Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.909
Filtrar
1.
Environ Monit Assess ; 192(11): 672, 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33009971

RESUMO

The effects of soil compaction on porosity (α), bulk density (ρs), and saturated hydraulic conductivity (Ksat) can create a physical barrier in the soil, reducing the vertical movement of toxic elements in the soil profile. However, the indirect effects of compaction in altering the forms and availability of heavy metals in soil have not been well-studied. This study examined the influence of compaction on forms of lead (Pb) in soils with contrasting texture. Four levels of compaction were imposed on a sandy loam and a clayey soil, which were artificially contaminated based on their maximum Pb adsorption capacity. Compaction had different effects on Pb forms depending on soil texture. In the sandy loam soil, compaction had a dual beneficial effect in mitigating the impact of Pb contamination, since it decreased Ksat, reducing metal transport to deeper soil layers, and also prevented transformation to more available Pb forms (soluble and exchangeable). Instead, there was an increase in the most environmentally stable forms of Pb (inner sphere adsorption on iron and manganese oxides). In the clayey soil, compaction caused a significant increase in soluble and exchangeable Pb, accompanied by a significant reduction in environmentally stable Pb (inner sphere adsorption on gibbsite and kaolinite). In addition, studies about Pb contents under compacted soil layers should be investigated, mainly in clayey soils with edible crops, and environmental remediation practices that involve the machines traffic (for example, phytoremediation-successive cultivation of Pb-hyperaccumulating plants) should be used with care to minimise the compaction of clayey soils.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Chumbo , Solo
2.
Water Sci Technol ; 82(5): 829-842, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031063

RESUMO

A high-surface-area and inexpensive activated carbon has been produced from lemon peel using chemical activation with H3PO4 at 500 °C in a N2 atmosphere. Afterwards, the synthesized cobalt nanoparticles using coprecipitation method were adsorbed on the activated carbon surface, and as a result magnetic activated carbon was obtained. Sample characterization has been assessed via X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption and magnetic properties. It was found that magnetic activated carbon-cobalt nanoparticles (MAC/Co) synthesized had a high saturation magnetization. The MAC/Co revealed super-paramagnetic behaviors at room temperature, and have been readily isolated from solution by using an exterior magnet. Next, adsorption behavior of malachite green and Pb(II) onto the generated MAC/Co has been examined. Sorption kinetics and equilibrium have been studied using batch procedure. The kinetic and isothermal adsorption results were matched completely with the Elovich and Langmuir models, respectively. Based on the Langmuir model, the highest adsorption capacities of malachite green dye and Pb(II) ion respectively were 263.2 and 312.5 mg g-1 at room temperature. Based on the results, the MAC/Co is a probable economic and effective adsorbent that can be employed as a new adsorbent to remove malachite green dye and Pb(II) from wastewater.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Carvão Vegetal , Cobalto , Chumbo , Fenômenos Magnéticos , Corantes de Rosanilina , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Water Sci Technol ; 82(5): 851-860, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031065

RESUMO

The microalgae treatment system is an economically and environmentally friendly option for wastewater treatment. However, the effects of heavy metal toxicity on microalgae cells can limit the use of microalgae in the treatment of industrial effluents rich in heavy metals. In this work, we studied the effect of Ni, Cu, Al, Hg and Pb, added as single-metal solutions to the microalgae culture medium, on the growth of 20 indigenous strains belonging to a wide variety of microalgae genera. Ni and Cu were the most toxic to the strains tested. A highly tolerant strain of the Phacus genera was selected. We determined the effect of multiple combinations of Ni, Al and Pb on the cell growth of the selected strain and on the removal capacity of each metal from the microalgae culture medium. Phacus was able to grow in the multi-metal solution (Ni, 5.00 mg/L; Al, 9.94 mg/L and Pb 1.00 mg/L) and to efficiently remove the metals, with removal capacities of 8.82 ±0.16 mg/g for Ni, 2.09 ± 0.05 mg/g for Pb and 16.90 ± 0.53 mg/g for Al. The reductions of Ni, Al and Pb concentrations were 66.67, 64.28 and 79.17% respectively.


Assuntos
Metais Pesados , Microalgas , Biodegradação Ambiental , Chumbo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Águas Residuárias
4.
Water Sci Technol ; 82(5): 984-997, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031075

RESUMO

The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials followed the decreasing order: aluminosilicate (890 m2/g, 0.680 cm3/g, and 0.644 cm3/g) > zeolite (623 m2/g, 0.352 cm3/g, and 0.111 cm3/g) > AlSi/NaY (20/80) composite (370 m2/g, 0.254 cm3/g, and 0.154 cm3/g, respectively). The Langmuir maximum adsorption capacity (Qm) of metal ions (Sr2+, Cu2+, and Pb2+) in single-component solution was 260 mg/g, 220 mg/g, and 161 mg/g (for zeolite), 153 mg/g, 37.9 mg/g, and 66.5 mg/g (for aluminosilicate), and 186 mg/g, 140 mg/g, and 77.8 mg/g for (AlSi/NaY (20/80) composite), respectively. Ion exchange was regarded as a domain adsorption mechanism of metal ions in solution by zeolite; meanwhile, inner-surface complexation was domain one for aluminosilicate. Ion exchange and inner-surface complexation might be mainly responsible for adsorbing metal ions onto the AlSi/NaY composite. Pore-filling mechanism was a less important contributor during the adsorption process. The results of competitive adsorption under binary-components (Cu2+ and Sr2+) and ternary-components (Cu2+, Pb2+, and Sr2) demonstrated that the removal efficacy of target metals by the aluminosilicate, zeolite, and their composite remarkably decreased. The synthesized AlSi/NaY composite might serve as a promising adsorbent for real water treatment.


Assuntos
Zeolitas , Silicatos de Alumínio , Íons , Chumbo
5.
Environ Monit Assess ; 192(10): 658, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32974766

RESUMO

Batan Bay in Aklan, Philippines supports a population largely dependent on coastal fisheries. The development of aquaculture technologies coupled with over-crowded fish pens has negatively affected its natural dynamics and environmental quality. Land-use activities including ports and shipyard further aggravate the problem by contributing to chemical pollution. The present study applied sequential extraction techniques to determine the geochemical speciation of metals in fishpond sediments. Samples were processed and analyzed for Cu, Cd, and Pb using flame atomic absorption spectroscopy. Copper (Cu) showed the highest concentration (10.61-66.81 µg/g-dry weight of sediment). Lead (Pb) content ranged from below detection limit to 15.14 µg/g, while Cd concentration ranged from below detection limit to 2.50 µg/g. Fractionation study showed that the Cu present in the fishpond sediments is mostly non-residual (50.03-73.34%) and significantly associated with the oxidizable fraction (33.89-64.75%). In contrast, the residual fraction served as the dominant host of Pb (33.55-62.68%) in the sediments. Comparison of the results with US EPA and NOAA sediment quality guidelines also revealed that the Batan Bay sediments may be considered generally non-polluted with respect Cu, Pb, and Cd, and not expected to cause adverse effects to aquatic organisms under normal conditions. However, under certain redox conditions, most of the sites may be considered moderately polluted as a result of Cu mobilization from the non-residual fractions of the sediments. Overall, geochemical speciation studies in an important fishery area like Batan Bay will provide valuable insights into the availability of metal contaminants to aquatic organisms under certain environmental conditions.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , Cádmio , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Filipinas
6.
Sci Total Environ ; 740: 139992, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927536

RESUMO

Mining activities at Duparquet in Western Quebec (Canada) have significantly affected the local environment and left behind significant amounts of metals. Monitoring this contamination is essential to infer its past and present impacts on environmental quality and to evaluate the resulting human exposure. In that context, we measured long time series of Pb concentrations and their corresponding stable isotope ratios in long-lived white cedars (Thuja occidentalis L.) growing at Duparquet Lake in order to evaluate potential time variations of the Pb environmental contamination as well as to identify the responsible source(s). Results show that before 1950, Pb at Duparquet is mostly terrigenous. Lead concentrations rapidly increase afterwards. A simultaneous shift to lower 206Pb/207Pb ratios identifies the smelting of Abitibi ores as the source of contamination. An isotope mass balance model evaluates at roughly 7.5-20%, 5-40%, 5-9% and <3% the Pb contributions from local smelters at distances of 3.6, 3.9, 7 and 9 km, respectively. The dispersion of the Pb contamination plume is possibly driven by the distance from the Beattie smelter. We finally estimated a delay of at least 13 years between atmospheric emissions from the Beattie smelting activities and the time they are recorded by tree rings. Ultimately, this study demonstrates that white cedar tree rings series provide reliable archives of past and present Pb atmospheric contamination.


Assuntos
Chumbo/análise , Thuja , Canadá , Monitoramento Ambiental , Isótopos/análise , Quebeque
7.
Water Sci Technol ; 82(1): 170-184, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32910801

RESUMO

In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selectivity. The mole ratio control of the AC and MnO2 in 1:0.1, microwave heating to 800 °C, heat preservation for 30 min. The maximum adsorption capacity of the MnO2-AC prepared by this method on Pb(II) can reach 664 mg/L at pH = 6. It can be observed by scanning electron microscope (SEM) that manganese dioxide particles are dispersed evenly on the surface and pore diameter of AC, and there is almost no agglomeration. The specific surface area was 752.8 m2/g, and the micropore area was 483.9 m2/g. The adsorption mechanism was explored through adsorption isotherm, adsorption kinetics, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). It is speculated that the adsorption mechanism includes electrostatic interaction and specific adsorption, indicating that lead ions enter into the void of manganese dioxide and form spherical complexes. The results showed that the adsorption behavior of Pb(II) by MnO2-AC was consistent with the Langmuir adsorption model, the quasi-second-order kinetic model, and the particle internal diffusion model.


Assuntos
Compostos de Manganês , Poluentes Químicos da Água/análise , Adsorção , Carvão Vegetal , Íons , Chumbo , Micro-Ondas , Óxidos
8.
Chemosphere ; 258: 127405, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947677

RESUMO

Chelation of lead (Pb) is an important factor in enhancing the Pb mobility thereby improving availability to promote phytoremediation of Pb from contaminated soil. The study was conducted to evaluate the effect of amendments in enhancing the phytoremediation of Pb in soil. For this purpose, soil was spiked to obtain desired Pb concentrations (0-1500 mg kg-1) and pots were filled. One month old and uniform seedlings of Pelargonium hortoum were transplanted into each pot. Five different amendments i.e. compost (0-10%), ammonium nitrate (0-10 mmol kg-1), TiO2NPs (0-100 mg kg-1), citric acid (0-10 mmol kg-1) and EDTA (0-5 mmol kg-1), were applied. Overall, ammonium nitrate, EDTA and citric acid application increased the Pb concentration, however, compost and TiO2NPs decreased the concentration in roots and shoots. At 1500 mg Pb kg-1, Pb concentration in shoots was increased by 0.9-, 0.6- & 0.8-folds and in roots by 1.8-, 1.3- & 1.7-folds upon EDTA, ammonium nitrate and citric acid application, respectively. TiO2NPs and compost application decreased Pb concentration by 29% & 35% in shoots and 25% & 51% in roots, respectively. At the highest level of Pb (1500 mg kg-1), plant biomass was increased by 26.6%, 19.5%, 17.9% and 18.4% upon application of compost, TiO2 NPs, ammonium nitrate and citric acid, respectively. However, EDTA reduced the plant dry biomass by 28.4%. The accumulated Pb content was recovered as Pb-nanoparticles, which were in anatase phase, size ranged between 98 and 276 nm. Among all the studied amendments, citric acid efficiently increased Pb phytoaccumulation without any toxicity.


Assuntos
Biodegradação Ambiental , Chumbo/análise , Poluentes do Solo/análise , Biomassa , Quelantes , Ácido Cítrico , Compostagem , Ácido Edético , Chumbo/metabolismo , Pelargonium , Raízes de Plantas , Solo , Poluentes do Solo/metabolismo
9.
Chemosphere ; 258: 127342, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947679

RESUMO

Environmental contaminations by potentially toxic metals (PTMs) are associated with energy exploitation and present a significant problem in urban areas due to their impacts on human health. The PTMs status in Urumqi total environment inevitably impacted by extensive development of coal and oil industries has been lack of understanding comprehensively. A series of PTMs (As, Ba, Ce, Co, Cr, Cu, Ga, La, Mn, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn, Zr) in the soil-dust-plant (foliage of Ulmus pumila L.) system of Urumqi (NW China) were screened by XRF and ICPMS. Multivariate statistics, risk models, GIS-based geostatistics, Positive Matrix Factorization (PMF) receptor modelling and blood lead levels of 0-6 aged children evaluated by IEUBK model are used to determine the priority pollutants, sources and health effects of the investigated elements. The spatial distribution of PTMs in soil-dust-plant system significantly coincides with coal combustion, traffic emission, and industrial activity. Although all PTM toxicants in soil, dust and tree foliage show some effects, the priority contaminants are observed for Cu, Pb and Zn as single element. The total carcinogenic and non-carcinogenic risks from PTMs are beyond the tolerance range of 0-6 year's old children, and the dust (TCR = 1.07E-04) PTMs pose approximatively equivalent carcinogenic risk to soil PTMs (TCT = 1.09E-04). The predicted BLLs (75-83 µ g·L-1) of 1-2 years children are most strongly influenced by Pb in soil and dust, and therefore more attention should be focused on sources of Pb to support the primary health care of the toddlers in Urumqi.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Metais Pesados/sangue , Poluentes do Solo/sangue , Carcinógenos , China , Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais , Poluição Ambiental/estatística & dados numéricos , Substâncias Perigosas , Humanos , Indústrias , Chumbo/sangue , Metais Pesados/análise , Metais Pesados/metabolismo , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
11.
J Environ Manage ; 271: 111001, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778287

RESUMO

In topsoils, the activity concentrations of natural radionuclides (hereafter NRs) increase due to the addition of NRs from fertilizers, irrigation water, and air dust pollution. On the other hand, various physical-chemical and environmental processes such as radioactive decay, volatilization, leaching, erosion, and plant uptake were responsible for the decrease of the activity concentrations of NRs in the topsoils. In this study, behaviours of 40K, 210Pb, 226Ra, 238U, and 232Th in topsoils were modelled by the CEMC soil model and the HYDRUS-1D model. An exponential equation was proposed for estimating the accumulation rates of these radionuclides in the topsoils. Long-term accumulation of radionuclides was assessed for water spinach (Ipomoea Aquatica Forssk.) soil (hereafter VES) and rice (Oryza sativa L.) soil (hereafter RIS). We found that the current agricultural practices caused the increase of 40K activity concentration in the water spinach soil, and 40K, 210Pb, 226Ra, and 232Th activity concentrations in the rice soil. The accumulation rates of radionuclides were in the order 238U < 232Th < 226Ra < 210Pb < 40K. 25 years of cultivation with water spinach can increase/decrease + (165 ± 6) Bq of 40K, - (8.2 ± 0.7) Bq of 210Pb, - (4.3 ± 0.2) Bq of 226Ra, - (7 0.3 ± 0.3) Bq of 238U, and - (1.8 ± 0.1) Bq of 232Th in 1 kg soil. For rice cultivation, these values are + (1004 ± 39), + (3.3 ± 0.2), + (3.0 ± 0.2), - (5.1 ± 0.3), (2.2 ± 0.1) Bq kg-1 for 40K, 210Pb, 226Ra, 238U, and 232Th, respectively.


Assuntos
Ipomoea , Oryza , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Chumbo , Radioisótopos/análise , Spinacia oleracea , Vietnã , Água
13.
Environ Pollut ; 265(Pt A): 114744, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806415

RESUMO

Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H2S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H2S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.


Assuntos
Rhizobium , Poluentes do Solo/análise , Cádmio , Chumbo , Solo , Simbiose
14.
Bull Environ Contam Toxicol ; 105(2): 283-290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32734360

RESUMO

The current study investigated the efficiency of sepiolite (SE), sodium humate (HS), microbial fertilizer (JF) and SE combined with JF/HS in a ratio of 2:1 (w/w) (JF-2SE and HS-2SE) on Cd, Pb and As bioavailability in field trials with rice (Oryza sativa L.). The results showed that all the amendments remarkably decreased (p < 0.05) the contents of available Cd and available Pb in soil. Only JF-2SE treatment reduced available As concentration in soil. All the amendments were found to effectively reduce (p < 0.05) the contents of As in brown rice. Both JF-2SE and HS-2SE co-applications reduced the concentrations of Cd in brown rice to 0.108 and 0.135 mg kg-1, and that of Pb reduced to 0.2 and 0.175 mg kg-1, which met the national standard limit of China. Thus, the co-application of JF/HS-2SE can be a promising remediation strategy in Cd, Pb and As co-contaminated paddy soil.


Assuntos
Cádmio/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Disponibilidade Biológica , Cádmio/análise , China , Poluição Ambiental , Fertilizantes , Chumbo/análise , Silicatos de Magnésio , Oryza , Solo/química , Poluentes do Solo/análise
15.
J Environ Sci (China) ; 96: 117-126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819686

RESUMO

Sediments in Lake Izabal, Guatemala, contain substantial lead (Pb), zinc (Zn), and nickel (Ni). The lack of historical data for heavy metal concentrations in the sediments makes it difficult to determine the sources or evaluate whether inputs of metals to the lake have changed through time. We measured the relative abundances and concentrations of Pb, Zn, and Ni by X-Ray Fluorescence core scanning and by Inductively Coupled Plasma Optical Emission Spectrometry in three sediment cores to explore stratigraphic distributions of metals in the lake deposits. High amounts of Pb and Zn in the core taken near the Polochic Delta suggest that galena and sphalerite mining increased Pb and Zn delivery to Lake Izabal between ~1945 and 1965 CE. An up-core Ni increase in the core taken near a different mine on the north shore of Lake Izabal suggests that recent nickel mining operations led to an increase in Ni concentrations in the local sediments, but amounts in the other cores indicate that Ni is not widely distributed throughout the lake. Sediment cores from Lake Izabal are reliable recorders of heavy metal input to the lake, and were measured to establish background metal levels, which would otherwise be unavailable. Concentrations of Pb, Zn, and Ni in older, pre-20th-century Lake Izabal sediments reflect input from natural erosion of bedrock. Our results provide previously unavailable estimates of background metal concentrations in Lake Izabal before the onset of mining. These results are necessary for future monitoring related to mining contamination of the lake ecosystem.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Guatemala , Lagos , Chumbo , Níquel , Zinco
16.
Sci Total Environ ; 739: 140378, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758977

RESUMO

It remains debatable whether carbonized straw reapplying is a better solution than direct straw reapplying. Comparison of the characteristics and complexation behaviors of dissolved organic matter (DOM) derived from straw (ST) and biochar (BC) may offer new insights, but little current information exists. Herein, DOM samples were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), revealing that the molecular weight and condensed aromatic components of BCDOM (457.70 Da and 71.16%, respectively) were higher than those of STDOM (433.48 Da and 3.13%, respectively). In particular, the N-containing compounds of BCDOM was more aromatic than STDOM. By combining spectroscopic techniques, complexation modeling, and chemometric analysis, BCDOM was shown to exhibit higher binding parameters (log KM) and more binding sites for Pb than STDOM. Noteworthily, the two binding sites, aromatic NO and aromatic NO2, existed only in the interaction of BCDOM with Pb. Furthermore, while phenol-OH displayed the fastest response to Pb in both STDOM and BCDOM, the binding sequences were not exactly the same. These differences may be related to the variations in the aromaticity and N-containing structures of DOM detected by FTICR-MS. These findings have implications on the stewardship of straw- and biochar-amended soil.


Assuntos
Oryza , Carvão Vegetal , Chumbo , Solo
17.
Environ Monit Assess ; 192(8): 553, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737592

RESUMO

The activity concentrations of natural radionuclides (210Po and 210Pb) and residual pesticide levels were determined from the fish (red mullet, common sole, anchovy, horse mackerel, gray mullet, and sardine) and mussel samples collected in Izmir Bay seasonally from October 2012 and July 2013. The 210Po and 210Pb concentrations varied between 5.7 ± 4.0 Bq kg-1 dry weight (dw) to 353.7 ± 45.0 Bq kg-1(dw) and 0.7 ± 0.2 Bq kg-1 (dw) to 4.3 ± 0.8 Bq kg-1 (dw), respectively. From a public health point of view, the fish and mussel collected from the Izmir Bay are not harmful to consumers.


Assuntos
Bivalves , Praguicidas , Polônio/análise , Poluentes Radioativos da Água/análise , Animais , Monitoramento Ambiental , Chumbo , Radioisótopos de Chumbo/análise , Medição de Risco , Turquia
18.
Mar Pollut Bull ; 159: 111490, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738641

RESUMO

Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.


Assuntos
Radioisótopos de Chumbo/análise , Chumbo , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Radiometria
19.
PLoS One ; 15(8): e0238105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853282

RESUMO

Biochar derived from straw is a potential low-cost adsorbent for metal ions and organic pollutants, but its practical application is still limited by the adsorption capacity. In this study, the correlation between the biochar's properties and pyrolysis temperature was explored. The adsorption mechanism was studied by monitoring the changes of biochar properties before and after adsorption using BET, SEM, XPS and FT-IR spectroscopy. The adsorption mechanism was revealed following the adsorption kinetics and the changes in biochar's properties before and after adsorption. The methylene blue (MB) and Pb2+ adsorption removal efficiency reached 95% at the initial concentration of 125 and 500 mg/L, respectively. Physisorption, chemisorption, and pore filling mechanisms determined the adsorption process of MB and Pb2+ on biochar. The Pb2+ adsorption process was highly affected by chemical co-precipitation at higher pyrolysis temperatures. The appearance of tar particles increased the adsorption rate of Pb2+. The biochar obtained at the pyrolysis temperature at 500, 800 and 900°C proved to be applicable for Pb2+ removal. Chemisorption and porosity dominated the MB adsorption, and biochars produced at pyrolysis temperatures of 200, 800 and 900°C are potential materials for MB removal. This study provides optimal pyrolysis conditions for transforming maize straw into valuable, low-cost materials for the removal of different pollutants.


Assuntos
Carvão Vegetal/química , Chumbo/química , Azul de Metileno/química , Zea mays/química , Adsorção , Cinética , Chumbo/isolamento & purificação , Azul de Metileno/isolamento & purificação , Pirólise , Propriedades de Superfície , Resíduos
20.
J Water Health ; 18(4): 505-521, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32833677

RESUMO

Some municipalities are promoting lead-filtering point-of-use (POU) systems to minimize the risk of lead exposure through drinking water, often targeting use at racial minorities and low-income households. However, links among social inequality markers and adoption of these systems are not well understood. Survey data on adoption and use of POU systems were collected from a U.S. Mechanical Turk (MTurk) sample (N = 2,867) in March 2018. We use logistic regression to assess the association of race/ethnicity, socioeconomic status (SES), and lead-filtering POU adoption. We also examined key health behaviors related to POU systems. We found that race and SES are indirectly predictive of lead-filtering POU adoption through the propensity of some respondents to report a residence with a lead service line and levels of concern and knowledge about lead exposure. In addition, individuals with similar levels of concern about lead in water have lower odds of adopting a POU system if they have lower, rather than higher, incomes. Among POU adopters, while confidence in correct use of these devices was relatively high, the frequency of filtered water use for cooking was lower than drinking frequency. Overall, these findings inform health policies aimed at mitigating risk of lead exposure through water.


Assuntos
Características da Família , Chumbo , Fatores Socioeconômicos , Poluentes da Água , Purificação da Água , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA