Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.303
Filtrar
1.
J Environ Sci (China) ; 146: 272-282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969455

RESUMO

Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.


Assuntos
Biomassa , Chlorella , Nitrogênio , Fotobiorreatores , Eliminação de Resíduos Líquidos , Nitrogênio/metabolismo , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eutrofização
2.
Biochemistry (Mosc) ; 89(6): 1133-1145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981706

RESUMO

Primary excitation energy transfer and charge separation in photosystem I (PSI) from the extremophile desert green alga Chlorella ohadii grown in low light were studied using broadband femtosecond pump-probe spectroscopy in the spectral range from 400 to 850 nm and in the time range from 50 fs to 500 ps. Photochemical reactions were induced by the excitation into the blue and red edges of the chlorophyll Qy absorption band and compared with similar processes in PSI from the cyanobacterium Synechocystis sp. PCC 6803. When PSI from C. ohadii was excited at 660 nm, the processes of energy redistribution in the light-harvesting antenna complex were observed within a time interval of up to 25 ps, while formation of the stable radical ion pair P700+A1- was kinetically heterogeneous with characteristic times of 25 and 120 ps. When PSI was excited into the red edge of the Qy band at 715 nm, primary charge separation reactions occurred within the time range of 7 ps in half of the complexes. In the remaining complexes, formation of the radical ion pair P700+A1- was limited by the energy transfer and occurred with a characteristic time of 70 ps. Similar photochemical reactions in PSI from Synechocystis 6803 were significantly faster: upon excitation at 680 nm, formation of the primary radical ion pairs occurred with a time of 3 ps in ~30% complexes. Excitation at 720 nm resulted in kinetically unresolvable ultrafast primary charge separation in 50% complexes, and subsequent formation of P700+A1- was observed within 25 ps. The photodynamics of PSI from C. ohadii was noticeably similar to the excitation energy transfer and charge separation in PSI from the microalga Chlamydomonas reinhardtii; however, the dynamics of energy transfer in C. ohadii PSI also included slower components.


Assuntos
Chlorella , Transferência de Energia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Chlorella/metabolismo , Synechocystis/metabolismo , Processos Fotoquímicos , Clorofila/metabolismo , Clorofila/química , Cinética
3.
Planta ; 260(2): 39, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951320

RESUMO

MAIN CONCLUSION: Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.


Assuntos
Chlorella , Nitrogênio , Espécies Reativas de Oxigênio , Estresse Fisiológico , Chlorella/metabolismo , Chlorella/genética , Chlorella/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nitrogênio/metabolismo , Metabolismo dos Lipídeos/genética , Cálcio/metabolismo , Lipídeos , Sinalização do Cálcio , Transdução de Sinais , Microalgas/metabolismo , Microalgas/genética
4.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969726

RESUMO

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Assuntos
Chlorella , Hormese , Metabolismo dos Lipídeos , Chlorella/metabolismo , Chlorella/efeitos da radiação , Chlorella/crescimento & desenvolvimento , Metabolismo dos Lipídeos/efeitos da radiação , Hormese/efeitos da radiação , Radiação Ionizante , Biomassa
5.
Curr Microbiol ; 81(9): 265, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003318

RESUMO

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 µm and 14.4 µm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.


Assuntos
Chlorella , Paramecium , Simbiose , Chlorella/química , Chlorella/metabolismo , Paramecium/metabolismo , Cristalização , Citoplasma/química
6.
Chemosphere ; 361: 142514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830468

RESUMO

Energy is a crucial entity for the development and it has various alternative forms of energy sources. Recently, the synthesis of nanoparticles using benign biocatalyst has attracted increased attention. In this study, silver nanoparticles were synthesized and characterized using Azadirachta indica plant-derived phytochemical as the reducing agent. Biomass of the microalga Chlorella sp. cultivated in BG11 medium increased after exposure to low concentrations of up to 0.48 mg L-1 AgNPs. In addition, algal cells treated with 0.24 mg L-1 AgNPs and cultivated in BG110 medium which contained no nitrogen source showed the highest hydrogen yield of 10.8 mmol L-1, whereas the untreated cells under the same conditions showed very low hydrogen yield of 0.003 mmol L-1. The enhanced hydrogen production observed in the treated cells was consistent with an increase in hydrogenase activity. Treatment of BG110 grown cells with low concentration of green synthesized AgNPs at 0.24 mg L-1 enhanced hydrogenase activity with a 5-fold increase of enzyme activity compared to untreated BG110 grown cells. In addition, to improve photolytic water splitting efficiency for hydrogen production, cells treated with AgNPs at 0.24 mg L-1 showed highest oxygen evolution signifying improvement in photosynthesis. The silver nanoparticles synthesized using phytochemicals derived from plant enhanced both microalgal biomass and hydrogen production with an added advantage of CO2 reduction which could be achieved due to an increase in biomass. Hence, treating microalgae with nanoparticles provided a promising strategy to reduce the atmospheric carbon dioxide as well as increasing production of hydrogen as clean energy.


Assuntos
Biomassa , Chlorella , Hidrogênio , Nanopartículas Metálicas , Nitrogênio , Prata , Nanopartículas Metálicas/química , Chlorella/metabolismo , Chlorella/efeitos dos fármacos , Prata/química , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Hidrogenase/metabolismo , Microalgas/metabolismo
7.
Bioresour Technol ; 406: 130999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885721

RESUMO

Microalgae-based biotechnology holds significant potential for addressing dual challenges of phosphorus removal and recovery from wastewater; however, the removal mechanism and metabolic adaptation of microalgae to dissolved organic phosphorus (DOP) are still unclear. This study investigated the removal mechanisms and metabolomic responses of the Chlorella pyrenoidosa to different DOP forms, including adenosine triphosphate (ATP), glucose-6-phosphate (G-6-P), and ß-glycerophosphate (ß-GP). The results showed C. pyrenoidosa could efficiently take up above 96% DOP through direct transport and post-hydrolysis pathways. The uptake of inorganic phosphorus (IP) followed pseudo first order kinetic model, while DOP followed pseudo second order kinetic model. Metabolite profiling revealed substantial alterations in central carbon metabolism depending on the DOP source. G-6-P upregulated glycolytic and TCA cycle intermediates, reflecting enhanced carbohydrates, amino acids and nucleotides biosynthesis. In contrast, ATP down-regulated carbohydrate and purine metabolism, inhibiting sustainable growth of microalgae. This study offers theoretical support for phosphorus-containing wastewater treatment using microalgae.


Assuntos
Trifosfato de Adenosina , Chlorella , Fósforo , Chlorella/metabolismo , Fósforo/metabolismo , Trifosfato de Adenosina/metabolismo , Microalgas/metabolismo , Cinética , Glucose-6-Fosfato/metabolismo
8.
ACS Appl Mater Interfaces ; 16(27): 34743-34756, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934271

RESUMO

Infection and oxidative stress seriously hinder the healing of diabetic wounds, resulting in various serious health and clinical problems. Herein, a sustainable biological hydrogen (H2)-producing hyaluronic acid-based hydrogel patch (HAP-Chl) was constructed by loading an imidazolium-based poly(ionic liquid) (PIL) flocculated live Chlorella as a diabetic wound dressing. The PIL can flocculate Chlorella through electrostatic interactions between PIL and Chlorella to form Chlorella agglomerates, endowing the Chlorella in the central agglomerates with the ability to continuously produce H2 for 24 h under mild conditions. Combining the membrane disruption-related bactericidal mechanism of PIL and the antioxidant properties of the produced H2, HAP-Chl was determined to be antibacterial and antioxidant. In addition to exhibiting biocompatible and nontoxic activities, subsequent Staphylococcus aureus-infected chronic wound studies revealed that HAP-Chl is capable of promoting the healing of chronic wounds by effectively killing bacteria, reducing extensive ROS, relieving inflammation, and promoting the deposition of mature collagen and angiogenesis. This study provides a new strategy for constructing an in situ sustainable H2-producing hydrogel, enabling the formation of novel antibacterial and antioxidant material platforms with potential for wound dressing applications.


Assuntos
Antibacterianos , Antioxidantes , Chlorella , Hidrogéis , Hidrogênio , Staphylococcus aureus , Cicatrização , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Chlorella/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Hidrogênio/química , Hidrogênio/farmacologia , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Bandagens , Camundongos , Ratos , Humanos , Masculino
9.
Water Sci Technol ; 89(10): 2732-2745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822611

RESUMO

In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.


Assuntos
Compostos de Amônio , Reatores Biológicos , Membranas Artificiais , Microalgas , Águas Residuárias , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Compostos de Amônio/metabolismo , Processos Heterotróficos , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Processos Fototróficos
10.
Chemosphere ; 361: 142563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851498

RESUMO

In this study, the growth characteristics of microalgae cultured with different carbon sources were analyzed, and the flocculation characteristics under the influence of carbon sources were evaluated using three typical flocculants. The results showed that the organic carbon sources could significantly increase the content of extracellular proteins in microalgae. Specifically, the extracellular protein concentrations of microalgae cultured with pure BG-11, ethanol, sodium acetate and glucose were 18.2 29.2, 97.3, and 34.7 mg/g, respectively. During the flocculation process, microalgae cultured with sodium acetate exhibited a weak response to the flocculant because of excessive extracellular proteins inhibited flocculation. In addition, the flocculation efficiency was also less than 50.0% cultured with sodium acetate in all pH test ranges when alum and chitosan were used as flocculants. It could be inferred that the flocculant initially happened to charge neutralization with the negatively charged proteins in the solution and then bridged the charges with the microalgae. These findings provide insights into the effects of different carbon sources on microalgal flocculation, promising organic integration of microalgae wastewater treatment and harvesting.


Assuntos
Carbono , Chlorella , Floculação , Microalgas , Chlorella/crescimento & desenvolvimento , Carbono/química , Microalgas/crescimento & desenvolvimento , Quitosana/química , Acetato de Sódio/química , Águas Residuárias/química , Glucose , Concentração de Íons de Hidrogênio , Etanol/química , Eliminação de Resíduos Líquidos/métodos
11.
Bioresour Technol ; 406: 131043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936677

RESUMO

Microalgae are known to be the richest natural source of polysaccharides. The study aimed to evaluate the ability of microalgae from the Chlorella sp. genus to synthesize polysaccharides. Brody & Emerson max medium proved to be the most effective; the average cell content in the culture fluid at the beginning and at the end of cultivation for IPPAS Chlorella pyrenoidosa Chick was 1.23 ± 0.03 g/L and 1.71 ± 0.20 g/L, respectively. With a high average dry weight of IPPAS Chlorella pyrenoidosa Chick (4.45 ± 0.10 g/L), it produced the least amount of neutral sugars (0.75 ± 0.02 g/L) and uronic acids (0.14 ± 0.01 mg/L). The microalga IPPAS Chlorella vulgaris with the lowest average dry weight (1.18 ± 0.03 g/L) produced 0.80 ± 0.02 g/L of neutral sugars and 0.17 ± 0.01 mg/L of uronic acids. Microalgal polysaccharides have the potential to be used as a source for biologically active food additives, as they contain various types of polysaccharides that can be beneficial to human health.


Assuntos
Chlorella , Microalgas , Polissacarídeos , Chlorella/metabolismo , Microalgas/metabolismo , Ácidos Urônicos/metabolismo , Meios de Cultura
12.
Int J Biol Macromol ; 271(Pt 2): 132375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759855

RESUMO

Anti-counterfeiting in 3D printing has gained significant attention, however, current approaches often fall short of fully capitalizing on the inherent advantages of personalized manufacturing with this technology. Herein, we propose an embedded anti-counterfeiting scheme for additive manufacturing, accompanied by a novel fluorescent encrypted quick response (QR) method. This approach involves the development of a 3D printing filament utilizing poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) bio-composites as the primary filament matrix, with varying quantities of Chlorella powder incorporated. The resulting filament has a good thermal stability near 200 °C and exhibits a distinctive red fluorescence under ultraviolet light, with the emission peak at 677 nm when excited by 415 nm blue light. Fluorescence imaging analysis confirms that the red fluorescence in 3D printed devices containing Chlorella is a result of the chlorophyll and its derivatives fluorescence effect. The fluorescent encrypted QR codes are inconspicuous in daylight but become easily discernible under ultraviolet light. In the cases of recognizable QR codes, the ∆Eab* values all exceed 35, and the LC/LB values deviate significantly from 1. This research delves into the fluorescence characteristics of Chlorella and highlights its applicability in 3D printing, specifically within the realm of product anti-counterfeiting, presenting a groundbreaking approach.


Assuntos
Chlorella , Poliésteres , Impressão Tridimensional , Poliésteres/química , Chlorella/química , Fluorescência
13.
Environ Res ; 256: 119225, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797461

RESUMO

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.


Assuntos
Antibacterianos , Biodegradação Ambiental , Chlorella , Microalgas , Sulfadiazina , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Águas Residuárias/química
14.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791551

RESUMO

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Assuntos
Bifidobacterium longum , Chlorella , Interferon gama , Interleucina-10 , Probióticos , Infecções por Rotavirus , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Células HT29 , Interferon gama/metabolismo , Interleucina-10/metabolismo , Probióticos/farmacologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
15.
J Hazard Mater ; 474: 134752, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815390

RESUMO

Ubiquitous distribution of pharmaceutical contaminants in environment has caused unexpected adverse effects on ecological organisms; however, how microorganisms recover from their toxicities remains largely unknown. In this study, we comprehensively investigated the effect of a representative pollutant, doxylamine (DOX) on a freshwater microalgal species, Chlorella sp. by analyzing the growth patterns, biochemical changes (total chlorophyll, carotenoid, carbohydrate, protein, and antioxidant enzymes), and transcriptomics. We found toxicity of DOX on Chlorella sp. was mainly caused by disrupting synthesis of ribosomes in nucleolus, and r/t RNA binding and processing. Intriguingly, additional bicarbonate enhanced the toxicity of DOX with decreasing the half-maximum effective concentrations from 15.34 mg L-1 to 4.63 mg L-1, which can be caused by inhibiting fatty acid oxidation and amino acid metabolism. Microalgal cells can recover from this stress via upregulating antioxidant enzymatic activities to neutralize oxidative stresses, and photosynthetic pathways and nitrogen metabolism to supply more energies and cellular signaling molecules. This study extended our understanding on how microalgae can recover from chemical toxicity, and also emphasized the effect of environmental factors on the toxicity of these contaminants on aquatic microorganisms.


Assuntos
Chlorella , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Chlorella/genética , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Microalgas/genética , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Carotenoides/metabolismo , Antioxidantes/metabolismo
16.
Sci Total Environ ; 939: 173643, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821282

RESUMO

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.


Assuntos
Antibacterianos , Biofilmes , Chlorella , Água do Mar , Poluentes Químicos da Água , Chlorella/fisiologia , Chlorella/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Água do Mar/química , Medição de Risco , Eliminação de Resíduos Líquidos/métodos , Aquicultura , Microalgas/efeitos dos fármacos , Microalgas/fisiologia
17.
Environ Sci Pollut Res Int ; 31(26): 38274-38287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802614

RESUMO

With the wide application of nanomaterials, the concentration of nanomaterials in natural water continues to increase, which poses a severe threat to the water environment. However, the influence of organic matter and nanomaterials rich in natural water on the toxic effect of algae growth is still unclear. In this study, the effects of humic acid (HA) and nano-cerium oxide (nCeO2) on the physiology and transcriptome of Chlorella sp. were analyzed, and the mechanism of the toxic effect of HA on Chlorella sp. under nCeO2 stress was revealed. Under 20-200 mg/L nCeO2 stress, the growth of Chlorella cells was inhibited and the highest inhibition rate reached 52% within 200 mg/L nCeO2. The Fv/Fm and ETRmax values of Chlorella sp. decreased from 0.490 and 24.45 (20 mg/L nCeO2) to 0.488 and 23.4 (100 mg/L nCeO2), respectively. Under the stimulation of nCeO2, the level of reactive oxygen species in algal cells was increased, accompanied by lipid peroxidation and membrane damage. However, the addition of HA at concentrations of 5-10 mg/L effectively alleviated the toxic effect of nCeO2 on Chlorella sp. Transcriptome analysis showed that 10 mg/L HA could alleviate the cellular stress at 100 mg/L nCeO2 on Chlorella sp. by regulating genes related to photosynthesis and metabolism pathways. Moreover, the downregulation of genes (e.g., Lhca1, Lhcb1, AOC3, and AOC2) indicated that HA reduced the level of oxidative stress in Chlorella sp. These findings offer novel insights of evaluating the ecotoxicity nCeO2 and HA in natural water environment and their impact on Chlorella sp.


Assuntos
Cério , Chlorella , Substâncias Húmicas , Chlorella/efeitos dos fármacos , Cério/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
18.
Chemosphere ; 361: 142491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821130

RESUMO

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp. Employing a suite of experimental methodologies, including Raman spectroscopy, contact angle measurements, electron microscopy, and chromatography, we examined the physicochemical interplay between the GFNs and TBBPA. The toxicity potentials of individual constituents and their binary combinations were assessed through growth inhibition assays, quantifying reactive oxygen species (ROS) generation and malondialdehyde (MDA) production, photosynthetic activity analyses, and various biochemical assays. The toxicity of TBBPA and graphene-based nanomaterials (GFNs) was examined individually and in combinations. Both pristine TBBPA and GFNs showed dose-dependent toxicity. While lower TBBPA concentrations exacerbated toxicity in binary mixtures, higher TBBPA levels reduced the toxic effects compared to pristine TBBPA treatments. The principal mechanism underlying toxicity was ROS generation, resulting in membrane damage and perturbation of photosynthetic parameters. Cluster heatmap and Pearson correlation were employed to assess correlations between the biological parameters. Finally, ecological risk assessment was undertaken to evaluate environmental impacts of the individual components and the mixture in the algae.


Assuntos
Chlorella , Retardadores de Chama , Grafite , Microalgas , Nanoestruturas , Bifenil Polibromatos , Retardadores de Chama/toxicidade , Bifenil Polibromatos/toxicidade , Grafite/toxicidade , Chlorella/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanoestruturas/química , Microalgas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
19.
J Evol Biol ; 37(7): 795-806, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38699979

RESUMO

Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.


Assuntos
Chlorella , Chlorella/virologia , Chlorella/genética , Variação Genética , Coevolução Biológica , Evolução Biológica
20.
Chemosphere ; 358: 142270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719126

RESUMO

To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.


Assuntos
Chlorella , Ácidos Graxos Voláteis , Processos Heterotróficos , Microalgas , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Nitrogênio/metabolismo , Microalgas/metabolismo , Águas Residuárias/química , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/microbiologia , Biomassa , Desnitrificação , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA