to a maximum of 91%, surpassing the previously reported cellulose acetate degradation. Methane production increased to 695.0 ± 4 mL/g of volatile solid after TA 30 °C pretreatment, indicating enhanced cellulose acetate accessibility to microorganisms, which resulted in superior biogas production compared to the control (306.0 ± 10 mL/g of volatile solid). Diverse microbes in the anaerobic digestion system included hydrolytic (AB240379_g, Acetomicrobium, FN436103_g, etc.), fermentative, and volatile fatty acids degrading bacteria (JF417922_g, AB274492_g, Coprothermobacter, etc.), with Methanobacterium and Methanothermobacter being the sole hydrogenotrophic methanogens in the anaerobic digestion system. Additionally, an attempt to predict the pathway for the effective degradation of cellulose acetate from the microbial community in different pretreatment conditions. CONCLUSIONS: To the best of our knowledge, this is the first study to estimate the maximum cellulose acetate degradation rate, with a simple and cost-effective pretreatment procedure. This approach holds promise for mitigating the environmental impact of cellulose acetate of cigarette filters and presents a sustainable and economically viable waste management strategy.


Assuntos
Biodegradação Ambiental , Celulose , Celulose/metabolismo , Celulose/análogos & derivados , Metano/metabolismo , Anaerobiose , Biocombustíveis , Produtos do Tabaco , Bactérias/metabolismo , Temperatura , Filtração
10.
World J Microbiol Biotechnol ; 40(9): 277, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037585

RESUMO

Food insecurity and malnutrition are serious problems in many developing countries, including Ethiopia. This situation warrants an urgent need for the diversification of food sources with enhanced productivity. This study was aimed at contributing to the food security in Ethiopia through cultivation of Pleurotus ostreatus mushrooms using sustainable and locally available agro-industrial byproduct-based substrates in parallel with pollution control. Ten substrates were prepared using sugarcane bagasse, filter cake, trash, cotton seed hull and animal waste, namely cow dung and horse and chicken manure. The effect of each substrate (treatment) on the yields, biological efficiency, nutritional composition, and mineral contents of Pleurotus ostreatus mushroom species was evaluated at the Ethiopian Forest Products Innovation Center, Addis Ababa, Ethiopia. The results obtained indicate that a significantly higher (p < 0.05) yield and biological efficiency were recorded from the mushroom cultivated on S2 substrate containing a mixture of 80% sugarcane bagasse, 12% cow dung, and 8% cotton seed hull. Moreover, substrate containing sugarcane bagasse mixed with cotton seed hull, cow dung, and chicken manure significantly (p < 0.05) increased the yields and biological efficiency of the mushroom. The content of protein, crude fat, fiber, and carbohydrates of the mushroom cultivated from all the utilized substrates were in the range of 17.30-21.5, 1.77-2.52, 31.03-34.38, and 28.02-39.74%, respectively. The critical macro-elements are abundant in the mushroom in the order of potassium, magnesium, calcium, and sodium. The mushrooms cultivated on all the substrates were rich in essential micro-elements in the order of iron and zinc. It was found that substrate preparation and formulation significantly (p < 0.05) improved the yields, biological efficiency, nutritive values, and mineral contents of the mushroom. The use of these by-products as substrates is sustainable and environmentally friendly and allows the production of mushroom with high nutritional value on a sustainable basis in order to enhance food security in the country.


Assuntos
Valor Nutritivo , Pleurotus , Saccharum , Etiópia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Saccharum/metabolismo , Saccharum/química , Animais , Celulose/metabolismo , Esterco/análise , Agricultura/métodos , Bovinos , Galinhas , Minerais/análise
11.
Plant Mol Biol ; 114(4): 76, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888655

RESUMO

Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5G43R + S49T+S54P+S80A+Y88F. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferases , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Dedos de Zinco , Celulose/metabolismo , Fenótipo , Multimerização Proteica , Mutação , Sequência de Aminoácidos
12.
Sci Rep ; 14(1): 13903, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886460

