Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.822
Filtrar
1.
Int J Nanomedicine ; 14: 7561-7581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571864

RESUMO

Introduction: This study was conducted to elucidate the chemopreventive potential, cytotoxic, and suppression of cellular metastatic activity of etodolac (ETD)-loaded nanocarriers. Methods: To esteem the effect of charge and composition of the nanovectors on their performance, four types of vectors namely, negative lipid nanovesicles; phosalosomes (N-Phsoms), positive phosalosomes (P-Phsoms), nanostructured lipid carriers (NLCs) and polymeric alginate polymer (AlgNPs) were prepared and compared. ETD was used as a model cyclo-oxygenase-2 (COX-2) inhibitor to evaluate the potency of these nanovectors to increase ETD permeation and retention through human skin and cytotoxicity against squamous cell carcinoma cell line (SCC). Moreover, the chemopreventive activity of ETD nanovector on mice skin cancer model was evaluated. Results: Among the utilized nanovectors, ETD-loaded N-Phsoms depicted spherical vesicles with the smallest particle size (202.96±2.37 nm) and a high zeta potential of -24.8±4.16 mV. N-Phsoms exhibited 1.5, and 3.6 folds increase in the ETD amount deposited in stratum corneum, epidermis and dermis. Moreover, cytotoxicity studies revealed a significant cytotoxic potential of such nanovector with IC50=181.76 compared to free ETD (IC50=982.75), correlated to enhanced cellular internalization. Its efficacy extended to a reduction in the relative tumor weight with 1.70 and 1.51-fold compared to positive control and free ETD, that manifested by a 1.72-fold reduction in both COX-2 and proliferating cell nuclear antigen mRNA (PCNA-mRNA) levels and 2.63-fold elevation in caspase-3 level in skin tumors relative to the positive control group with no hepato-and nephrotoxicity. Conclusion: Encapsulation of ETD in nanovector enhances its in-vitro and in-vivo anti-tumor activity and opens the door for encapsulation of more relevant drugs.


Assuntos
Quimioprevenção , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Nanoestruturas/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/enzimologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/toxicidade , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Etodolac/farmacologia , Etodolac/uso terapêutico , Feminino , Humanos , Concentração Inibidora 50 , Lipídeos/química , Camundongos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Estudos Prospectivos , Absorção Cutânea/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Eletricidade Estática , Resultado do Tratamento
2.
Sheng Li Xue Bao ; 71(5): 689-697, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31646322

RESUMO

The aim of the present study was to investigate the role of ferroptosis in acute lung injury (ALI) mouse model induced by oleic acid (OA). ALI was induced in the mice via the lateral tail vein injection of pure OA. The histopathological score of lung, lung wet-dry weight ratio and the protein content of bronchoalveolar lavage fluid (BALF) were used as the evaluation indexes of ALI. Iron concentration, glutathione (GSH) and malondialdehyde (MDA) contents in the lung tissues were measured using corresponding assay kits. The ultrastructure of pulmonary cells was observed by transmission electron microscope (TEM), and the expression level of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA was detected by quantitative polymerase chain reaction (q-PCR). Protein expression levels of glutathione peroxidase 4 (GPX4), ferritin and transferrin receptor 1 (TfR1) in lung tissues were determined by Western blot. The results showed that histopathological scores of lung tissues, lung wet-dry weight ratio and protein in BALF in the OA group were higher than those of the control group. In the OA group, the mitochondria of pulmonary cells were shrunken, and the mitochondrial membrane was ruptured. The expression level of PTGS2 mRNA in the OA group was seven folds over that in the control group. Iron overload, GSH depletion and accumulation of MDA were observed in the OA group. Compared with the control group, the protein expression levels of GPX4 and ferritin in lung tissue were down-regulated in the OA group. These results suggest that ferroptosis plays a potential role in the pathogenesis of ALI in our mouse model, which may provide new insights for development of new drugs for ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Apoptose , Ácido Oleico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/metabolismo , Ferritinas/metabolismo , Glutationa/análise , Glutationa Peroxidase/metabolismo , Ferro/análise , Sobrecarga de Ferro/fisiopatologia , Pulmão/citologia , Pulmão/patologia , Malondialdeído/análise , Camundongos , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/ultraestrutura
3.
Adv Exp Med Biol ; 1161: 77-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562623

RESUMO

The Cyclooxygenase enzymes (COX-1 and COX-2) incorporate 2 molecules of O2 into arachidonic acid (AA), resulting in an array of bioactive prostaglandins. However, much work has been done showing that COX-2 will perform this reaction on several different AA-containing molecules, most importantly, the endocannabinoid 2-arachidonoylglycerol (2-AG). The products of 2-AG oxygenation, prostaglandin glycerol esters (PG-Gs), are analogous to canonical prostaglandins. This chapter reviews the literature detailing the production, metabolism, and bioactivity of these compounds, as well as their detection in intact animals.


Assuntos
Éteres de Glicerila , Prostaglandinas , Animais , Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Éteres de Glicerila/análise , Éteres de Glicerila/química , Éteres de Glicerila/metabolismo , Prostaglandinas/análise , Prostaglandinas/química , Prostaglandinas/metabolismo
4.
Chem Biol Interact ; 312: 108816, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505164

RESUMO

Indirubins E804 (indirubin-3'-(2,3 dihydroxypropyl)-oximether) and 7BIO (7-Bromoindirubin-3'-oxime) are synthetic derivatives of natural indirubin, the active compound in Danggui Longhui Wan, a traditional Chinese remedy for cancer and inflammation. Herein, we explore E804 and 7BIO for their potential to modulate key pro-inflammatory genes and cytokines in LN-18 and T98G glioblastoma cells. High grade gliomas typically secrete large amounts of inflammatory cytokines and growth factors that promote tumor growth in an autocrine fashion. Inflammation is emerging as a key concern in the success of new treatment modalities for glioblastomas. Studies indicate that select indirubin derivatives bind and activate signaling of the AHR pathway, as well as inhibit cyclin-dependent kinases and STAT3 signaling. AHR signaling is involved in hematopoiesis, immune function, cell cycling, and inflammation, and thus may be a possible target for glioma treatment. To determine the significance of the AHR pathway in LN-18 and T98G glioma inflammatory profiles, and on the effects of E804 and 7BIO on these profiles, we used 6,2',4'-trimethoxyflavone (TMF), a putative selective AHR antagonist. It was confirmed that E804 and 7BIO activates the AHR leading to cyp1b1 expression, and that TMF antagonizes expression. We then employed a commercial cancer inflammation and immunity crosstalk qRT-PCR array to screen for anti-inflammatory related properties. TMF alone inhibited expression of ifng, ptsg2, il12b, tnfa, il10, il13, the balance between pd1 and pdl1, and even expression of mhc1a/b. E804 was very potent in suppressing many pro-inflammatory genes, including il1a, il1b, il12a, ptgs2, tlr4, and others. E804 also affected expression of il6, vegfa, and stat3. Conversely, 7BIO induced cox2, but suppressed a different selection of pro-inflammatory genes including nos2, tnfa, and igf1. Secretion of IL-6 protein, an iconic inflammatory cytokine, was decreased by E804. VEGF (vascular endothelial growth factor) protein secretion was upregulated by 7BIO, yet downregulated by E804 and E804 plus TMF. Thus, E804 is both an AHR ligand and regulator of important pro-inflammatory cytokines such as IL-6 and oncogene STAT3, among others. Our results point to the use of E804 and TMF in combination as a promising new treatment for glioblastoma.


Assuntos
Indóis/farmacologia , Oximas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Indóis/química , Oximas/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Hypertension ; 74(4): 936-946, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31378107

RESUMO

Endothelial cells regulate vascular tone by producing both relaxing and contracting factors to control the local blood flow. Hypertension is a common side effect of mTORC1 (mammalian target of rapamycin complex 1) inhibitors. However, the role of endothelial mTORC1 in hypertension remains elusive. The present study aimed to determine the role of endothelial mTORC1 in Ang II (angiotensin II)-induced hypertension and the underlying mechanism. Endothelial mTORC1 activity was increased by Ang II both in vitro and in vivo. Blood pressure was higher in Tie-2-Cre-mediated regulatory associated protein of mTOR (mammalian target of rapamycin; Raptor) heterozygous-deficient (Tie2Cre-RaptorKD) mice than control mice both before and after Ang II infusion. Acetylcholine-evoked endothelium-dependent relaxation of mesenteric arteries was impaired in Tie2Cre-RaptorKD mice. Treatment with indomethacin or a specific COX (cyclooxygenase)-2 inhibitor, NS-398, but not L-NG-nitroarginine methyl ester reduced endothelium-dependent relaxation in Raptorflox/- mice to a similar extent as in Tie2Cre-RaptorKD mice. Metabolomic profiling revealed that the plasma content of prostaglandin E2 was reduced in Tie2Cre-RaptorKD mice with or without Ang II infusion. In endothelial cells, reduction of the protein level of YAP (yes-associated protein) with siRNA-mediated RPTOR deficiency was autophagy dependent and transcriptionally regulated the expression of COX-2 and mPGES-1 (microsomal prostaglandin E synthase-1). Hence, overexpression of YAP in endothelial cells enhanced the mRNA and protein levels of COX-2 and mPGES-1 and reversed the endothelial dysfunction and hypertension in Tie2Cre-RaptorKD mice. The present results demonstrate that suppression of mTORC1 activity in endothelial cells reduces prostaglandin E2 production and causes hypertension by reducing YAP-mediated COX-2/mPGES-1 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pressão Sanguínea/fisiologia , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Angiotensina II , Animais , Pressão Sanguínea/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Hipertensão/induzido quimicamente , Indometacina/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos , Prostaglandina-E Sintases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
7.
Chem Biol Interact ; 311: 108790, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31400342

RESUMO

Preclinical assays play a key role in research in research on the neurobiology of pain and the development of novel analgesics. Drugs available for the treatment of inflammatory pain are not fully effective and show adverse effects. Thus, we investigated the antinociceptive, anti-inflammatory and anti-hyperalgesic effects of bis(3-amino-2-pyridine) diselenide (BAPD), a new analgesic drug prototype. BAPD effects were investigated using nociception models induced by chemical (glutamate), immunologic (Freund's Complete Adjuvant - CFA) and thermal stimuli in Swiss mice. Mice were orally (p.o.) treated with BAPD (0.1-50 mg/kg) 30 min prior to the glutamate and hot-plate tests and a time-course (0.5 up to 8 h) of the antinociceptive effect of BAPD (50 mg/kg, p. o.) was evaluated in a CFA model. In the CFA model, BAPD effects on cyclooxygenase-2 (COX-2), tumor necrosis factor (TNFα) and interferon-γ (INF-γ) expression, myeloperoxidase (MPO) activity, oxidative (2,2'-Azino-bis-3-ethylbenzothiazoline 6-sulfonic acid and 2,2-diphe- nyl-1-picrylhydrazyl levels) and histological parameters were evaluated. The safety of the compound (50 and 300 mg/kg, p. o.) was verified for 72 h. BAPD reduced the licking time induced by glutamate and caused an increase in latency response to thermal stimulus. Naloxone reversed the antinociceptive effect of BAPD. Paw edema formation induced by glutamate or CFA injection was reduced by BAPD. Mechanical hyperalgesia induced by CFA was attenuated by BAPD. BAPD did not protect against the increase in MPO activity and decrease of the 2,2'-Azino-bis-3-ethylbenzothiazoline 6-sulfonic acid and 2,2-diphe- nyl-1-picrylhydrazyl levels induced by CFA. BAPD protected against histological alterations and reduction on the levels of gene expression COX-2 and INF-γ in the paw of mice exposed to CFA. BAPD was safe at the doses and time evaluated. BAPD exerts acute antinociceptive, anti-inflammatory and anti-hyperalgesic actions, suggesting that it may represent an alternative in the future development of new therapeutic strategies.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Interferon gama/metabolismo , Nociceptividade/efeitos dos fármacos , Receptores Opioides/metabolismo , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Edema/tratamento farmacológico , Edema/patologia , Comportamento Exploratório/efeitos dos fármacos , Pé/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Interferon gama/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Dor/tratamento farmacológico , Dor/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/genética , Testes de Toxicidade Aguda , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Chem Biol Interact ; 311: 108786, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31401087

RESUMO

Naturally occurring oleanolic acid (OA) possesses a hepatoprotective activity and ability to inhibit proliferation of human hepatocellular carcinoma cells. Both properties might be related to its anti-inflammatory activity. Its low bioavailability justifies the search for more hydrophilic OA derivatives. The aim of this study was the design and synthesis of four novel OA oxime derivatives conjugated with succinic acid at the C-3 position of oleanane skeleton structure and evaluation of their effect on NF-κB and STATs expression and activation in HepG2 cells. The expression of NF-κB and cyclooxygenase-2 (COX-2), STAT5A/B and STAT3 with its target genes: BAX, BCL-XL and MYC was evaluated after 24 h treatment with tested compounds. The comparison of the levels of cytosolic and nuclear NF-κB subunits p50, p65 and STATs proteins was used as the measure of their activation. The results pointed out the 3-succinyloxyiminoolean-12-en-28-oic acid morpholide (SMAM) as the most potent modulator of NF-κB and STAT3. SMAM significantly reduced the expression and activation of NF-κB as well as its nuclear protein level of p65 subunit. This compound also reduced the expression and activation of STAT3 and STAT5A/B. Combined effect of SMAM on these transcription factors resulted in reduced expression of COX-2, MYC and anti-apoptotic BCL-XL genes. Simultaneously, the increased expression of pro-apoptotic BAX gene was observed. In the cells treated with 3-succinyloxyiminoolean-12-en-28-oic acid (SMAA) the increased expression of BAX was also found. The effects of 3-succinyloxyiminoolean-12-en-28-oic acid benzyl ester (SMAEB) and 3-succinyloxyiminoolean-12-en-28-oic acid methyl ester (SMAEM) were moderate and ambiguous in relation to the tested factors. Moreover, the coordinated action of SMAM on NF-κB and STAT3 confirms their close association in HepG2 cells. We conclude that SMAM efficiently downregulates the key elements of signaling pathways involved in inflammatory driven HCC. Thus, may be considered as a potential chemopreventive or therapeutic agent in this type of cancer.


Assuntos
NF-kappa B/metabolismo , Ácido Oleanólico/análogos & derivados , Oximas/farmacologia , Fatores de Transcrição STAT/metabolismo , Ácido Succínico/química , Carcinoma Hepatocelular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas , NF-kappa B/genética , Oximas/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição STAT/genética , Transcrição Genética/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
9.
Int J Nanomedicine ; 14: 4911-4929, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456637

RESUMO

Background: Apocynin (APO) is a bioactive phytochemical with prominent anti-inflammatory and anti-oxidant activities. Designing a nano-delivery system targeted to potentiate the gastric antiulcerogenic activity of APO has not been investigated yet. Chitosan oligosaccharide (COS) is a low molecular weight chitosan and its oral nanoparticulate system for potentiating the antiulcerogenic activity of the loaded APO has been described here. Methods: COS-nanoparticles (NPs) loaded with APO (using tripolyphosphate [TPP] as a cross-linker) were prepared by ionic gelation method and fully characterized. The chosen formula was extensively evaluated regarding in vitro release profile, kinetic analysis, and stability at refrigerated and room temperatures. Ultimately, the in vivo antiulcerogenic activity against ketoprofen (KP)-induced gastric ulceration in rats was assessed by macroscopic parameters including Paul's index and antiulcerogenic activity, histopathological examination, immunohistochemical (IHC) evaluation of cyclooxygenase-2 (COX-2) expression level in ulcerated gastric tissue, and biochemical measurement of oxidative stress markers and nitric oxide (NO) levels. Results: The selected NPs formula with COS (0.5 % w/v) and TPP (0.1% w/v) was the most appropriate one with drug entrapment efficiency percentage of 35.06%, particle size of 436.20 nm, zeta potential of +38.20 mV, and mucoadhesive strength of 51.22%. It exhibited a biphasic in vitro release pattern as well as high stability at refrigerated temperature for a 6-month storage period. APO-loaded COS-NPs provoked marvelous antiulcerogenic activity against KP-induced gastric ulceration in rats compared with free APO treated group, which was emphasized by histopathological, IHC, and biochemical studies. Conclusion: In conclusion, APO-loaded COS-NPs could be considered as a promising oral phytopharmaceutical nanoparticulate system for management of gastric ulceration.


Assuntos
Acetofenonas/administração & dosagem , Acetofenonas/farmacologia , Quitosana/química , Mucosa Gástrica/efeitos dos fármacos , Nanopartículas/química , Oligossacarídeos/química , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Acetofenonas/uso terapêutico , Administração através da Mucosa , Animais , Biomarcadores/metabolismo , Varredura Diferencial de Calorimetria , Ciclo-Oxigenase 2/metabolismo , Liberação Controlada de Fármacos , Cinética , Masculino , Nanopartículas/ultraestrutura , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Estômago/efeitos dos fármacos , Estômago/patologia , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Suínos , Difração de Raios X
10.
Transplant Proc ; 51(6): 2124-2131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31399188

RESUMO

BACKGROUND: Acute rejection of a kidney allograft results from adaptive immune responses and marked inflammation. The eicosanoid prostaglandin E2 (PGE2) modulates the inflammatory response, is generated by cyclooxygenase 2 (COX-2), and binds to 1 of the 4 G protein-coupled E prostanoid cell surface receptors (EP1-4). Receptor activation results in in proinflammatory (EP1 and EP3) or anti-inflammatory (EP2 and EP4) responses. We theorized that expression of the components of the COX-PGE2-EP signaling pathway correlates with acute rejection in a porcine model of allogeneic renal transplantation. METHOD: COX-2 enzyme and EP receptor protein expression were quantitated with western blotting and immunohistochemistry from allotransplants (n = 18) and autotransplants (n = 5). Linear regression analysis was used to correlate EP receptor expression with the Banff category of rejection. RESULTS: Pigs with advanced rejection demonstrated significant increases in serum PGE2 metabolites, while pigs with less rejection demonstrated higher tissue concentrations of PGE2 metabolites. A significant negative correlation between COX-2 expression and Banff category of rejection (R = -0.877) was shown. Rejection decreased expression of EP2 and EP4. For both receptors, there was a significant negative correlation with the extent of rejection (R = -0.760 and R = -0.891 for EP2 and EP4, respectively). Rejection had no effect on the proinflammatory receptors EP1 and EP3. CONCLUSION: Downregulation of COX-2 and the anti-inflammatory EP2 and EP4 receptors is associated with acute rejection in unmatched pig kidney transplants, suggesting that the COX-2-PGE2-EP pathway may modulate inflammation in this model. Enhancing EP2 and/or EP4 activity may offer novel therapeutic approaches to controlling the inflammation of acute allograft rejection.


Assuntos
Dinoprostona/biossíntese , Rejeição de Enxerto/metabolismo , Transplante de Rim , Receptores de Prostaglandina/biossíntese , Animais , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Transdução de Sinais/fisiologia , Suínos
11.
Adv Exp Med Biol ; 1155: 857-867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468452

RESUMO

We want to find the anti-neuroinflammatory action of the taurine derivative Glucose-Taurine Reduced (G-T-R). The anti-neuroinflammatory action by G-T-R were investigated in lipopolysaccharide (LPS)-induced BV2 microglia. G-T-R inhibited the production of nitric oxide and prostaglandin E2, and down-regulated the protein expression of inducible NO synthase and cyclooxygenase-2. In addition, G-T-R reduced the cytokines secretion such as tumor necrosis factor (TNF-α), interleukin (IL) -1ß and IL-6, in BV2 microglia treated with LPS. In addition, G-T-R dose-dependently decreased the activation of nuclear factor-kappa B. These findings confirmed the anti-neuroinflammatory activity of G-T-R, which may exert protective effects against neuroinflammatory-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Taurina/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glucose , Lipopolissacarídeos , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo
12.
Adv Exp Med Biol ; 1155: 989-999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468462

RESUMO

In the present study, we investigated the regulation of inflammatory effects by glucose-taurine reduced (G-T-R), a taurine-carbohydrate derivative, on lipopolysaccharide (LPS)-induced RAW264.7 macrophages. The anti-inflammatory action of G-T-R revealed that this derivative markedly inhibited the nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages induced by LPS. Suppression of NO and PGE2 production was involved in the inhibitory action by G-T-R on the inducible nitric oxide synthase and cyclooxygenase-2 proteins expression. G-T-R decreased the production of a variety of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6. Moreover, G-T-R effectively suppressed the nuclear factor-kappa B (NF-κB) activation in LPS-stimulated RAW264.7 macrophages according to evaluation of the molecular inflammatory mechanisms. Thus, we suggest that G-T-R modulates several inflammatory pathways mediated by NF-κB activation, demonstrating its potential or preventing and treating inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Taurina/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Glucose/farmacologia , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
13.
Adv Exp Med Biol ; 1155: 1057-1067, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468467

RESUMO

Ribose-taurine (Rib-T) suppressed the generation of inflammatory mediators and cytokines, such as nitric oxide (NO) and prostaglandin E2 (PGE2) through the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß induced by LPS was effectively blocked by Rib-T. Moreover, the anti-inflammatory actions of Rib-T were involved in its inhibitory effects against the nuclear translocation of nuclear factor-kappa B (NF-κB) p65, and NF-κB DNA-binding activity. These results suggest that the anti-inflammatory action of Rib-T is associated with NF-κB regulation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Ribose/farmacologia , Taurina/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Inflamação , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Fator de Transcrição RelA
14.
Eur J Med Chem ; 182: 111601, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445233

RESUMO

The cyclic enaminone moiety has been identified as a new scaffold for selective inhibition of cyclooxygenase-2 with anti-inflammatory and analgesic activities. The designed cyclic enaminones have been synthesized conveniently through the development of a new catalyst-free methodology and evaluated for cyclooxygenase (COX-1 and COX-2) inhibitory activities. Three compounds 7d, 8, and 9 predominantly inhibited COX-2 with selectivity index of 74.09, 19.45 and 108.68, respectively, and were assessed for in vivo anti-inflammatory activity in carrageenan induced rat paw edema assay. The anti-inflammatory activity of 7d was comparable to that of celecoxib at a dose of 12.5 mg/kg. However, the compounds 8 and 9 were more/equally effective as anti-inflammatory agent compared to celecoxib at the doses of 12.5 mg/kg and 25 mg/kg and also exhibited anti-inflammatory activity comparable to that of diclofenac. The therapeutic potential of the most active compound 9 was further assessed by performing in vivo thermal and mechanical hyperalgesia tests using various models that revealed its analgesic activity. The in vivo non-ulcerogenicity of 9 revealed the gastrointestinal safety as compared to the non-selective COX inhibitor indomethacin. The in vitro antioxidant activity and in vivo experiments on heart rate and blood pressure provided the cardiovascular safety profile of 9. The molecular docking studies rationalize the COX-2 selectivity of the newly found anti-inflammatory compounds 7d, 8, and 9.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Compostos Heterocíclicos/farmacologia , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antioxidantes/síntese química , Antioxidantes/química , Carragenina , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
15.
Braz J Med Biol Res ; 52(9): e8525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411316

RESUMO

Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1ß, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1ß by suppressing the increase in IL-1ß, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1ß-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1ß to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1ß-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.


Assuntos
Condrócitos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Interleucina-1beta/efeitos dos fármacos , Degeneração do Disco Intervertebral/metabolismo , Adulto , Idoso , Agrecanas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Ginsenosídeos/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Dor Lombar/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
16.
Adv Exp Med Biol ; 1155: 1001-1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468463

RESUMO

Batillaria multiformis (B. multiformis) belong to gastropods. They live generally in the sandpit of the lagoons and the estuaries of the intertidal zone. Most of them are distributed in Korea, Japan and China. In this study, we investigated the anti-inflammatory potential of B. multiformis water extracts (BMW). The results showed that the extracts significantly decreased the production of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-induced RAW 264.7 macrophages. In addition, the extracts suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Further investigation indicated that BMW suppressed phosphorylated c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK) and p38 through the MAPK signaling pathway and influenced the NF-κB signaling pathway by suppressing the IκBα degradation in LPS-induced RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Celulares/farmacologia , Gastrópodes/química , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Água
17.
Chin J Nat Med ; 17(6): 461-468, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31262458

RESUMO

In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1ß, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1ß, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1ß in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cardamine/química , Fator 88 de Diferenciação Mieloide/metabolismo , Extratos Vegetais/administração & dosagem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Flores/química , Humanos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Eur J Med Chem ; 180: 41-50, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31299586

RESUMO

In this work, a series of novel indole-2-amide compounds were designed, synthesized, characterized and the anti-inflammatory activity in vivo were evaluated. Compounds 8a, 10b, 12h, and 12l exhibited marked anti-inflammatory activity in 2,4-Dinitrofluorobenzenethe (DNFB) - induced mice auricle edema model. Further, compounds 8a, 10b and 12h exhibited potential in vitro COX-2 inhibitory activity (IC50 = 21.86, 23.3 and 23.21 nM, respectively), while the reference drug celecoxib was 11.20 nM. The most promising compound 10b was exhibited the highest selectivity for COX-2 (selectivity index (COX-1/COX-2) = 17.45) and moderate 5-LOX inhibitory activity (IC50 = 66 nM), which comparable to positive controlled zileuton (IC50 = 38.91 nM). In addition, the test results showed compounds 10b and 12h no significant cytotoxic activity on normal cells (RAW264.7). Further, at the active sites of the COX-1, COX-2 co-crystals, 3b and 4l showed higher binding forces in the molecular docking study, which consistent with the results of in vitro experiments. These results demonstrated that these compounds had dual inhibitory activity of COX/5-LOX, providing clues for further searching for safer and more effective anti-inflammatory drugs.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Desenho de Drogas , Indóis/farmacologia , Inibidores de Lipoxigenase/farmacologia , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Araquidonato 5-Lipoxigenase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Indóis/síntese química , Indóis/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 180: 86-98, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301566

RESUMO

The aim of this study was to design and synthesize COX-1/COX-2 balanced inhibitors incorporating the structural motifs of anti-inflammatory ascidian metabolites. We designed a series of substituted indole analogs that incorporate the key structures of the ascidian metabolites, herdmanines C and D. The synthesized analogs were tested for their inhibitory activity against COX-1 and COX-2, and compound 5m, which displayed balanced inhibition, was further evaluated for in vitro anti-inflammatory activity. Compound 5m suppressed the expression of pro-inflammatory factors, including iNOS, COX-2, TNF-α, and IL-6 in LPS-stimulated murine RAW264.7 macrophages. The reduction of PGE2, NO, and ROS was also observed, together with the suppression of NF-κB, IKK, and IκBα phosphorylation. Our results characterized 5m as a COX-1/COX-2 balanced inhibitor that subsequently caused ROS inhibition and NF-κB suppression, and culminated in the suppression of iNOS, COX-2, TNF-α, and IL-6 expression.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Desenho de Drogas , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Células RAW 264.7 , Ovinos , Relação Estrutura-Atividade , Urocordados
20.
Chem Pharm Bull (Tokyo) ; 67(9): 966-976, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257308

RESUMO

Honokiol, a biphenolic neolignan isolated from Magnolia officinalis, was reported to have a promising anti-inflammatory activity for the treatment of various diseases. There are many efforts on the synthesis and structure-activity relationship of honokiol derivatives. However, regioselective O-alkylation of honokiol remains a challenge and serves as a tool to provide not only some derivatives but also chemical probes for target identification and mode of action. In this study, we examined the reaction condition for regioselective O-alkylation, in which C2 and C4'-alkylated analogs of honokiol were synthesized and evaluated for inhibitory activity on nitric oxide production and cyclooxygenase-2 expression. Furthermore, we successfully synthesized a potential photoaffinity probe consisting of biotin and benzophenone based on a C4'-alkylated derivative.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Compostos de Bifenilo/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inflamação/tratamento farmacológico , Lignanas/farmacologia , Alquilação , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Humanos , Inflamação/metabolismo , Lignanas/síntese química , Lignanas/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA