Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.276
Filtrar
1.
Sci Rep ; 11(1): 19752, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611227

RESUMO

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Assuntos
COVID-19/patologia , Suscetibilidade a Doenças , Síndrome Metabólica/patologia , Animais , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , COVID-19/complicações , COVID-19/virologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/veterinária , Modelos Animais de Doenças , Humanos , Imunidade Inata/genética , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/genética , Agregação Plaquetária , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Sistema Renina-Angiotensina , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Suínos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
2.
Cells ; 10(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571838

RESUMO

According to the neurological symptoms of SARS-CoV-2 infection, it is known that the nervous system is influenced by the virus. We used pediatric human cerebral cortical cell line HCN-2 as a neuronal model of SARS-CoV-2 infection, and, through transcriptomic analysis, our aim was to evaluate the effect of SARS-CoV-2 in this type of cells. Transcriptome analyses revealed impairment in TXN gene, resulting in deregulation of its antioxidant functions, as well as a decrease in the DNA-repairing mechanism, as indicated by the decrease in KAT5. Western blot analyses of SOD1 and iNOS confirmed the impairment of reduction mechanisms and an increase in oxidative stress. Upregulation of CDKN2A and a decrease in CDK4 and CDK6 point to the blocking of the cell cycle that, according to the deregulation of repairing mechanism, has apoptosis as the outcome. A high level of proapoptotic gene PMAIP1 is indeed coherent with neuronal death, as also supported by increased levels of caspase 3. The upregulation of cell-cycle-blocking genes and apoptosis suggests a sufferance state of neurons after SARS-CoV-2 infection, followed by their inevitable death, which can explain the neurological symptoms reported. Further analyses are required to deeply explain the mechanisms and find potential treatments to protect neurons from oxidative stress and prevent their death.


Assuntos
COVID-19/genética , COVID-19/virologia , Senescência Celular/genética , Perfilação da Expressão Gênica , Neurônios/patologia , Estresse Oxidativo/genética , SARS-CoV-2/fisiologia , Caspase 3/metabolismo , Morte Celular , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Humanos , Superóxido Dismutase/metabolismo , Replicação Viral/fisiologia
3.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502040

RESUMO

Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.


Assuntos
Inibidores de Ciclo-Oxigenase/síntese química , Oxidiazóis/síntese química , Piridazinas/química , Pirróis/química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/toxicidade , Humanos , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Oxidiazóis/toxicidade , Ligação Proteica , Células THP-1
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360887

RESUMO

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14-22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKß), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKß, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Dipeptídeos/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
5.
J Transl Med ; 19(1): 340, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372885

RESUMO

BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 1029539. RESULTS: Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, protein content, TNF-ɑ, IL-1ß and PGE2 levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated mice. Notably, prostacyclin (PGI2) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood leukocytes from healthy volunteers. CONCLUSIONS: BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced and sepsis-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II , Prostaglandina-E Sintases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443505

RESUMO

Sulforaphane (SFN), an isothiocyanate (ITCs) derived from glucosinolate that is found in cruciferous vegetables, has been reported to exert a promising anticancer effect in a substantial amount of scientific research. However, epidemical studies showed inconsistencies between cruciferous vegetable intake and bladder cancer risk. In this study, human bladder cancer T24 cells were used as in vitro model for revealing the inhibitory effect and its potential mechanism of SFN on cell growth. Here, a low dose of SFN (2.5 µM) was shown to promote cell proliferation (5.18-11.84%) and migration in T24 cells, whilst high doses of SFN (>10 µM) inhibited cell growth significantly. The induction effect of SFN on nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression at both low (2.5 µM) and high dose (10 µM) was characterized by a bell-shaped curve. Nrf2 and glutathione (GSH) might be the underlying mechanism in the effect of SFN on T24 cell growth since Nrf2 siRNA and GSH-depleting agent L-Buthionine-sulfoximine abolished the effect of SFN on cell proliferation. In summary, the inhibitory effect of SFN on bladder cancer cell growth and migration is highly dependent on Nrf2-mediated GSH depletion and following production. These findings suggested that a higher dose of SFN is required for the prevention and treatment of bladder cancer.


Assuntos
Glutationa/metabolismo , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Sulfóxidos/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Glucuronosiltransferase/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Neoplasias da Bexiga Urinária/enzimologia
7.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445416

RESUMO

The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Asteraceae/química , Ciclo-Oxigenase 2/metabolismo , Polifenóis/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas , Camundongos , Picratos/metabolismo , Extratos Vegetais/química , Polifenóis/farmacologia , Células RAW 264.7
8.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360951

RESUMO

Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer's disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) expressing transgenic (Tg) mice and neuroblastoma (N) 2a cells as in vivo and in vitro models, we revealed the mechanisms of indomethacin in ameliorating the cognitive decline of AD. By screening AD-associated genes, we observed that a marked increase in the expression of α2-macroglobulin (A2M) was markedly induced after treatment with indomethacin. Mechanistically, upregulation of A2M was caused by the inhibition of cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), which are responsible for the synthesis of prostaglandin (PG)H2 and PGD2, respectively. The reduction in PGD2 levels induced by indomethacin alleviated the suppression of A2M expression through a PGD2 receptor 2 (CRTH2)-dependent mechanism. Highly activated A2M not only disrupted the production and aggregation of ß-amyloid protein (Aß) but also induced Aß efflux from the brain. More interestingly, indomethacin decreased the degradation of the A2M receptor, low-density lipoprotein receptor-related protein 1 (LRP1), which facilitated the brain efflux of Aß. Through the aforementioned mechanisms, indomethacin ameliorated cognitive decline in APP/PS1 Tg mice by decreasing Aß production and clearing Aß from the brains of AD mice.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Indometacina/farmacologia , Placa Amiloide/tratamento farmacológico , alfa-Macroglobulinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Humanos , Indometacina/uso terapêutico , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Regulação para Cima , alfa-Macroglobulinas/genética
9.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443321

RESUMO

Berberine (BBR), a plant alkaloid, is known for its therapeutic properties of anticancer, cardioprotective, antidiabetic, hypolipidemic, neuroprotective, and hepatoprotective activities. The present study was to determine the molecular mechanism of BBR's pharmacological activity in human monocytic (THP-1) cells induced by arachidonic acid (AA) or lipopolysaccharide (LPS). The effect of BBR on AA/LPS activated proinflammatory markers including TNF-α, MCP-1, IL-8 and COX-2 was measured by ELISA or quantitative real-time PCR. Furthermore, the effect of BBR on LPS-induced NF-κB translocation was determined by immunoblotting and confocal microscopy. AA/ LPS-induced TNF-α, MCP-1, IL-6, IL-8, and COX-2 markers were markedly attenuated by BBR treatment in THP-1 cells by inhibiting NF-κB translocation into the nucleus. Molecular modeling studies suggested the direct interaction of BBR to IKKα at its ligand binding site, which led to the inhibition of the LPS-induced NF-κB translocation to the nucleus. Thus, the present study demonstrated the anti-inflammatory potential of BBR via NF-κB in activated monocytes, whose interplay is key in health and in the pathophysiology of atherosclerotic development in blood vessel walls. The present study findings suggest that BBR has the potential for treating various chronic inflammatory disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Quinase I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Interleucina-8/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
J Agric Food Chem ; 69(31): 8747-8757, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34337939

RESUMO

High-purity Fab fragment and immunoglobulin Y (IgY) were prepared to evaluate their anti-inflammatory activity in the lipopolysaccharide (LPS)-induced Raw 264.7 macrophage system. Compared with IgY, the Fab fragment possessed a greater potency in inhibiting the inflammation by nitric oxide (NO)/inducible nitric oxide synthase (iNOS) and prostaglandin-E2 (PGE2)/cyclooxygenase-2 (COX-2) pathways. The Fab fragment attenuated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) to 38.07 ± 1.86-48.39 ± 11.33 pg/mL (63.1-71.0% inhibition), 31.59 ± 3.91-38.08 ± 4.44 pg/mL (72.4-77.1% inhibition), and 20.62 ± 0.46-21.91 ± 0.65 pg/mL (50-53% inhibition), respectively. Additionally, the Fab fragment significantly inhibited the translocation of nuclear transcription factor-κB (NF-κB) p65 and the phosphorylation of mitogen-activated protein kinase (MAPK) proteins, including ERK1/2 (41.5/33.2%), JNK1/2 (44.2/39.6%), and p38 (42.2%). The Fab fragment could be internalized into cells, and the pretreatment of RAW 264.7 macrophages with the Fab fragment reduced the mRNA expression of the Toll-like receptor (TLR4, 32.7-44.4% inhibition) and αVß3 integrin (76.1% inhibition). In conclusion, Fab fragments regulated the TLR4 and αVß3 integrin-mediated inflammatory processes by blocking the NF-κB and MAPKs pathways in the LPS-induced RAW 264.7 macrophage system.


Assuntos
Fragmentos Fab das Imunoglobulinas/imunologia , NF-kappa B , Receptor 4 Toll-Like , Animais , Ciclo-Oxigenase 2/metabolismo , Imunoglobulinas , Integrina alfa5 , Integrinas , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
11.
J Med Food ; 24(8): 852-859, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34382871

RESUMO

CYJ-27, a synthetic analog of decursin, prevents the generation of proinflammatory cytokines and oxidative stress. In this study, the effects of CYJ-27 on the regulation of inducible nitric oxide synthase (iNOS), heme oxygenase (HO)-1, and cyclooxygenase (COX-)2 were characterized in lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs). In addition, the effects of CYJ-27 on the production of iNOS and representative proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, were tested in the lung tissues of LPS-treated mice. CYJ-27 promoted the expression of HO-1, suppressed NF-κB-luciferase activity, and reduced COX-2/PGE2 and iNOS/NO, resulting in a diminution in phosphorylated-STAT-1. Furthermore, CYJ-27 promoted the nuclear translocation of Nrf2, enhanced the combination of Nrf2 to antioxidant response elements, and diminished IL-1ß production in LPS-activated HUVECs. CYJ-27-downregulated iNOS/NO expression was rescued after the RNAi suppression of HO-1. In LPS-treated mice, CYJ-27 significantly diminished iNOS production in the lung tissues and TNF-α expression in the bronchoalveolar lavage fluid. These findings indicate that CYJ-27 exerts anti-inflammatory activities by regulating iNOS through downregulation of both NF-κB activation and phosphorylated-STAT-1. Hence, it can act as a template for the development of novel substances to treat inflammatory diseases.


Assuntos
Inflamação , NF-kappa B , Animais , Benzopiranos , Butiratos , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Lipopolissacarídeos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
12.
Zoology (Jena) ; 148: 125947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333369

RESUMO

The role of COX-2 induced PGE2 in the site-specific regulation of inflammatory mediators that facilitate disparate wound healing in the tail and limb of a lizard was studied by analysing their levels during various stages of healing. The activity of COX-2 and concentration of PGE2 surged during the early healing phase of tail along with the parallel rise in EP4 receptor. PGE2-EP4 interaction is corelated to early resolution (by 3 dpa) of inflammation by rising the antiinflammatory mediator IL-10. This likely causes reduction in proinflammatory mediators viz., iNOS, TNF-α, IL-6, IL-17 and IL-22. Conversely, in the limb, COX-2 derived PGE2 likely causes rise in inflammation through EP2 receptor-based signalling, as all the proinflammatory mediators stay elevated through the course of healing (till 9 dpa), while expression of IL-10 is reduced. This study brings to light the novel roles of IL-17 and IL-22 in programming wound healing. As IL-17 reduces in tail, IL-22 behaves in reparative way, causing conducive environment for scar-free wound healing. On the contrary, synergic elevation of both IL-17 and Il-22 form a micro-niche suitable for scarred wound healing in limb, thus obliterating its regenerative potential.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Extremidades , Lagartos , Cauda , Cicatrização/fisiologia , Animais , Ciclo-Oxigenase 2/genética , Citocinas/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino
13.
Biomed Res Int ; 2021: 9978651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307684

RESUMO

Temporomandibular joint osteoarthritis (TMJOA) is characterized by chronic inflammatory degradation of mandibular condylar cartilage (MCC). Studies have found a positive correlation between inflammation and cyclooxygenase- (COX-) 2 in OA pathology. NF-κB is a crucial transcription factor of inflammatory and immune responses in the cause of TMJOA pathology. Resveratrol (RES) plays a critical role in antioxidation and anti-inflammation. But, studies on the effects of RES on TMJOA are very limited. So, the purpose of this study is to investigate the antioxidant and protective effects of RES against MCC degradation through downregulating COX-2/NF-κB expression. In vitro studies, the MCC cells were divided into three groups: the NC group, OA group, and RES group. The optimum dose of RES (10 µM) was determined. The TMJOA model of mice was created by injection of collagenase. And mice were injected with RES (100 µg/10 µl) 3 times one week for 4 weeks in the RES group. The expressions of COX-2, P65, MMP1, MMP13, COL2, and ACAN were measured by RT-PCR. Morphological changes of MCC were studied with HE staining. The results showed that inflammation could induce MCC degradation in vitro and vivo, while RES could reverse the degradation. Meanwhile, RES could downregulate COX-2/NF-κB/MMP expression and increase cartilage markers in vitro and vivo studies. The results indicated that RES treatment had antioxidant effects against chondrocyte apoptosis by downregulating the COX-2/NF-κB pathway in created TMJOA.


Assuntos
Antioxidantes/farmacologia , Apoptose , Condrócitos/patologia , Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Substâncias Protetoras/farmacologia , Resveratrol/envenenamento , Articulação Temporomandibular/patologia , Animais , Apoptose/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Feminino , Interleucina-1beta/farmacologia , Mandíbula/patologia , Camundongos Endogâmicos C57BL , Resveratrol/farmacologia
14.
Cell Prolif ; 54(8): e13094, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34312932

RESUMO

OBJECTIVES: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS: An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS: The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS: Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.


Assuntos
Intoxicação por MPTP/patologia , Microglia/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Aminopiridinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mediadores da Inflamação/metabolismo , Intoxicação por MPTP/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirróis/farmacologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
15.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204506

RESUMO

Ergosta-7, 9 (11), 22-trien-3ß-ol (EK100) was isolated from Cordyceps militaris, which has been used as a traditional anti-inflammatory medicine. EK100 has been reported to attenuate inflammatory diseases, but its anti-inflammatory mechanism is still unclear. We were the first to investigate the effect of EK100 on the Toll-like receptor 4 (TLR4)/nuclear factor of the κ light chain enhancer of B cells (NF-κB) signaling in the lipopolysaccharide (LPS)-stimulated RAW264.7 cells and the green fluorescent protein (GFP)-labeled NF-κB reporter gene of Drosophila. EK100 suppressed the release of the cytokine and attenuated the mRNA and protein expression of pro-inflammatory mediators. EK100 inhibited the inhibitor kappa B (IκB)/NF-κB signaling pathway. EK100 also inhibited phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) signal transduction. Moreover, EK100 interfered with LPS docking to the LPS-binding protein (LBP), transferred to the cluster of differentiation 14 (CD14), and bonded to TLR4/myeloid differentiation-2 (MD-2) co-receptors. Compared with the TLR4 antagonist, resatorvid (CLI-095), and dexamethasone (Dexa), EK100 suppressed the TLR4/AKT signaling pathway. In addition, we also confirmed that EK100 attenuated the GFP-labeled NF-κB reporter gene expression in Drosophila. In summary, EK100 might alter LPS docking to LBP, CD14, and TLR4/MD-2 co-receptors, and then it suppresses the TLR4/NF-κB inflammatory pathway in LPS-stimulated RAW264.7 cells and Drosophila.


Assuntos
Anti-Inflamatórios/farmacologia , Drosophila/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/química , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/química , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Ligação Proteica , Relação Estrutura-Atividade , Receptor 4 Toll-Like/química
16.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206850

RESUMO

Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, thermal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery. At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8 expressions, and both cytosolic and nuclear ß-catenin expression, and the noncanonical ß-catenin-independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B (pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points. Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulating inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/ß-catenin signaling pathways modulates PO pain related neurochemical and inflammatory alterations.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Catequina/análogos & derivados , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
17.
Biomed Pharmacother ; 138: 111543, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311538

RESUMO

Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1ß and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1ß)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Limoninas/farmacologia , Pulmão/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Limoninas/isolamento & purificação , Lipopolissacarídeos , Pulmão/enzimologia , Pulmão/patologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteólise , Ubiquitinação
18.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202163

RESUMO

Lusianthridin is a phenanthrene derivative isolated from Dendrobium venustum. Some phenanthrene compounds have antiplatelet aggregation activities via undefined pathways. This study aims to determine the inhibitory effects and potential mechanisms of lusianthridin on platelet aggregation. The results indicated that lusianthridin inhibited arachidonic acid, collagen, and adenosine diphosphate (ADP)-stimulated platelet aggregation (IC50 of 0.02 ± 0.001 mM, 0.14 ± 0.018 mM, and 0.22 ± 0.046 mM, respectively). Lusianthridin also increased the delaying time of arachidonic acid-stimulated and the lag time of collagen-stimulated and showed a more selective effect on the secondary wave of ADP-stimulated aggregations. Molecular docking studies revealed that lusianthridin bound to the entrance site of the cyclooxygenase-1 (COX-1) enzyme and probably the active region of the cyclooxygenase-2 (COX-2) enzyme. In addition, lusianthridin showed inhibitory effects on both COX-1 and COX-2 enzymatic activities (IC50 value of 10.81 ± 1.12 µM and 0.17 ± 1.62 µM, respectively). Furthermore, lusianthridin significantly inhibited ADP-induced suppression of cAMP formation in platelets at 0.4 mM concentration (p < 0.05). These findings suggested that possible mechanisms of lusianthridin on the antiplatelet effects might act via arachidonic acid-thromboxane and adenylate cyclase pathways.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Fenantrenos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , AMP Cíclico , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Modelos Moleculares , Conformação Molecular , Fenantrenos/química , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Relação Estrutura-Atividade
19.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200764

RESUMO

The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, ß = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Indolizinas/química , Anti-Inflamatórios/química , Cristalografia por Raios X/métodos , Ciclo-Oxigenase 2/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/química , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203691

RESUMO

Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.


Assuntos
Envelhecimento Saudável/fisiologia , Hericium/metabolismo , Neuroproteção , Animais , Ciclo-Oxigenase 2/metabolismo , Fragilidade/metabolismo , Fragilidade/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento Saudável/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...