RESUMO

Rice straw breakdown is sluggish, which makes agricultural waste management difficult, however pretreatment procedures and cellulolytic fungi can address this issue. Through ITS sequencing, Chaetomium globosum C1, Aspergillus sp. F2, and Ascomycota sp. SM2 were identified from diverse sources. Ascomycota sp. SM2 exhibited the highest carboxymethyl cellulase (CMCase) activity (0.86 IU/mL) and filter-paper cellulase (FPase) activity (1.054 FPU/mL), while Aspergillus sp. F2 showed the highest CMCase activity (0.185 IU/mL) after various pretreatments of rice straw. These fungi thrived across a wide pH range, with Ascomycota sp. SM2 from pH 4 to 9, Aspergillus sp. F2, and Chaetomium globosum C1 thriving in alkaline conditions (pH 9). FTIR spectroscopy revealed significant structural changes in rice straw after enzymatic hydrolysis and solid-state fermentation, indicating lignin, cellulose, and hemicellulose degradation. Soil amendments with pretreated rice straw, cow manure, biochar, and these fungi increased root growth and soil nutrient availability, even under severe salt stress (up to 9.3 dS/m). The study emphasizes the need for a better understanding of Ascomycota sp. degradation capabilities and proposes that using cellulolytic fungus and pretreatment rice straw into soil amendments could mitigate salt-related difficulties and improve nutrient availability in salty soils.


Assuntos
Celulase , Oryza , Solo , Oryza/metabolismo , Solo/química , Celulase/metabolismo , Estresse Salino , Microbiologia do Solo , Celulose/metabolismo , Chaetomium/metabolismo , Aspergillus/metabolismo , Hidrólise , Concentração de Íons de Hidrogênio , Ascomicetos/metabolismo , Fermentação , Esterco/microbiologia , Carvão Vegetal
13.
Environ Sci Pollut Res Int ; 31(29): 42144-42159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862800

RESUMO

As a widely available, low-cost agricultural byproduct, bagasse is a potential solid carbon source and provides microbial attachment as a biofilm carrier. In this study, the effects of bagasse as a carbon source on biofloc formation, water quality, microbial community structure, and nitrogen conversion in a shrimp culture system were explored, and the performance of bagasse bioflocs was assessed. No bagasse was added to the control group (CK), and three bagasse addition groups were set up, with the floc content of the water maintained at 5 mL/L (BF5 group), 10 mL/L (BF10 group), and 15 mL/L (BF15 group). The results showed that bagasse bioflocs formed in the fourth week when bagasse was placed in the culture water, and the surface of bagasse was covered with thick biofilm at that time. The DOC content of the BF15 group was significantly greater than that of the CK group, from 30.31 to 105.06% (P < 0.05), and the DOC increased with increasing bagasse biofloc content. The BF group rapidly converted TAN to NO2--N and then to NO3--N because the accumulation of nitrite nitrogen in the BF15 group occurred 1 week earlier than in the other groups; at the 8th week, the nitrite nitrogen conversion rate of each BF group was close to 100%, which was significantly greater than that of the CK group (P < 0.05). The relative abundances of genes encoding microbial glutamate dehydrogenase and glutamate synthase increased in the bagasse biofloc groups (P < 0.05). The relative abundances of genes from Rhodobacterales and Hyphomicrobiales in each group were greater, but bagasse bioflocs increased the proportion of Hyphomicrobiale. In summary, adding bagasse to the shrimp culture system can form a biofloc system, resulting in the formation of a rich bacterial biofilm on its surface. Bagasse addition not only affects the composition of microbial communities but also accelerates the nitrification process in water. As a result, ammonia and nitrite are converted into nitrate, which is essential for maintaining the stability of the ecosystem balance in aquaculture water.


Assuntos
Carbono , Celulose , Qualidade da Água , Animais , Celulose/metabolismo , Biofilmes , Microbiota , Nitrogênio , Aquicultura
14.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848847

RESUMO

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Assuntos
Bactérias , Linho , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Linho/microbiologia , Lignina/metabolismo , Lignina/química , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , RNA Ribossômico 16S/genética , Pectinas/metabolismo , Celulose/metabolismo
15.
Int J Biol Macromol ; 273(Pt 1): 132929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866279

RESUMO

In order to more efficiently utilize the abundant cellulose resources in nature, increase the utilization rate of cellulose in aquaculture, implement precise feeding and save aquaculture costs, we have conducted research on cellulase genes related to the spotted knifejaw (Oplegnathus punctatus). Cellulose, as the most abundant renewable resource, is a cornerstone in the intricate ecological balance of diverse ecosystems. While herbivorous fish are recognized for their utilization of proteins, sugars, and fats, the extent of cellulose utilization by carnivorous and omnivorous fish remains an enigma. Here, through field sampling and behavioural observations, O. punctatus' omnivorous diet has been demonstrated (stomach contents contain approximately several species of algae in the Bacillariophyta (1.12 %), Streptomyces (0.55 %), Chlorophyta (0.35 %), Rhodophyta (0.16 %), and Euglenophyta (0.19 %) phylum). Additionally, the high cellulase activity in the intestine of O. punctatus has been detected first discovery (enzyme activity up to 4800.15 U/g), indicating its ability to digest cellulose. By employing whole-genome scanning and high-throughput sequencing, a single cellulase gene (ß-glucosidase) within the genome of O. punctatus, suggesting the absence of a complete cellulose digestive system. However, microbiological analysis revealed the three crucial role of microorganisms, including Actinobacteria (25.80 %), Bacteroidetes (18.93 %), and Firmicutes phylum (0.82 %), were found to play a crucial role in the decomposition of plant cell walls, thereby facilitating plant material digestion to help the host to complete the process of cellulose digestion. Expression patterns and proteomic analysis of the ß-glucosidase were notably high in the gonads. In situ hybridization confirmed the expression of the ß-glucosidase gene in the intestinal contents and gonads, highlighting its role in supplying energy of gonads. These discoveries shed light on the dietary habits of O. punctatus and its cellulose utilization, offering insights that can inform the development of customized feeding strategies to enhance aquaculture sustainability and minimize resource expenditure.


Assuntos
Peixes , beta-Glucosidase , Animais , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Peixes/genética , Filogenia , Celulose/metabolismo , Carnivoridade
16.
Environ Microbiol Rep ; 16(4): e13281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940659

RESUMO

Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.


Assuntos
Celulose , Fermentação , Metano , Anaerobiose , Celulose/metabolismo , Metano/metabolismo , Biocombustíveis/microbiologia , RNA Ribossômico 16S/genética , Hidrólise , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Hypocreales
17.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884221

RESUMO

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Oxigênio , Isótopos de Oxigênio/análise , China , Isótopos de Carbono/análise , Clima , Altitude , Plantas/metabolismo , Plantas/classificação , Fenômenos Fisiológicos Vegetais , Tibet , Celulose/metabolismo , Celulose/análise
18.
Plant Physiol Biochem ; 212: 108794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850730

RESUMO

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.


Assuntos
Parede Celular , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Lignina/biossíntese , Lignina/metabolismo , Plantas Geneticamente Modificadas , Celulose/biossíntese , Celulose/metabolismo , Ácido Abscísico/metabolismo
19.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874315

RESUMO

Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.


Assuntos
Isótopos de Carbono , Celulose , Mudança Climática , Isótopos de Oxigênio , Pseudotsuga , Árvores , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/fisiologia , Pseudotsuga/metabolismo , Celulose/metabolismo , Isótopos de Carbono/análise , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/metabolismo , Isótopos de Oxigênio/análise , Secas , Abies/crescimento & desenvolvimento , Abies/fisiologia , Abies/metabolismo , Suíça
20.
Curr Microbiol ; 81(8): 224, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874676

RESUMO

Grapsoid crabs (Decapoda: Grapsoidea) inhabiting along the land-sea transition provided various amounts and quality of vascular plant carbon (e.g., fresh mangrove leaf, leaf litter, and mangrove-derived organic carbon) and perform differing levels of herbivory. Other than endogenous cellulase, symbiotic cellulolytic bacteria could also contribute to the crabs' vascular plant carbon assimilation and mineralization. In this study, we isolated culturable cellulolytic bacteria from three gut regions (i.e., stomach, midgut, and hindgut) of 15 species of grapsoid crabs that inhabit in various coastal habitats (i.e., land margin, mangrove forest, tidal flat, and subtidal area). Bacillus, which was isolated from 11 out of the 15 grapsoid crabs, was the most common genus of culturable prominently cellulolytic bacteria among the target species. Seventy to ninety nine percent of culturable cellulolytic bacteria were removed, and the endoglucanase activity of five species was significantly reduced by 14.4-27.7% after antibiotic treatment. These results suggest that cellulolytic bacteria play a role in assisting mangrove carbon utilization in coastal grapsoid crabs, especially those inhabiting mangrove, mudflat, and subtidal areas. The significantly higher abundance of cellulolytic bacteria and the generally higher hydrolytic capacity of the bacteria in mangrove crab species suggest that they receive more contribution from symbionts for mangrove carbon utilization, while semi-terrestrial crabs seem to depend little on symbiotic cellulase due to the lower abundances.


Assuntos
Celulose , Microbioma Gastrointestinal , Áreas Alagadas , Animais , Celulose/metabolismo , Braquiúros/microbiologia , Bactérias Aeróbias/metabolismo , Bactérias Aeróbias/fisiologia , Celulase/metabolismo , Simbiose , Trato Gastrointestinal/microbiologia , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA