Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.142
Filtrar
2.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949024

RESUMO

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Assuntos
Cílios , Doenças Renais Císticas , Doença de Leigh , Mitocôndrias , Peixe-Zebra , Humanos , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Cílios/metabolismo , Cílios/patologia , Cílios/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Retina/metabolismo , Retina/patologia , Retina/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/metabolismo , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/anormalidades , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Masculino
3.
J Psychiatry Neurosci ; 49(4): E233-E241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960626

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults. METHODS: We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we analyzed the association between the tract metrics and cliniconeuropsychological profiles. RESULTS: We included 60 participants with ADHD (including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional anisotropy (FA; t 78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t 78 = 3.01, p = 0.004) were reduced, and radial diffusivity (RD) in the right ICP was increased (t 78 = -2.84, p = 0.006), compared with controls. Although case-control differences in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only responders significantly differed from controls in right ICP RD, which relates to myelination (t 60 = 3.14, p = 0.003). Hindrance modulated orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. LIMITATIONS: This study included only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. CONCLUSION: These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage further investigation. CLINICAL TRIAL REGISTRATION: NCT03709940.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cerebelo , Imagem de Tensor de Difusão , Metilfenidato , Adulto , Humanos , Masculino , Adulto Jovem , Anisotropia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Estudos de Casos e Controles , Estimulantes do Sistema Nervoso Central , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Cerebelo/fisiopatologia , Metilfenidato/uso terapêutico , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
4.
Cells ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994990

RESUMO

In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.


Assuntos
Animais Geneticamente Modificados , Proteína 7 de Ligação a Ácidos Graxos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/genética , Neuroglia/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Camundongos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
5.
Proc Natl Acad Sci U S A ; 121(31): e2323050121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042684

RESUMO

Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.


Assuntos
Barreira Hematoencefálica , Cerebelo , Fibrinogênio , Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Animais , Fibrinogênio/metabolismo , Cerebelo/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Humanos , Animais Recém-Nascidos , Recém-Nascido , Neurogênese , Feminino , Masculino , Modelos Animais de Doenças
6.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
7.
J Mol Neurosci ; 74(3): 72, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042258

RESUMO

Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.


Assuntos
Antioxidantes , Berberina , Ratos Wistar , Animais , Masculino , Ratos , Berberina/farmacologia , Berberina/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo
8.
Genome Biol ; 25(1): 180, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978101

RESUMO

Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE. To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, we implement a hierarchical model involving additive mixtures of spatial smoothing splines. We apply our method to allele-resolved Visium and Slide-seq from the mouse cerebellum and hippocampus and report new insight into the landscape of spatial and cell type-specific ASE therein.


Assuntos
Alelos , Cerebelo , Transcriptoma , Animais , Camundongos , Cerebelo/metabolismo , Hipocampo/metabolismo , Perfilação da Expressão Gênica , Análise de Célula Única
9.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980147

RESUMO

Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Cerebelo/fisiologia , Cerebelo/diagnóstico por imagem , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Neocórtex/fisiologia , Neocórtex/diagnóstico por imagem , Memória de Curto Prazo/fisiologia , Dedos/fisiologia
10.
PLoS Negl Trop Dis ; 18(7): e0012302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950061

RESUMO

BACKGROUND: Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS: Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS: A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 µm; HGINV 37 ± 5 µm; WB 28 ± 3 µm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION: The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.


Assuntos
Cerebelo , Gerbillinae , Giardia lamblia , Giardíase , Hipocampo , Zinco , Animais , Gerbillinae/parasitologia , Zinco/deficiência , Zinco/metabolismo , Giardíase/parasitologia , Giardíase/patologia , Cerebelo/patologia , Cerebelo/parasitologia , Hipocampo/patologia , Hipocampo/parasitologia , Giardia lamblia/crescimento & desenvolvimento , Masculino , Modelos Animais de Doenças
11.
Hum Brain Mapp ; 45(10): e26749, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989605

RESUMO

The cerebellum has been involved in social abilities and autism. Given that the cerebellum is connected to the cortex via the cerebello-thalamo-cortical loop, the connectivity between the cerebellum and cortical regions involved in social interactions, that is, the right temporo-parietal junction (rTPJ) has been studied in individuals with autism, who suffer from prototypical deficits in social abilities. However, existing studies with small samples of categorical, case-control comparisons have yielded inconsistent results due to the inherent heterogeneity of autism, suggesting that investigating how clinical dimensions are related to cerebellar-rTPJ functional connectivity might be more relevant. Therefore, our objective was to study the functional connectivity between the cerebellum and rTPJ, focusing on its association with social abilities from a dimensional perspective in a transdiagnostic sample. We analyzed structural magnetic resonance imaging (MRI) and functional MRI (fMRI) scans obtained during naturalistic films watching from a large transdiagnostic dataset, the Healthy Brain Network (HBN), and examined the association between cerebellum-rTPJ functional connectivity and social abilities measured with the social responsiveness scale (SRS). We conducted univariate seed-to-voxel analysis, multivariate canonical correlation analysis (CCA), and predictive support vector regression (SVR). We included 1404 subjects in the structural analysis (age: 10.516 ± 3.034, range: 5.822-21.820, 506 females) and 414 subjects in the functional analysis (age: 11.260 ± 3.318 years, range: 6.020-21.820, 161 females). Our CCA model revealed a significant association between cerebellum-rTPJ functional connectivity, full-scale IQ (FSIQ) and SRS scores. However, this effect was primarily driven by FSIQ as suggested by SVR and univariate seed-to-voxel analysis. We also demonstrated the specificity of the rTPJ and the influence of structural anatomy in this association. Our results suggest that there is a complex relationship between cerebellum-rTPJ connectivity, social performance and IQ. This relationship is specific to the cerebellum-rTPJ connectivity, and is largely related to structural anatomy in these two regions. PRACTITIONER POINTS: We analyzed cerebellum-right temporoparietal junction (rTPJ) connectivity in a pediatric transdiagnostic sample. We found a complex relationship between cerebellum and rTPJ connectivity, social performance and IQ. Cerebellum and rTPJ functional connectivity is related to structural anatomy in these two regions.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Cerebelo/patologia , Masculino , Feminino , Adulto Jovem , Adulto , Conectoma/métodos , Habilidades Sociais , Adolescente , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
12.
Nat Commun ; 15(1): 5563, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982047

RESUMO

The spatial organization of a neuronal circuit is critically important for its function since the location of neurons is often associated with function. In the cerebellum, the major output of the cerebellar cortex are synapses made from Purkinje cells onto neurons in the cerebellar nuclei, yet little has been known about the spatial organization of these synapses. We explored this question using whole-cell electrophysiology and optogenetics in acute sagittal cerebellar slices to produce spatial connectivity maps of cerebellar cortical output in mice. We observed non-random connectivity where Purkinje cell inputs clustered in cerebellar transverse zones: while many nuclear neurons received inputs from a single zone, several multi-zonal connectivity motifs were also observed. Single neurons receiving input from all four zones were overrepresented in our data. These findings reveal that the output of the cerebellar cortex is spatially structured and represents a locus for multimodal integration in the cerebellum.


Assuntos
Córtex Cerebelar , Optogenética , Células de Purkinje , Sinapses , Animais , Córtex Cerebelar/fisiologia , Células de Purkinje/fisiologia , Camundongos , Sinapses/fisiologia , Masculino , Núcleos Cerebelares/fisiologia , Técnicas de Patch-Clamp , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Feminino , Neurônios/fisiologia , Cerebelo/fisiologia , Camundongos Transgênicos
13.
Physiol Res ; 73(3): 449-459, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027961

RESUMO

Parallel fibers (PFs) in the cerebellar cortex are involved in a series of coordinated responses in the fear conditioning paradigm induced by footshock. However, whether footshock can activate cerebellar climbing fibers (CFs) remains unclear. In this study, we recorded calcium (Ca2+) activity in CFs by optical fiber photometry in the cerebellar vermis lobule IV/V of freely moving mice with footshock stimulation. We found that the activation of CFs in the lobule IV/V was highly correlated with footshock stimulation but not with the sound stimulation used as a control. This result suggests that afferent information from CFs might be associated with the motor initiation of fear-related behaviors or fear emotion itself. Thus, our results suggest that a characteristic CF signal in the cerebellar cortex might be related to fear processing or footshock-related behaviors (such as startle responses or pain sensation).


Assuntos
Medo , Camundongos Endogâmicos C57BL , Animais , Camundongos , Masculino , Medo/fisiologia , Eletrochoque , Cerebelo/fisiologia , Córtex Cerebelar/fisiologia
14.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39034883

RESUMO

Pontocerebellar hypoplasia type 2a (PCH2a) is an ultra-rare, autosomal recessive pediatric disorder with limited treatment options. Its anatomical hallmark is hypoplasia of the cerebellum and pons accompanied by progressive microcephaly. A homozygous founder variant in TSEN54, which encodes a tRNA splicing endonuclease (TSEN) complex subunit, is causal. The pathological mechanism of PCH2a remains unknown due to the lack of a model system. Therefore, we developed human models of PCH2a using regionalized neural organoids. We generated induced pluripotent stem cell (iPSC) lines from three males with genetically confirmed PCH2a and subsequently differentiated cerebellar and neocortical organoids. Mirroring clinical neuroimaging findings, PCH2a cerebellar organoids were reduced in size compared to controls starting early in differentiation. Neocortical PCH2a organoids demonstrated milder growth deficits. Although PCH2a cerebellar organoids did not upregulate apoptosis, their stem cell zones showed altered proliferation kinetics, with increased proliferation at day 30 and reduced proliferation at day 50 compared to controls. In summary, we generated a human model of PCH2a, providing the foundation for deciphering brain region-specific disease mechanisms. Our first analyses suggest a neurodevelopmental aspect of PCH2a.


Assuntos
Encéfalo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Organoides/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Encéfalo/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Atrofias Olivopontocerebelares/patologia , Atrofias Olivopontocerebelares/genética , Proliferação de Células , Tamanho do Órgão , Modelos Biológicos , Apoptose , Doenças Cerebelares
15.
Adv Tech Stand Neurosurg ; 52: 207-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017796

RESUMO

Pineal lesions represent less than 1% of all brain tumors (Villani et al., Clin Neurol Neurosurg 109:1-6, 2007). The abysmal location and critical neurovascular structures remain a surgical challenge, despite the advent of microneurosurgery. The classical wide surgical suboccipital craniotomy with the supracerebellar infratentorial approach, described by Sir Victor Horsley (Victor, Proc R Soc Med 3:77-78, 1910), is infamous for its considerable surgical morbidity and mortality. This was later upgraded microneurosurgically by Stein to improve surgical outcomes (Stein, J Neurosurg 35:197-202, 1971).Ruge et al. reported the first purely endoscopic fenestration of quadrigeminal arachnoid cysts via this corridor (Ruge et al., Neurosurgery 38:830-7, 1996). A cadaver-based anatomical study by Cardia et al. demonstrated the viability for endoscope-assisted techniques (Cardia et al., J Neurosurg 2006;104(6 Suppl):409-14). However, the first purely endoscopic supracerebellar infratentorial (eSCIT) approach to a pineal cyst was performed in 2008 by Gore et al. (Gore PA et al., Neurosurgery 62:108-9, 2008).Unlike transventricular endoscopy, eSCIT approach poses no mechanical risk to the fornices and can be utilized irrespective of ventricular size. More vascular control and resultant reduction in uncontrolled hemorrhage improve the feasibility of attaining complete resection, especially around corners (Zaidi et al,, World Neurosurg 84, 2015). Gravity-dependent positioning and cerebrospinal fluid (CSF) diversion aid cerebellar relaxation, creating the ideal anatomical pathway. Also, angle of the straight sinus, tentorium, and tectal adherence can often influence the choice of approach; thus direct endoscopic visualization not only counteracts access to the engorged Galenic complex but also encourages sharp dissection of the arachnoid (Cardia et al., J Neurosurg 104:409-14, 2006). These tactics help provide excellent illumination with magnification, making it less fatiguing for the surgeon (Broggi et al., Neurosurgery 67:159-65, 2010).The purely endoscopic approach thwarts the dreaded risk of air embolisms, via simple copious irrigation from a small burr hole (Shahinian and Ra, J Neurol Surg B Skull Base 74:114-7, 2013). The tiny opening and closure are rapid to create, and the smaller wound decreases postoperative pain and morbidity. Recent literature supports its numerous advantages and favorable outcomes, making it a tough contender to traditional open methods.


Assuntos
Glândula Pineal , Criança , Humanos , Neoplasias Encefálicas/cirurgia , Cerebelo/cirurgia , Endoscopia/métodos , Neuroendoscopia/métodos , Procedimentos Neurocirúrgicos/métodos , Glândula Pineal/cirurgia , Pinealoma/cirurgia
16.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38960706

RESUMO

The cerebellum is a conserved structure of the vertebrate brain involved in the timing and calibration of movements. Its function is supported by the convergence of fibers from granule cells (GCs) and inferior olive neurons (IONs) onto Purkinje cells (PCs). Theories of cerebellar function postulate that IONs convey error signals to PCs that, paired with the contextual information provided by GCs, can instruct motor learning. Here, we use the larval zebrafish to investigate (1) how sensory representations of the same stimulus vary across GCs and IONs and (2) how PC activity reflects these two different input streams. We use population calcium imaging to measure ION and GC responses to flashes of diverse luminance and duration. First, we observe that GCs show tonic and graded responses, as opposed to IONs, whose activity peaks mostly at luminance transitions, consistently with the notion that GCs and IONs encode context and error information, respectively. Second, we show that GC activity is patterned over time: some neurons exhibit sustained responses for the entire duration of the stimulus, while in others activity ramps up with slow time constants. This activity could provide a substrate for time representation in the cerebellum. Together, our observations give support to the notion of an error signal coming from IONs and provide the first experimental evidence for a temporal patterning of GC activity over many seconds.


Assuntos
Cerebelo , Estimulação Luminosa , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Cerebelo/fisiologia , Estimulação Luminosa/métodos , Células de Purkinje/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia
17.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961250

RESUMO

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Assuntos
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Cerebelo/metabolismo , Cerebelo/fisiologia , Cerebelo/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
18.
Transl Psychiatry ; 14(1): 272, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961057

RESUMO

Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de N-Metil-D-Aspartato , Transmissão Sináptica , Ácido Valproico , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Valproico/farmacologia , Gravidez , Feminino , Camundongos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transtorno do Espectro Autista/induzido quimicamente , Masculino , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Anticonvulsivantes/farmacologia
19.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981474

RESUMO

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Assuntos
Camundongos Endogâmicos C57BL , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Camundongos , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Anticorpos , Proteínas de Ligação ao GTP , D-Ala-D-Ala Carboxipeptidase Tipo Serina
20.
Elife ; 132024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012692

RESUMO

Behavioral and pharmaceutical interventions reverse defects associated with increased cerebellar long-term depression in a mouse model of Fragile X syndrome.


Assuntos
Cerebelo , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Aprendizagem , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Cerebelo/fisiologia , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA