Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.322
Filtrar
1.
BMC Plant Biol ; 24(1): 522, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853241

RESUMO

BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Proteínas de Plantas , Ralstonia solanacearum , Fatores de Transcrição , Ralstonia solanacearum/fisiologia , Capsicum/genética , Capsicum/imunologia , Capsicum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença/genética , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Etilenos/metabolismo , Inativação Gênica , Acetatos/farmacologia
2.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853268

RESUMO

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Assuntos
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenóis , Raízes de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Fenóis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores de Crescimento de Plantas/metabolismo , Agrobacterium
3.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842600

RESUMO

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Assuntos
Cucumis melo , Ciclopentanos , Frutas , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Folhas de Planta , Proteínas de Plantas , Plantas Geneticamente Modificadas , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Regiões Promotoras Genéticas , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Acetatos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
4.
Sci Rep ; 14(1): 13259, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858574

RESUMO

This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 µM) and jasmonic acid (JA) (0, 5 and 10 µM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 µM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 µM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 µM Ni, the highest accumulation of Ni was observed in shoots of M (1392 µg/g DW) and NM (1382 µg/g DW). However, the application of SA and JA (especially in Ni 400 µM + SA 200 µM + JA 5 and 10 µM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 µM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.


Assuntos
Biodegradação Ambiental , Ciclopentanos , Níquel , Oxilipinas , Raízes de Plantas , Ácido Salicílico , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Níquel/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Ácido Salicílico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brassicaceae/metabolismo , Bioacumulação
5.
BMC Genomics ; 25(1): 579, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858660

RESUMO

BACKGROUND: Disease can drastically impair common bean (Phaseolus vulgaris L.) production. Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is one of the diseases that are widespread and cause serious economic loss in common bean. RESULTS: Transcriptome analysis of the early response of common bean to anthracnose was performed using two resistant genotypes, Hongyundou and Honghuayundou, and one susceptible genotype, Jingdou. A total of 9,825 differentially expressed genes (DEGs) responding to pathogen infection and anthracnose resistance were identified by differential expression analysis. By using weighted gene coexpression network analysis (WGCNA), 2,051 DEGs were found to be associated with two resistance-related modules. Among them, 463 DEGs related to anthracnose resistance were considered resistance-related candidate genes. Nineteen candidate genes were coexpressed with three resistance genes, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. To further identify resistance genes, 46 candidate genes were selected for experimental validation using salicylic acid (SA) and methyl jasmonate (MeJA). The results indicated that 38 candidate genes that responded to SA/MeJA treatment may be involved in anthracnose resistance in common bean. CONCLUSIONS: This study identified 38 resistance-related candidate genes involved in the early response of common bean, and 19 resistance-related candidate genes were coexpressed with anthracnose resistance genes. This study identified putative resistance genes for further resistance genetic investigation and provides an important reference for anthracnose resistance breeding in common bean.


Assuntos
Colletotrichum , Resistência à Doença , Perfilação da Expressão Gênica , Phaseolus , Doenças das Plantas , Phaseolus/microbiologia , Phaseolus/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Redes Reguladoras de Genes , Genes de Plantas
6.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822833

RESUMO

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Assuntos
Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Saccharum , Ácido Salicílico , Transdução de Sinais , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Transdução de Sinais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade
7.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811892

RESUMO

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Assuntos
Ascomicetos , Ciclopentanos , Resistência à Doença , Frutas , Melatonina , Oxilipinas , Florizina , Doenças das Plantas , Pyrus , Pyrus/microbiologia , Pyrus/metabolismo , Pyrus/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Ascomicetos/fisiologia , Melatonina/farmacologia , Melatonina/metabolismo , Resistência à Doença/efeitos dos fármacos , Doenças das Plantas/microbiologia , Frutas/microbiologia , Frutas/metabolismo , Florizina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
8.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772462

RESUMO

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Assuntos
Acetatos , Ciclopentanos , Fallopia japonica , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxilipinas , Proteínas de Plantas , Resveratrol , Fatores de Transcrição , Transcriptoma , Resveratrol/metabolismo , Resveratrol/farmacologia , Fallopia japonica/metabolismo , Fallopia japonica/genética , Acetatos/farmacologia , Acetatos/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Transcriptoma/efeitos dos fármacos , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos
9.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744088

RESUMO

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Assuntos
Temperatura Baixa , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Trealose/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Giberelinas/metabolismo , Sacarose/metabolismo
10.
Nat Commun ; 15(1): 3875, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719800

RESUMO

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Assuntos
Citocininas , Ácidos Indolacéticos , Filogenia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Viridiplantae/metabolismo , Viridiplantae/genética , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo , Evolução Biológica , Clorófitas/metabolismo , Clorófitas/genética , Transdução de Sinais
11.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791472

RESUMO

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Assuntos
Acetatos , Cactaceae , Carotenoides , Ciclopentanos , Armazenamento de Alimentos , Frutas , Oxilipinas , Ácido Salicílico , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Carotenoides/metabolismo , Armazenamento de Alimentos/métodos , Cactaceae/química , Cactaceae/crescimento & desenvolvimento , Cactaceae/metabolismo , Ácido Salicílico/farmacologia , Salicilatos/farmacologia , Salicilatos/metabolismo , Fenóis/análise , Ácido Oxálico/metabolismo
12.
Phytochemistry ; 223: 114141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750708

RESUMO

(3R,7S)-Jasmonoyl-L-isoleucine (JA-Ile) is a plant hormone that regulates plant defense responses and other physiological functions. The mechanism of attenuation of JA-Ile signaling in the plant body is essential because prolonged JA-Ile signaling can be detrimental to plant survival. In Arabidopsis thaliana, the cytochrome P450 monooxygenases, CYP94B1/B3/C1, inactivate JA-Ile by converting it into 12-hydroxy-jasmonoyl-L-isoleucine (12-OH-JA-Ile), and CYP94C1 converts 12-OH-JA-Ile into 12-carboxy-jasmonoyl-L-isoleucine (12-COOH-JA-Ile). In the present study, we aimed to identify the cytochrome P450 monooxygenases involved in the catabolic pathway of JA-Ile in tomato leaves. Based on a gene expression screening of SlCYP94 subfamily monooxygenases using qPCR and the time-course of JA-Ile catabolism, we identified SlCYP94B18 and SlCYP94B19 expressed in tomato leaves as candidate monooxygenases catalyzing the two-step catabolism of JA-Ile. An in vitro enzymatic assay using a yeast expression system revealed that these enzymes efficiently converted JA-Ile to 12-OH-JA-Ile, and then to 12-COOH-JA-Ile. SlCYP94B18 and SlCYP94B19 also catalyzed the oxidative catabolism of several JA-amino acid conjugates (JA-AAs), JA-Leu and JA-Val, in tomatoes. These results suggest that SlCYP94B18 and SlCYP94B19 plays a role in the two-step oxidation of JA-AAs, suggesting their broad involvement in regulating jasmonate signaling in tomatoes. Our results contribute to a deeper understanding of jasmonate signaling in tomatoes and may help to improve tomato cultivation and quality.


Assuntos
Ciclopentanos , Sistema Enzimático do Citocromo P-450 , Oxilipinas , Folhas de Planta , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/metabolismo , Isoleucina/análogos & derivados , Oxigenases de Função Mista/metabolismo , Arabidopsis/metabolismo
13.
J Am Chem Soc ; 146(21): 14672-14684, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743881

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are the most versatile biocatalysts for synthesizing nonproteinogenic amino acids. α,α-Disubstituted quaternary amino acids, such as 1-aminocyclopentane-1-carboxylic acid (cycloleucine), are useful building blocks for pharmaceuticals. In this study, starting with the biosynthesis of fusarilin A, we discovered a family of PLP-dependent enzymes that can facilitate tandem carbon-carbon forming steps to catalyze an overall [3 + 2]-annulation. In the first step, the cycloleucine synthases use SAM as the latent electrophile and an in situ-generated enamine as the nucleophile for γ-substitution. Whereas previously characterized γ-replacement enzymes protonate the resulting α-carbon and release the acyclic amino acid, cycloleucine synthases can catalyze an additional, intramolecular aldol or Mannich reaction with the nucleophilic α-carbon to form the substituted cyclopentane. Overall, the net [3 + 2]-annulation reaction can lead to 2-hydroxy or 2-aminocycloleucine products. These studies further expand the biocatalytic scope of PLP-dependent enzymes.


Assuntos
Fosfato de Piridoxal , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Biocatálise , Estrutura Molecular , Ciclopentanos/química , Ciclopentanos/metabolismo
14.
Plant Physiol Biochem ; 211: 108670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703501

RESUMO

Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Camellia sinensis/genética , Camellia sinensis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Genoma de Planta , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia
15.
Plant Physiol Biochem ; 211: 108675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705047

RESUMO

Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R-grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.


Assuntos
Antioxidantes , Cádmio , Luz , Cádmio/toxicidade , Cádmio/metabolismo , Antioxidantes/metabolismo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efeitos dos fármacos , Hydrocharitaceae/efeitos da radiação , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ciclopentanos/metabolismo , Fotossíntese/efeitos dos fármacos , Glutationa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz Vermelha
16.
Plant Physiol Biochem ; 211: 108683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714129

RESUMO

Jasmonic acid (JA) plays crucial functions in plant stress response, and the synergistic interaction between JA and abscisic acid (ABA) signaling is implicated to help plants adapt to environmental challenges, whereas the underlying molecular mechanism still needs to be revealed. Here, we report that OsJAZ10, a repressor in the JA signaling, represses rice drought tolerance via inhibition of JA and ABA biosynthesis. Function loss of OsJAZ10 markedly enhances, while overexpression of OsJAZ10ΔJas reduces rice drought tolerance. The osjaz10 mutant is more sensitive to exogenous ABA and MeJA, and produces higher levels of ABA and JA after drought treatment, indicating OsJAZ10 represses the biosynthesis of these two hormones. Mechanistic study demonstrated that OsJAZ10 physically interacts with OsMYC2. Transient transcriptional regulation assays showed that OsMYC2 activates the expression of ABA-biosynthetic gene OsNCED2, JA-biosynthetic gene OsAOC, and drought-responsive genes OsRAB21 and OsLEA3, while OsJAZ10 prevents OsMYC2 transactivation of these genes. Further, the electrophoretic mobility shift assay (EMSA) confirmed that OsMYC2 directly binds to the promoters of OsNCED2 and OsRAB21. Electrical activity has been proposed to activate JA biosynthesis. Interestingly, OsJAZ10 inhibits the propagation of osmotic stress-elicited systemic electrical signals, indicated by the significantly increased PEG-elicited slow wave potentials (SWPs) in osjaz10 mutant, which is in accordance with the elevated JA levels. Collectively, our findings establish that OsJAZ10 functions as a negative regulator in rice drought tolerance by repressing JA and ABA biosynthesis, and reveal an important mechanism that plants integrate electrical events with hormone signaling to enhance the adaption to environmental stress.


Assuntos
Ácido Abscísico , Ciclopentanos , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Oxilipinas , Proteínas de Plantas , Transdução de Sinais , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Seca
17.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809782

RESUMO

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Assuntos
Ciclopentanos , Resistência à Doença , Fusarium , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Ácido Salicílico , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Saccharum/genética , Saccharum/microbiologia , Saccharum/metabolismo , Saccharum/imunologia , Fusarium/fisiologia , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia , Etilenos/metabolismo
18.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38730437

RESUMO

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza , Oxilipinas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Xanthomonas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiologia , Imunidade Vegetal/efeitos dos fármacos , Mutação/genética , Resistência à Doença/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos dos fármacos
19.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790240

RESUMO

Barley (Hordeum vulgare L.), a diverse cereal crop, exhibits remarkable versatility in its applications, ranging from food and fodder to industrial uses. The content of cellulose in barley is significantly influenced by the COBRA genes, which encode the plant glycosylphosphatidylinositol (GPI)-anchored protein (GAP) that plays a pivotal role in the deposition of cellulose within the cell wall. The COBL (COBRA-Like) gene family has been discovered across numerous species, yet the specific members of this family in barley remain undetermined. In this study, we discovered 13 COBL genes within the barley genome using bioinformatics methods, subcellular localization, and protein structure analysis, finding that most of the barley COBL proteins have a signal peptide structure and are localized on the plasma membrane. Simultaneously, we constructed a phylogenetic tree and undertook a comprehensive analysis of the evolutionary relationships. Other characteristics of HvCOBL family members, including intraspecific collinearity, gene structure, conserved motifs, and cis-acting elements, were thoroughly characterized in detail. The assessment of HvCOBL gene expression in barley under various hormone treatments was conducted through qRT-PCR analysis, revealing jasmonic acid (JA) as the predominant hormonal regulator of HvCOBL gene expression. In summary, this study comprehensively identified and analyzed the barley COBL gene family, aiming to provide basic information for exploring the members of the HvCOBL gene family and to propose directions for further research.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Genoma de Planta , Oxilipinas/metabolismo , Ciclopentanos/metabolismo
20.
Mol Plant ; 17(6): 900-919, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704640

RESUMO

Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.


Assuntos
Arginina , Ciclopentanos , Oryza , Oxilipinas , Proteínas de Plantas , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...