Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.791
Filtrar
1.
Glob Chang Biol ; 30(7): e17404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967125

RESUMO

The fraction of net primary productivity (NPP) allocated to belowground organs (fBNPP) in grasslands is a critical parameter in global carbon cycle models; moreover, understanding the effect of precipitation changes on this parameter is vital to accurately estimating carbon sequestration in grassland ecosystems. However, how fBNPP responds to temporal precipitation changes along a gradient from extreme drought to extreme wetness, remains unclear, mainly due to the lack of long-term data of belowground net primary productivity (BNPP) and the fact that most precipitation experiments did not have a gradient from extreme drought to extreme wetness. Here, by conducting both a precipitation gradient experiment (100-500 mm) and a long-term observational study (34 years) in the Inner Mongolia grassland, we showed that fBNPP decreased linearly along the precipitation gradient from extreme drought to extreme wetness due to stronger responses in aboveground NPP to drought and wet conditions than those of BNPP. Our further meta-analysis in grasslands worldwide also indicated that fBNPP increased when precipitation decreased, and the vice versa. Such a consistent pattern of fBNPP response suggests that plants increase the belowground allocation with decreasing precipitation, while increase the aboveground allocation with increasing precipitation. Thus, the linearly decreasing response pattern in fBNPP should be incorporated into models that forecast carbon sequestration in grassland ecosystems; failure to do so will lead to underestimation of the carbon stock in drought years and overestimation of the carbon stock in wet years in grasslands.


Assuntos
Carbono , Secas , Pradaria , Chuva , Carbono/análise , Carbono/metabolismo , China , Ciclo do Carbono , Sequestro de Carbono
2.
J Environ Manage ; 365: 121692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968884

RESUMO

The non-stationary behavior of climatic variables has been increasingly recognized as a challenge that disrupts the equilibrium of human-defined climate-based stationary processes, including hydrological and agricultural practices, and irrigation systems. This study aims to investigate long-term trends and non-stationarity in climatic variables across 23 stations of the Krishna River basin, India. Prominent trends in rainfall, temperature, and their extreme indices were identified using the Modified Mann-Kendall (MMK), Bootstrapped Mann-Kendall (BMK), and Sen's Slope Estimator tests, while the Innovative Trend Analysis (ITA) test uncovered hidden trends and potential shifts in climatic patterns. This study addresses a critical research gap by exploring both significant and hidden trends in climatic variables, providing a better understanding of future dynamics. Traditional methods like MMK and Sen's Slope were insufficient to reveal these hidden trends, but ITA offered a more comprehensive analysis. The findings revealed an increase in total annual rainfall for almost 50% of the basin, which aligns with rising maximum temperatures, suggesting enhanced evaporation rates and subsequent fluctuations in rainfall patterns. Seasonal analysis indicated a shift towards decreased rainfall during winter and pre-monsoon seasons, contrasted by increased precipitation during the monsoon and post-monsoon periods, highlighting a clear alteration in rainfall distribution. The Simple Daily Intensity Index (SDII) and other indices suggest intensified rainfall events despite a decrease in the number of rainy days, indicating fewer but more intense events. Temperature analysis showed an overall increase in maximum temperatures, with the Diurnal Temperature Range (DTR) significantly increasing across all stations, implying greater daily temperature variations and potential for intensified water cycles and extreme climatic events. Furthermore, the study simplifies these trends by classifying them into two attributes: intensity and frequency, aiding policymakers in site-specific management of water resources and planning for future climatic scenarios. The presence of non-stationarity in extreme rainfall was confirmed by the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. These findings are significant as they conclude how climate change is altering hydrological patterns at each station. The study emphasizes the necessity for adaptive management strategies to mitigate the adverse impacts on agriculture, infrastructure, and human safety.


Assuntos
Rios , Índia , Chuva , Temperatura , Estações do Ano , Mudança Climática , Clima
3.
Water Sci Technol ; 90(1): 156-167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007312

RESUMO

Model parameter estimation is a well-known inverse problem, as long as single-value point data are available as observations of system performance measurement. However, classical statistical methods, such as the minimization of an objective function or maximum likelihood, are no longer straightforward, when measurements are imprecise in nature. Typical examples of the latter include censored data and binary information. Here, we explore Approximate Bayesian Computation as a simple method to perform model parameter estimation with such imprecise information. We demonstrate the method for the example of a plain rainfall-runoff model and illustrate the advantages and shortcomings. Last, we outline the value of Shapley values to determine which type of observation contributes to the parameter estimation and which are of minor importance.


Assuntos
Teorema de Bayes , Modelos Teóricos , Chuva , Modelos Estatísticos
4.
Water Sci Technol ; 90(1): 124-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007310

RESUMO

With the increasing frequency of extreme weather events and a deepening understanding of disasters, resilience has received widespread attention in urban drainage systems. The studies on the resilience assessment of urban drainage systems are mostly indirect assessments that did not simulate human behavior affected by rainfall or semi-quantitative assessments that did not build simulation models, but few research characterizes the processes between people and infrastructure to assess resilience directly. Our study developed a dynamic model that integrates urban mobility, flood inundation, and sewer hydrodynamics processes. The model can simulate the impact of rainfall on people's mobility behavior and the full process including runoff generation, runoff entering pipes, node overflow, flood migration, urban mobility, and residential water usage. Then, we assessed the resilience of the urban drainage system under rainfall events from the perspectives of property loss and urban mobility. The study found that the average percentage increase in commuting time under different return periods of rainfall ranged from 6.4 to 203.9%. Calculating the annual expectation of property loss and traffic obstruction, the study found that the annual expectation loss in urban mobility is 9.1% of the annual expectation of property loss if the rainfall is near the morning commuting peak.


Assuntos
Inundações , Hidrodinâmica , Modelos Teóricos , Cidades , Drenagem Sanitária , Chuva , Movimentos da Água , Esgotos
5.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007314

RESUMO

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Assuntos
Hidrodinâmica , Chuva , Esgotos , Drenagem Sanitária , Cidades , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Movimentos da Água
6.
Water Sci Technol ; 90(1): 398-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007327

RESUMO

In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant concentration. Such information can be used in a risk management context and to design smart monitoring campaigns.


Assuntos
Poluentes Químicos da Água , Incerteza , Poluentes Químicos da Água/análise , Medição de Risco/métodos , Chuva , Modelos Teóricos , Monitoramento Ambiental/métodos
7.
Planta ; 260(2): 40, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954049

RESUMO

MAIN CONCLUSION: Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.


Assuntos
Líquens , Fenóis , Solubilidade , Espectrofotometria , Água , Líquens/química , Líquens/metabolismo , Fenóis/metabolismo , Fenóis/análise , Água/química , Solventes/química , Concentração de Íons de Hidrogênio , Chuva/química
8.
Plant Biol (Stuttg) ; 26(5): 868-877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967326

RESUMO

Detecting changes in the phenological responses of herbaceous species as a function of predicted climate change is important for forecasting future scenarios for the functioning of dry tropical forests, especially when predicting an increase in the frequency and intensity of extreme droughts. Because of the sensitivity of plants to water availability, our study hypothesizes that if years become drier or wetter, herbaceous plants will synchronously change the onset, duration, and intensity of their vegetative phenophases. We used a historical series of 60 years of precipitation observations for the Caatinga vegetation to define daily average of precipitation for rainy (Twet), median (Tcontrol), and dry (Tdry) years. We simulated past average daily rainfall (Twet, Tcontrol, and Tdry) while growing two herbaceous perennials and two herbaceous annuals. We monitored plant growth and measured the activity (absence or presence) and intensity of vegetative phenophases. We used circular statistical analysis to assess differences between treatments. Our results revealed that leaf production was seasonal but relatively uniform for perennial species and highly seasonal (wet season) for annual species. Simulated dry years induced lower leaf emergence concentrated over a few months in annual species, but this effect was more strongly significant in one of the two perennial species. Both annual and perennial species can experience delayed and less intense leaf abscission during the rainy season in years with below-average precipitation. In contrast, large voluminous rains in years with above-average precipitation can accelerate and intensify the process of leaf renewal. If future precipitation reductions occur, the changes in phenological response indicate that the cover of annual and perennial herbaceous species in this study will likely decrease, altering the landscape and functioning of dry tropical forests. However, the potential trade-offs observed may help populations of these species to persist during years of severe drought in the Caatinga.


Assuntos
Florestas , Chuva , Estações do Ano , Brasil , Mudança Climática , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Secas
9.
Pan Afr Med J ; 47: 175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036016

RESUMO

Introduction: in areas with intense perennial malaria transmission, limited data is available on the impact of environmental conditions especially rainfall on naturally acquired immunity against promising malaria vaccine candidates. For this reason, we have compared IgG antibody responses specific to Plasmodium spp. derived MSP3 and UB05 vaccine candidates, in plasma of children living in two areas of Cameroon differing in rainfall conditions. Methods: data about children less than 5 years old was collected during the years 2017 and 2018. Next malaria asymptomatic P. falciparum (Pf) infected children were selected following malaria test confirmation. MSP3 and UB05 specific IgG antibody responses were measured in participant´s plasma using enzyme-linked immunosorbent assay (ELISA). Results: interestingly, IgG antibody responses specific to UB05 were significantly higher (p<0.0001) in Pf-negative children when compared to their asymptomatic Pf-infected counterparts living in monomodal rainfall areas. In contrast, a significantly higher (p<0.0001) IgG response to MSP3 was observed instead in asymptomatic Pf-infected children in the same population. In addition, IgG responses specific to UB05 remained significantly higher in bimodal when compared to monomodal rainfall areas irrespective of children´s Pf infection status (p<0.0055 for Pf-positive and p<0.0001 for negative children). On the contrary, IgG antibody responses specific to MSP3 were significantly higher in bimodal relative to monomodal rainfall areas (P<0.0001) just for Pf-negative children. Conclusion: thus IgG antibody responses specific to UBO5 are a better correlate of naturally acquired immunity against malaria in Pf-negative Cameroonian children especially in monomodal rainfall areas.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Camarões , Malária Falciparum/imunologia , Malária Falciparum/epidemiologia , Imunoglobulina G/sangue , Pré-Escolar , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Lactente , Feminino , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Masculino , Chuva , Proteínas Recombinantes/imunologia
10.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039346

RESUMO

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Assuntos
Ração Animal , Suplementos Nutricionais , Digestão , Glycine max , Melaço , Rúmen , Estações do Ano , Animais , Bovinos/fisiologia , Ração Animal/análise , Melaço/análise , Masculino , Glycine max/química , Suplementos Nutricionais/análise , Rúmen/metabolismo , Zea mays/química , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Chuva , Nitrogênio/metabolismo
11.
Glob Chang Biol ; 30(7): e17401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041207

RESUMO

Climate change in high latitude regions leads to both higher temperatures and more precipitation but their combined effects on terrestrial ecosystem processes are poorly understood. In nitrogen (N) limited and often moss-dominated tundra and boreal ecosystems, moss-associated N2 fixation is an important process that provides new N. We tested whether high mean annual precipitation enhanced experimental warming effects on growing season N2 fixation in three common arctic-boreal moss species adapted to different moisture conditions and evaluated their N contribution to the landscape level. We measured in situ N2 fixation rates in Hylocomium splendens, Pleurozium schreberi and Sphagnum spp. from June to September in subarctic tundra in Sweden. We exposed mosses occurring along a natural precipitation gradient (mean annual precipitation: 571-1155 mm) to 8 years of experimental summer warming using open-top chambers before our measurements. We modelled species-specific seasonal N input to the ecosystem at the colony and landscape level. Higher mean annual precipitation clearly increased N2 fixation, especially during peak growing season and in feather mosses. For Sphagnum-associated N2 fixation, high mean annual precipitation reversed a small negative warming response. By contrast, in the dry-adapted feather moss species higher mean annual precipitation led to negative warming effects. Modelled total growing season N inputs for Sphagnum spp. colonies were two to three times that of feather mosses at an area basis. However, at the landscape level where feather mosses were more abundant, they contributed 50% more N than Sphagnum. The discrepancy between modelled estimates of species-specific N input via N2 fixation at the moss core versus ecosystem scale, exemplify how moss cover is essential for evaluating impact of altered N2 fixation. Importantly, combined effects of warming and higher mean annual precipitation may not lead to similar responses across moss species, which could affect moss fitness and their abilities to buffer environmental changes.


Assuntos
Briófitas , Mudança Climática , Fixação de Nitrogênio , Chuva , Estações do Ano , Tundra , Briófitas/fisiologia , Briófitas/crescimento & desenvolvimento , Suécia
12.
Environ Sci Pollut Res Int ; 31(32): 45399-45413, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963629

RESUMO

Water scarcity in arid regions poses significant livelihood challenges and necessitates proactive measures such as rainwater harvesting (RWH) systems. This study focuses on identifying RWH sites in Dera Ghazi Khan (DG Khan) district, which recently experienced severe water shortages. Given the difficulty of large-scale ground surveys, satellite remote sensing data and Geographic Information System (GIS) techniques were utilized. The Analytic Hierarchy Process (AHP) approach was employed for site selection, considering various criteria, including land use/land cover, precipitation, geological features, slope, and drainage. Landsat 8 OLI imagery, GPM satellite precipitation data, soil maps, and SRTM DEM were key inputs. Integrating these data layers in GIS facilitated the production of an RWH potential map for the region. The study identified 9 RWH check dams, 12 farm ponds, and 17 percolation tanks as suitable for mitigating water scarcity, particularly for irrigation and livestock consumption during dry periods. The research region was classified into four RWH zones based on suitability, with 9% deemed Very Good, 33% Good, 53% Poor, and 5% Very Poor for RWH projects. The generated suitability map is a valuable tool for hydrologists, decision-makers, and stakeholders in identifying RWH potential in arid regions, thereby ensuring water reliability, efficiency, and socio-economic considerations.


Assuntos
Sistemas de Informação Geográfica , Chuva , Paquistão , Abastecimento de Água , Monitoramento Ambiental/métodos
13.
Glob Chang Biol ; 30(7): e17430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031432

RESUMO

The relationship between plant aboveground biomass and diversity typically follows a unimodal pattern, showing a positive correlation in resource-poor habitats and a negative correlation in resource-rich environments. Precipitation is a crucial resource for both plant biomass and diversity in terrestrial ecosystems. However, the impact of precipitation changes on the relationship between plant biomass and diversity remains unclear. We conduct a water addition field experiment in a semiarid grassland and identify a unimodal relationship between plant biomass and species richness under ambient conditions. Water addition delays the declining phase of this unimodal curve and shift it upward compared to ambient conditions. Our meta-analysis of water addition experiments conducted across major biomes worldwide (grassland, shrubland, desert, and forest) supports this finding, while water reduction does not alter the biomass-diversity relationship. Water addition increases biomass in all climate but only increases species richness in arid and semiarid climate. Similarly, water reduction decreases biomass in all climate but only reduces species richness in arid and semiarid climate. Species richness in dry subhumid and humid climate does not change significantly. Furthermore, our field experiment shows that water addition increases plant diversity while decreasing soil inorganic nitrogen levels. The increase in one resource, such as water, leads to the scarcity of another, such as nutrient, thus postponing the declining phase of the plant biomass-diversity relationship typically observed in resource-rich habitats. Our research contributes to predicting the plant biomass-diversity relationship under changing precipitation conditions and highlights the complex interplay between water availability, nutrient level, and plant diversity.


Assuntos
Biodiversidade , Biomassa , Água , Ecossistema , Pradaria , Nitrogênio/análise , Nitrogênio/metabolismo , Plantas , Chuva , Solo/química
14.
Huan Jing Ke Xue ; 45(7): 4044-4051, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022952

RESUMO

The safety and security of stored rainwater quality is the key to improve the efficiency of rainwater resources storage, and roof rainwater is the best scenario for rainwater storage and utilization. Through long-term monitoring of the evolution of water quality during the roof rainwater storage process, different storage materials (PE and glass) and different DO regulation modes (sealing and aeration) were constructed, and 16S rRNA microbial diversity sequencing and environmental factor correlation methods were used to characterize the changes in water quality under microbial metabolism during the rainwater storage process, as well as the potential risks of utilization and health. The results showed that the degradation of COD occurred mainly in the first 10 days of the storage process, and the nutrients were transformed mainly by microbial metabolism. There were differences in the characteristics of water quality changes under different water storage conditions, with traditional PE materials promoting the propagation of some pathogenic Xanthobacter, Alternaria, Stachybotrys, and Cladosporium, which were negatively correlated with DO and pH. Aeration was beneficial in reducing the abundance of bacteria and fungi, whereas the sealed water storage method was beneficial in inhibiting the growth of pathogenic bacteria such as Legionella.


Assuntos
Chuva , Microbiologia da Água , Qualidade da Água , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
15.
PLoS One ; 19(7): e0305871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024381

RESUMO

In this paper, indoor model tests were conducted using image analysis, pore pressure, and displacement measurement methods to investigate the failure evolution process and modes of loess spoil slopes with various components under the influence of rainfall and artificial excavation. The results of the experiments reveal that, under the action of rainfall, there are two types of cracks-to-failure modes for pure loess spoil slopes. One involves the formation of a large gully through the dominant channel, while the other is characterized by step-by-step retreating soil damage between cracks. The failure exhibits three distinct stages, and after failure, the slope angle is relatively large (>45°). The process of rainfall-induced destruction affecting loess spoil containing 25% coarse-grained content similarly unfolds in three stages, ultimately resulting in the formation of a regional landslide. This landslide typically encompasses a broader damage range compared to pure loess spoil, albeit with a shallower depth of damage. After the landslide stops and stabilizes, a tiny slope (45°) is created (<45°). The excavation at the toe of the slope induces loess spoil damage in a progressive multi-stage receding manner. This study provides a reference and basis for disaster prevention and warning of spoiled ground in loess areas.


Assuntos
Engenharia , Chuva , Solo , Solo/química , Deslizamentos de Terra , Modelos Teóricos
16.
Environ Monit Assess ; 196(8): 734, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008154

RESUMO

This study evaluates the performance of five satellite precipitation products (GPM IMERG, TRMM 3B42, ERA5, PERSIANN, and CHIRPS) compared to monthly observations from two weather stations (Laayoune and Essmara) over 2001-2017 using statistical metrics including correlation coefficient (CC) and mean square error (MSE). The results reveal notable differences between products. On a monthly timescale, GPM IMERG shows the best overall accuracy with a MSE of 16.8 mm/month. However, TRMM 3B42 exhibits higher temporal correlations with a CC around 0.83. The analysis provides insights into product capabilities and limitations for hydrological monitoring in data-sparse regions. Key findings include the superior performance of latest generation datasets like GPM alongside biases requiring localized calibration. The study delivers an assessment framework to guide integration of multiple satellite estimates for enhanced precipitation quantification and hydroclimatic modeling in water-stressed environments.


Assuntos
Clima Desértico , Monitoramento Ambiental , Chuva , Monitoramento Ambiental/métodos , Marrocos , Hidrologia
17.
Environ Monit Assess ; 196(8): 701, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965084

RESUMO

This study investigates the performance of CMIP6 models in reproducing historical temperature and precipitation data for Iran and neighboring countries (Afghanistan, Pakistan, Turkmenistan, Azerbaijan, Armenia, Turkey, and Iraq) from 1980 to 2014. Reanalysis data from the ECMWF database (ERA5) for temperature and precipitation were utilized as a reference for the period 1980-2014. Additionally, ten Atmosphere-Ocean General Circulation Models (AOGCMs) from CMIP6 were employed to simulate temperature and precipitation data for the study region based on the IPCC Sixth Assessment Report databases. The Kling-Gupta Efficiency (KGE) index was used to evaluate the accuracy of CMIP6 models in replicating daily temperature and precipitation. The results indicate that different CMIP6 models exhibit varying degrees of accuracy in simulating historical temperatures and precipitation, depending on the month and the country. For instance, the IPSL-CM6A-LR model demonstrated the best annual performance in estimating temperature in Azerbaijan (KGE = 0.5), while the HadGEM3-GC31-LL model showed the lowest annual performance in Pakistan (KGE = -1.4). Interestingly, the models were found to be more accurate in simulating temperatures during warm months compared to cold ones. Furthermore, the accuracy of different models in estimating annual precipitation varied significantly, ranging from -0.64 (MRI-EMS2-0 model in Afghanistan) to 0.05 (CMCC-ESM2 model in Armenia). Similar to temperature, the study found that models were generally more accurate in simulating precipitation during cold months compared to warm ones.


Assuntos
Monitoramento Ambiental , Chuva , Temperatura , Irã (Geográfico) , Monitoramento Ambiental/métodos , Modelos Teóricos , Paquistão , Turquia , Iraque , Azerbaijão , Afeganistão
18.
Radiat Prot Dosimetry ; 200(11-12): 1096-1100, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016511

RESUMO

A study on the dynamics of Radon and meteorological parameters was conducted in Bengaluru (12056'44'' N, 77030'25″ E, 840 m AMSL) during monsoon of 2014. All measured parameters exhibited a clear diurnal pattern, except for pressure, and are attributed to morning temperature inversion and afternoon enhanced vertical mixing. Concentration of Radon is higher during north eastern monsoon compared with south western monsoon and is due to the presence of continental air mass from north east of India. Monthly average Radon activity has exhibited a positive link with long wave radiation while displaying a negative correlation with ambient temperature, accumulated rainfall and soil temperature. During the study, ambient gamma dose rate of 190.8 nSv hour-1, shortwave radiation of 184.4 Wm-2, longwave radiation of -40.4 Wm-2, soil temperature (at 10 cm) of 26.3°C, humidity of 62.9%, pressure of 918.1 mbar and radon activity of 8.4 ± 0.5 Bq m-3 were recorded.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Estações do Ano , Radônio/análise , Índia , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Temperatura , Chuva
19.
BMC Plant Biol ; 24(1): 559, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877456

RESUMO

Rainfed regions have inconsistent spatial and temporal rainfall. So, these regions could face water deficiency during critical stages of crop growth. In this regard, multi-environment trials could play a key role in introducing stable genotypes with good performance across several rainfed regions. Grass pea, as a potential forage crop, is a resilient plant that could grow in unsuitable circumstances. In this study, agro-morphological attributes of 16 grass pea genotypes were examined in four semi-warm rain-fed regions during the years 2018-2021. The MLM analysis of variance showed a significant genotype-by-environment interaction (GEI) for dry yield, seed yield, days to maturity, days to flowering, and plant height of grass pea. The PLS (partial least squares) regression revealed that rainfall in the grass pea establishment stage (October and November) is meaningful. For grass pea cultivation, monthly rainfall during plant growth is important, especially in May, with an aim for seed yield. Regarding dry yield, G5, G10, G11, G12, G13, and G15 were selected as good performers and stable genotypes using DY × WAASB biplots, while SY × WAASB biplot manifested G2, G3, G12, and G13 as superior genotypes with stable seed yield. Considering equal weights for yield as well as the WAASB stability index (50/50), G13 was selected as the best one. Among test environments, E2 and E11 played a prominent role in distinguishing the above genotypes from other ones. In this study, MTSI (multi-trait stability index) analysis was applied to select a stable genotype, considering all measured agro-morphological traits simultaneously. Henceforth, the G5 and G15 grass pea genotypes were discerningly chosen due to their commendable performance in the WAASBY plot. In this context, G13 did not emerge as the winner based on MTSI; however, it exhibited an MTSI value in close proximity to the outer boundary of the circle. Consequently, upon comprehensive consideration of all traits, it is deduced that G5, G13, and G15 can be appraised as promising superior genotypes with stability across diverse environmental conditions.


Assuntos
Interação Gene-Ambiente , Genótipo , Chuva , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento
20.
Water Sci Technol ; 89(11): 2851-2866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877617

RESUMO

As urbanization progresses and the impacts of climate change become more pronounced, urban flooding has emerged as a critical challenge for resilient cities, particularly concerning urban underground spaces where flooding can lead to significant loss of life and property. Drawing upon a comprehensive review of global research on underground space flood simulation and evacuation, this paper undertakes the modelling of inundation in a substantial underground area during the extraordinary rainfall event on 7 September 2023, in Shenzhen, China. Specifically, it introduces a two-step method to simulate the coupled surface-underground inundation process with high accuracy. The study simulates the inflow processes in three types of underground spaces: parking lots, metro stations, and underpasses. Utilizing the specific force per unit width evaluation, the research examines how varying flood barrier heights influence evacuation time and inundation risk. Subsequently, the paper proposes corresponding evacuation strategies based on the obtained findings. By highlighting the vulnerability of urban underground spaces to flooding, the study underscores the urgent need for further research in this domain.


Assuntos
Cidades , Inundações , Chuva , China , Modelos Teóricos , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA