Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.577
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 99-109, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372107

RESUMO

This study aimed to explore the involvement of Transmembrane and coiled-coil domains 1 (TMCO1) in ovarian cancer progression and its regulatory mechanisms in cisplatin resistance. Using the GEPIA database, we analyzed TMCO1 expression in ovarian cancer and normal tissues. In a cohort of 99 ovarian cancer patients, immunohistochemistry and immunofluorescence were employed to assess TMCO1 expression in tumor and adjacent tissues, correlating findings with clinical and pathological characteristics. TMCO1 overexpression and knockout cell models were constructed, and their impact on non-cisplatin-resistant (SK-OV-3) and cisplatin-resistant (SK-OV-3-CDDP) ovarian cancer cells was investigated through cloning, wound healing, Fluo 4, and Transwell experiments. Knocking down CALR and VDAC1 was performed to examine their effects on TMCO1, cell proliferation, and malignant markers. Subcutaneous tumor models in nude mice elucidated the in vivo role of TMCO1 in tumor growth. Expression levels of CALR, VDAC1, angiogenesis indicators (CD34), and epithelial-mesenchymal transition (EMT) markers were evaluated. TMCO1 expression in ovarian cancer tissue significantly differed from normal tissue, correlating with survival rates. TMCO1 overexpression was associated with lymph node metastases, late FIGO stage, and larger tumors. TMCO1 promoted proliferation, calcium ion elevation, cytoskeletal remodeling, and metastasis in SK-OV-3 and SK-OV-3-CDDP cells, upregulating VDAC1, CALR, Vimentin, N-cadherin, ß-catenin, and downregulating E-cadherin. Silencing TMCO1 inhibited cell growth, proliferation, and angiogenesis in vivo, suppressing the expression of CALR, VDAC1, Vimentin, N-cadherin, and ß-catenin. Overall, this study highlighted TMCO1 as a crucial regulator in ovarian cancer progression, influencing VDAC1 through CALR and impacting diverse cellular processes, offering potential as a targeted therapeutic strategy for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , beta Catenina/metabolismo , Vimentina/metabolismo , Camundongos Nus , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Canais de Cálcio/farmacologia , Canais de Cálcio/uso terapêutico
2.
PLoS One ; 19(2): e0298815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363779

RESUMO

OBJECTIVE: To investigate the anti-cancer efficacy of ENB101-LNP, an ionizable lipid nanoparticles (LNPs) encapsulating siRNA against E6/E7 of HPV 16, in combination therapy with cisplatin in cervical cancer in vitro and in vivo. METHODS: CaSki cells were treated with ENB101-LNP, cisplatin, or combination. Cell viability assessed the cytotoxicity of the treatment. HPV16 E6/E7 gene knockdown was verified with RT-PCR both in vitro and in vivo. HLA class I and PD-L1 were checked by flow cytometry. A xenograft model was made using CaSki cells in BALB/c nude mice. To evaluate anticancer efficacy, mice were grouped. ENB101-LNP was given three times weekly for 3 weeks intravenously, and cisplatin was given once weekly intraperitoneally. Tumor growth was monitored. On day 25, mice were euthanized; tumors were collected, weighed, and imaged. Tumor samples were analyzed through histopathology, immunostaining, and western blot. RESULTS: ENB101-LNP and cisplatin synergistically inhibit CaSki cell growth. The combination reduces HPV 16 E6/E7 mRNA and boosts p21 mRNA, p53, p21, and HLA class I proteins. In mice, the treatment significantly blocked tumor growth and promoted apoptosis. Tumor inhibition rates were 29.7% (1 mpk ENB101-LNP), 29.6% (3 mpk), 34.0% (cisplatin), 47.0% (1 mpk ENB101-LNP-cisplatin), and 68.8% (3 mpk ENB101-LNP-cisplatin). RT-PCR confirmed up to 80% knockdown of HPV16 E6/E7 in the ENB101-LNP groups. Immunohistochemistry revealed increased p53, p21, and HLA-A expression with ENB101-LNP treatments, alone or combined. CONCLUSION: The combination of ENB101-LNP, which inhibits E6/E7 of HPV 16, with cisplatin, demonstrated significant anticancer activity in the xenograft mouse model of cervical cancer.


Assuntos
Lipossomos , Nanopartículas , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteína Supressora de Tumor p53/genética , Camundongos Nus , Xenoenxertos , Linhagem Celular Tumoral , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , RNA Mensageiro/genética
3.
BMC Genomics ; 25(1): 183, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365611

RESUMO

BACKGROUND: Ovarian cancer (OC) has the worst prognosis among gynecological malignancies, most of which are found to be in advanced stage. Cell reduction surgery based on platinum-based chemotherapy is the current standard of treatment for OC, but patients are prone to relapse and develop drug resistance. The objective of this study was to identify a specific molecular target responsible for platinum chemotherapy resistance in OC. RESULTS: We screened the protein-coding gene Caldesmon (CALD1), expressed in cisplatin-resistant OC cells in vitro. The prognostic value of CALD1 was evaluated using survival curve analysis in OC patients treated with platinum therapy. The diagnostic value of CALD1 was verified by drawing a Receiver Operating Characteristic (ROC) curve using clinical samples from OC patients. This study analyzed data from various databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA), The Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), GEPIA 2, UALCAN, Kaplan-Meier (KM) plotter, LinkedOmics database, and String. Different expression genes (DEGs) between cisplatin-sensitive and cisplatin-resistant cells were acquired respectively from 5 different datasets of GEO. CALD1 was selected as a common gene from 5 groups DEGs. Online data analysis of HPA and CCLE showed that CALD1 was highly expressed in both normal ovarian tissue and OC. In TCGA database, high expression of CALD1 was associated with disease stage and venous invasion in OC. Patients with high CALD1 expression levels had a worse prognosis under platinum drug intervention, according to Kaplan-Meier (KM) plotter analysis. Analysis of clinical sample data from GEO showed that CALD1 had superior diagnostic value in distinguishing patients with platinum "resistant" and platinum "sensitive" (AUC = 0.816), as well as patients with worse progression-free survival (AUC = 0.741), and those with primary and omental metastases (AUC = 0.811) in ovarian tumor. At last, CYR61 was identified as a potential predictive molecule that may play an important role alongside CALD1 in the development of platinum resistance in OC. CONCLUSIONS: CALD1, as a member of cytoskeletal protein, was associated with poor prognosis of platinum resistance in OC, and could be used as a target protein for mechanism study of platinum resistance in OC.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Platina/farmacologia , Platina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação para Cima , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/uso terapêutico , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico
4.
BMC Cancer ; 24(1): 233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373988

RESUMO

Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Apoptose , Resistencia a Medicamentos Antineoplásicos/genética
5.
Radiol Oncol ; 58(1): 51-66, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378034

RESUMO

BACKGROUND: Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 µs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT. MATERIALS AND METHODS: We performed in vitro experiments, exposing Chinese hamster ovary (CHO) cells to conventional ECT pulses, high-frequency bipolar pulses, and millisecond pulses in the presence of different concentrations of cisplatin. We determined cisplatin uptake by inductively coupled plasma mass spectrometry and cisplatin cytotoxicity by the clonogenic assay. RESULTS: We observed that the three tested types of pulses potentiate the uptake and cytotoxicity of cisplatin in an equivalent manner, provided that the electric field is properly adjusted for each pulse type. Furthermore, we quantified that the number of cisplatin molecules, resulting in the eradication of most cells, was 2-7 × 107 per cell. CONCLUSIONS: High-frequency bipolar pulses and millisecond pulses can potentially be used in ECT to reduce pain and muscle contraction and increase the effect of the immune response in combination with gene electrotransfer, respectively.


Assuntos
Cisplatino , Eletroquimioterapia , Humanos , Animais , Cricetinae , Cisplatino/farmacologia , Eletroquimioterapia/métodos , Células CHO , Cricetulus
6.
Sci Rep ; 14(1): 3870, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365849

RESUMO

Hypoxia-mediated chemoresistance plays a crucial role in the development of ovarian cancer (OC). However, the roles of hypoxia-related genes (HRGs) in chemoresistance and prognosis prediction and theirs underlying mechanisms remain to be further elucidated. We intended to identify and validate classifiers of hub HRGs for chemoresistance, diagnosis, prognosis as well as immune microenvironment of OC, and to explore the function of the most crucial HRG in the development of the malignant phenotypes. The RNA expression and clinical data of HRGs were systematically evaluated in OC training group. Univariate and multivariate Cox regression analysis were applied to construct hub HRGs classifiers for prognosis and diagnosis assessment. The relationship between classifiers and chemotherapy response and underlying pathways were detected by GSEA, CellMiner and CIBERSORT algorithm, respectively. OC cells were cultured under hypoxia or transfected with HIF-1α or HIF-2α plasmids, and the transcription levels of TGFBI were assessed by quantitative PCR. TGFBI was knocked down by siRNAs in OC cells, CCK8 and in vitro migration and invasion assays were performed to examine the changes in cell proliferation, motility and metastasis. The difference in TGFBI expression was examined between cisplatin-sensitive and -resistant cells, and the effects of TGFBI interference on cell apoptosis, DNA repair and key signaling molecules of cisplatin-resistant OC cells were explored. A total of 179 candidate HRGs were extracted and enrolled into univariate and multivariate Cox regression analysis. Six hub genes (TGFBI, CDKN1B, AKAP12, GPC1, TGM2 and ANGPTL4) were selected to create a HRGs prognosis classifier and four genes (TGFBI, AKAP12, GPC1 and TGM2) were selected to construct diagnosis classifiers. The HRGs prognosis classifier could precisely distinguish OC patients into high-risk and low-risk groups and estimate their clinical outcomes. Furthermore, the high-risk group had higher percentage of Macrophages M2 and exhibited higher expression of immunecheckpoints such as PD-L2. Additionally, the diagnosis classifiers could accurately distinguish OC from normal samples. TGFBI was further verified as a specific key target and demonstrated that its high expression was closely correlated with poor prognosis and chemoresistance of OC. Hypoxia upregulated the expression level of TGFBI. The hypoxia-induced factor HIF-2α but not HIF-1α could directly bind to the promoter region of TGFBI, and facilitate its transcription level. TGFBI was upregulated in cisplatin-sensitive and resistant ovarian cancer cells in a cisplatin time-dependent manner. TGFBI interference downregulated DNA repair-related markers (p-p95/NBS1, RAD51, p-DNA-PKcs, DNA Ligase IV and Artemis), apoptosis-related marker (BCL2) and PI3K/Akt pathway-related markers (PI3K-p110 and p-Akt) in cisplatin-resistant OC cells. In summary, the HRGs prognosis risk classifier could be served as a predictor for OC prognosis and efficacy evaluation. TGFBI, upregulated by HIF-2α as an HRG, promoted OC chemoresistance through activating PI3K/Akt pathway to reduce apoptosis and enhance DNA damage repair pathway.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Reparo do DNA , Hipóxia , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Microambiente Tumoral
7.
Immun Inflamm Dis ; 12(2): e1172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358044

RESUMO

INTRODUCTION: Nuclear receptor subfamily five group A member two (NR5A2) plays a key role in the development of many tumor types, while it is uncertain in cutaneous squamous cell carcinoma (cSCC). The aim of this work was to determine the role of NR5A2 in cSCC proliferation, and to determine whether NR5A2 mediates the effect of cisplatin in cSCC. METHODS: We performed a systematic study of existing data and conducted a preliminary bioinformatics analysis of NR5A2 expression in cSCC using bioinformatics databases. Immunohistochemical staining was performed on cSCC tissues of seven patients to study NR5A2 expression. NR5A2 expression was examined in human keratin-forming cells (HaCaT) and human cSCC cells (A431, Colo-16, SCL-1, SCL-2, and HSC-5). Stable A431 and SCL-2 cell lines consisting of sh-RNA-NR5A2 were constructed to detect changes in cell proliferation, cell cycle, apoptosis, and to determine the key proteins in the Wnt/ß-catenin pathway. We also investigated changes in the effects of cisplatin on cSCC cells by CCK-8, clone formation assay, and Flow apoptosis assay after NR5A2 knockdown. RESULTS: NR5A2 showed enhanced expression in cSCC tissues than in healthy tissues. Downregulation of NR5A2 in cSCC cells led to the formation of a less malignant phenotype. In contrast, the proliferative capacity of the cSCC cells was enhanced posttreatment with RJW100, an NR5A2 agonist. Additionally, NR5A2 knockdown led to a decrease in the expression level of the proteins in the Wnt/ß-catenin pathway, and this inhibition was reversed by LiCl and recombinant antibody, Wnt3a. Moreover, NR5A2 knockdown resulted in diminished proliferative capacity and increased apoptotic cells after the addition of cisplatin. CONCLUSION: NR5A2 plays a crucial role in the progression of cSCC, and the Wnt/ß-catenin signaling pathway may be involved in the regulation of NR5A2-mediated cSCC. Knockdown of NR5A2 enhanced both the proliferation inhibiting and apoptosis promoting effects of cisplatin on cSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , beta Catenina/genética , beta Catenina/metabolismo , Cisplatino/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Receptores Citoplasmáticos e Nucleares
8.
Mol Biol Rep ; 51(1): 286, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329638

RESUMO

BACKGROUND: Cellular resistance to cisplatin has been one of the major obstacles in the success of combination therapy for many types of cancers. Emerging evidences suggest that exosomes released by drug resistant tumour cells play significant role in conferring resistance to drug sensitive cells by means of horizontal transfer of genetic materials such as miRNAs. Though exosomal miRNAs have been reported to confer drug resistance, the exact underlying mechanisms are still unclear. METHODS AND RESULTS: In the present study, mature miRNAs secreted differentially by cisplatin resistant and cisplatin sensitive HepG2 cells were profiled and the effect of most significantly lowered miRNA in conferring cisplatin resistance when horizontally transferred, was analysed. we report miR-383 to be present at the lowest levels among the differentially abundant miRNAs expressed in exosomes secreted by cisplatin resistant cells compared to that that of cisplatin sensitive cells. We therefore, checked the effect of ectopic expression of miR-383 in altering cisplatin sensitivity of Hela cells. Drug sensitivity assay and apoptotic assays revealed that miR-383 could sensitise cells to cisplatin by targeting VEGF and its downstream Akt mediated pathway. CONCLUSION: Results presented here provide evidence for the important role of miR-383 in regulating cisplatin sensitivity by modulating VEGF signalling loop upon horizontal transfer across different cell types.


Assuntos
Cisplatino , MicroRNAs , Humanos , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Células HeLa , Fator A de Crescimento do Endotélio Vascular/genética , MicroRNAs/genética
9.
Cancer Rep (Hoboken) ; 7(2): e1970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351531

RESUMO

BACKGROUND: Lung cancer is a major cause of cancer-related mortality worldwide, with a 5-year survival rate of approximately 22%. Cisplatin is one of the standard first-line chemotherapeutic agents for non-small cell lung cancer (NSCLC), but its efficacy is often limited by the development of resistance. Despite extensive research on the molecular mechanisms of chemoresistance, the underlying causes remain elusive and complex. AIMS: We analyzed three microarray datasets to find the gene signature and key pathways related to cisplatin resistance in NSCLC. METHODS AND RESULTS: We compared the gene expression of sensitive and resistant NSCLC cell lines treated with cisplatin. We found 274 DEGs, including 111 upregulated and 163 downregulated genes, in the resistant group. Gene set enrichment analysis showed the potential roles of several DEGs, such as TUBB2B, MAPK7, TUBAL3, MAP2K5, SMUG1, NTHL1, PARP3, NTRK1, G6PD, PDK1, HEY1, YTHDF2, CD274, and MAGEA1, in cisplatin resistance. Functional analysis revealed the involvement of pathways, such as gap junction, base excision repair, central carbon metabolism, and Notch signaling in the resistant cell lines. CONCLUSION: We identified several molecular factors that contribute to cisplatin resistance in NSCLC cell lines, involving genes and pathways that regulate gap junction communication, DNA damage repair, ROS balance, EMT induction, and stemness maintenance. These genes and pathways could be targets for future studies to overcome cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/genética
10.
BMC Cancer ; 24(1): 187, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331776

RESUMO

BACKGROUND: Endostar, an anti-angiogenic drug, has been approved for treating non-small cell lung cancer (NSCLC). At present, endostar combined with radiotherapy or chemotherapy has achieved ideal results in the treatment of some tumors, but there is a lack of application and study in NSCLC. This study investigated the therapeutic effect and potential mechanism of endostar combined with cisplatin (EC) in NSCLC. METHODS: HE staining, TUNEL staining, immunofluorescence, colony formation ability, and cell migration ability were used to evaluate the anti-tumor activity of EC. The expressions of FMOD, VEGF, FGF-2, and PDGF-B were detected by western blotting and qPCR. The target of combination therapy was analyzed by m6A sequencing and RNA sequencing. METTL3 knockdown and overexpressed A549 cells were constructed and co-cultured with HUVECs to further evaluate the effect of METLL3 on combination therapy. RESULTS: Combination therapy significantly reduced the colony formation and migration ability of NSCLC cells, induced cell apoptosis, and inhibited the tube formation ability of HUVECs. The results of m6A sequencing and RNA sequencing showed that the EC could down-regulate the expression level of FMOD in tumor tissues, which might be related to the reduction of its m6A methylation modification regulatory enzyme METTL3. Restricting FMOD expression could reduce the expression of FGF2, TGF-ß1, VEGF and PDGF-B. Moreover, overexpression of METTLE almost abolished the anti-tumor effect of EC and promoted angiogenesis. CONCLUSIONS: Endostar combined with cisplatin might exert anti-tumor effects by down-regulating the expression of METTL3 and FMOD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Proteínas Recombinantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Multiômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Metiltransferases/genética
11.
Radiat Res ; 201(2): 174-187, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329819

RESUMO

Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carboplatina , Butionina Sulfoximina/farmacologia , Butionina Sulfoximina/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
12.
Anal Methods ; 16(4): 503-514, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38167666

RESUMO

The studies of drug-induced apoptosis play a vital role in the identification of potential drugs that could treat diseases such as cancer. Alterations in the native morphology of cancer cells following treatment with anticancer drugs serve as one of the indicators that reveal drug efficacy. Various techniques such as optical microscopy, electron microscopy (EM), and atomic force microscopy (AFM) have been used to map the three dimensional (3D) morphological changes in cells induced with drugs. However, caution should be exercised when interpreting morphological data from techniques that might alter the native morphology of cells, caused by phototoxicity, electron beam invasiveness, intrusive sample preparation, and cell membrane deformation. Herein, we have used scanning ion conductance microscopy (SICM) to study the 3D morphology and roughness of A549 adenocarcinoma cells under physiological conditions before and after cisplatin induced apoptosis, where we observed an increase in height, overall shrinkage of the cells, and irregular features form on the cell membrane. Tracking the morphology of the same single A549 cells exposed to cisplatin unveiled heterogeneity in response to the drug, formation of membrane blebs, and an increase in membrane roughness. We have also demonstrated the use of SICM for studying the effect of cisplatin on the dynamic changes in the volume of A549 cells over days. SICM is demonstrated as a technique for studying the effect of drug induced apoptosis in the same cells over time, and for multiple different single cells.


Assuntos
Adenocarcinoma , Antineoplásicos , Humanos , Cisplatino/farmacologia , Microscopia de Força Atômica/métodos , Adenocarcinoma/tratamento farmacológico , Apoptose , Antineoplásicos/farmacologia
13.
Hepatol Commun ; 8(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285887

RESUMO

BACKGROUND: As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS: Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS: We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS: The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cisplatino/farmacologia , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/antagonistas & inibidores
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 17-24, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293972

RESUMO

OBJECTIVE: To investigate the effect of overexpression of LncRNA MEG3 on proliferation, migration and cisplatin sensitivity of hepatoma cells HepG2 and LM3 and explore the underlying and mechanism. METHODS: The expression of MEG3 in healthy individuals and patients with hepatocellular carcinoma (HCC) was analyzed by online bioinformatics analysis, and Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect MEG3 expression in different HCC cell lines. A MEG3-overexpresing plasmid was transfected in HepG2 and LM3 cells, and the changes in cell proliferation and migration were examined using CCK8 assay and scratch assay. CCK8 assay was used to determine the inhibitory rate of cisplatin on the transfected cells. A reactive oxygen species (ROS) fluorescence probe (DCFH-DA) and malondialdehyde (MDA) kit were used to assess the changes in ROS production and MDA level in the cells. Western blotting was performed to detect the expression levels of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1). RESULTS: The expression of MEG3 was significantly lower in HCC cells than in LO2 cells, which was consistent with the results of bioinformatic analysis (P < 0.05). Overexpression of MEG3 in the HCC cell lines significantly suppressed cell proliferation and migration (P < 0.05), increased the cell inhibition rate of cisplatin (P < 0.05), enhanced cellular ROS production and increased MDA levels in the cells (P < 0.05). MEG3 overexpression significantly decreased the expressions of GPX4 and FTH1 in the HCC cell lines. CONCLUSION: The expression of MEG3 is decreased in HCC cells, and its overexpression inhibits proliferation and migration and enhances cisplatin sensitivity of HCC cells by promoting ferroptosis of the cells.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Cisplatino/farmacologia , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Proliferação de Células/genética
15.
Free Radic Biol Med ; 213: 488-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278308

RESUMO

Cisplatin (cis-Dichlorodiamineplatinum[II], CDDP) is generally accepted as a platinum-based alkylating agent type of the DNA-damaging anticancer drug, which is widely administrated in clinical treatment of many solid tumors. The pharmacological effect of CDDP is mainly achieved by replacing the chloride ion (Cl-) in its structure with H2O to form active substances with the strong electrophilic properties and then react with any nucleophilic molecules, primarily leading to genomic DNA damage and subsequent cell death. In this process, those target genes driven by the consensus electrophilic and/or antioxidant response elements (EpREs/AREs) in their promoter regions are also activated or repressed by CDDP. Thereby, we here examined the expression profiling of such genes regulated by two principal antioxidant transcription factors Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) in diverse cellular signaling responses to this intervention. The results demonstrated distinct cellular metabolisms, molecular pathways and signaling response mechanisms by which Nrf1 and Nrf2 as the drug targets differentially contribute to the anticancer efficacy of CDDP on hepatoma cells and xenograft tumor mice. Interestingly, the role of Nrf1, rather than Nrf2, is required for the anticancer effect of CDDP, to suppress malignant behavior of HepG2 cells by differentially monitoring multi-hierarchical signaling to gene regulatory networks. To our surprise, it was found there exists a closer relationship of Nrf1α than Nrf2 with DNA repair, but the hyperactive Nrf2 in Nrf1α-∕- cells manifests a strong correlation with its resistance to CDDP, albeit their mechanistic details remain elusive.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
16.
Head Neck ; 46(3): 636-650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164660

RESUMO

BACKGROUND: Cisplatin (CDDP) plays a central role in chemotherapy for head and neck squamous cell carcinoma (HNSCC), but drug resistance in HNSCC chemotherapy remains a problem, and the mechanism of CDDP resistance is unclear. We investigated CDDP-resistance mechanisms mediated by extracellular vesicles (EVs) and ATPase copper transporting beta (ATP7B) in HNSCC. METHODS: We established CDDP-resistant sublines of HNSCC cells and verified their ATP7B expression. We used an EV secretion inhibitor (GW4869) and ATP7B short hairpin (sh)RNA transfection to examine the correlation between EV secretion and ATP7B expression. RESULTS: The CDDP-resistant HNSCC sublines showed decreased CDDP sensitivity and increased ATP7B expression. GW4869 suppressed ATP7B expression, and ATP7B shRNA transfection suppressed EV secretion. The suppressions of EV secretion and ATP7B expression both enhanced CDDP's cell-killing effect. CONCLUSIONS: EVs were involved in the ATP7B-mediated mechanism underlying CDDP resistance. Further clarification of the EV-induced CDDP-resistance mechanism may lead to novel therapeutic strategies for HNSCC.


Assuntos
Compostos de Anilina , Antineoplásicos , Compostos de Benzilideno , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Transporte de Cobre , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Cobre/metabolismo , Cobre/farmacologia
17.
Dig Dis Sci ; 69(2): 491-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170337

RESUMO

BACKGROUND AND AIM: Previous reports have suggested IFI16 as a tumor suppressor in hepatocellular carcinoma (HC). Nonetheless, the biological significance of IFI16 and its mechanism concerning resistance to cisplatin (DDP) in HC requires further exploration. METHODS: Samples of tumor and corresponding para-carcinoma tissues were acquired from patients with HC. Furthermore, DDP-resistant cell lines of HC, specifically HCC, Huh7 and Hepatoblastoma, HepG3, were generated by gradually increasing the concentration of DDP. Cell apoptosis and DNA damage were evaluated by utilizing flow cytometry assay and TUNEL staining. The interaction between IFI16 and interferon regulatory factor 3 (IRF3) proteins were analyzed using Co-Immunoprecipitation (Co-IP) assay. In vivo assays were conducted by establishing HC subcutaneous xenograft tumor models. RESULTS: The study found a reduction in IFI16 expression in both HC tissues and DDP-resistant HC cell lines. The binding of IFI16 to IRF3 regulated DNA damage-associated markers in vitro. Overexpression of IFI16 heightened the susceptibility of DDP-induced apoptosis and DNA damage, which was counteracted by IRF3 knockdown, while strengthened by IRF3 overexpression. Moreover, overexpression of IFI16 diminished in vivo DDP-resistant HC tumorigenicity. CONCLUSION: In summary, our findings suggest that IFI16 serves as a tumor suppressor in HC by promoting DNA damage via its interaction with IRF3, thereby reversing DDP resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Interferon gama , Fator Regulador 3 de Interferon/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células
18.
Neoplasia ; 48: 100960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184887

RESUMO

BACKGROUND: Cisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms. METHODS: Lactate levels were measured by lactate detection kit. Cisplatin-resistance NSCLC cells were established using progressive concentration of cisplatin. Cell viability, proliferation, and apoptosis were detected by CCK-8, EdU, and flow cytometry, respectively. Cell proliferation in vivo was determined by immunohistochemistry of Ki67 and apoptotic cells were calculated by the TUNEL. MeRIP-PCR was used to measure FOXO3 m6A levels. The interactions of genes were analyzed via RIP, ChIP, Dual-luciferase reporter, and RNA pull-down, respectively. RESULTS: Elevated lactate levels were observed in both NSCLC patients and cisplatin-resistance cells. Lactate treatment increased cisplatin-resistance cell viability in vitro and promoted tumor growth in vivo. Mechanistically, lactate downregulated FOXO3 by YTHDF2-mediated m6A modification. FOXO3 transcriptionally reduced MAGI1-IT1 expression. FOXO3 overexpression inhibited the lactate-induced promotion of cisplatin resistance in NSCLC, which were reversed by MAGI1-IT1 overexpression. MAGI1-IT1 and IL6R competitively bound miR-664b-3p. FOXO3 overexpression or MAGI1-IT1 knockdown repressed lactate-mediated cisplatin resistance in vivo. CONCLUSION: Lactate promoted NSCLC cisplatin resistance through regulating FOXO3/MAGI1-IT1/miR-664b-3p/IL6R axis in YTHDF2-mediated m6A modification.


Assuntos
Adenina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O3 , Neoplasias Pulmonares , MicroRNAs , Humanos , Ácido Láctico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fatores de Transcrição , Proliferação de Células , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Moléculas de Adesão Celular , Proteínas Adaptadoras de Transdução de Sinal , Guanilato Quinases
19.
BMC Cancer ; 24(1): 77, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225605

RESUMO

BACKGROUND: KRAS is the undisputed champion of oncogenes, and despite its prominent role in oncogenesis as mutated gene, KRAS mutation appears infrequent in gliomas. Nevertheless, gliomas are considered KRAS-driven cancers due to its essential role in mouse malignant gliomagenesis. Glioblastoma is the most lethal primary brain tumor, often associated with disturbed RAS signaling. For newly diagnosed GBM, the current standard therapy is alkylating agent chemotherapy combined with radiotherapy. Cisplatin is one of the most effective anticancer drugs and is used as a first-line treatment for a wide spectrum of solid tumors (including medulloblastoma and neuroblastoma) and many studies are currently focused on new delivery modalities of effective cisplatin in glioblastoma. Its mechanism of action is mainly based on DNA damage, inducing the formation of DNA adducts, triggering a series of signal-transduction pathways, leading to cell-cycle arrest, DNA repair and apoptosis. METHODS: Long-term cultures of human glioblastoma, U87MG and U251MG, were either treated with cis-diamminedichloroplatinum (cisplatin, CDDP) and/or MEK-inhibitor PD98059. Cytotoxic responses were assessed by cell viability (MTT), protein expression (Western Blot), cell cycle (PI staining) and apoptosis (TUNEL) assays. Further, gain-of-function experiments were performed with cells over-expressing mutated hypervariable region (HVR) KRASG12V plasmids. RESULTS: Here, we studied platinum-based chemosensitivity of long-term cultures of human glioblastoma from the perspective of KRAS expression, by using CDDP and MEK-inhibitor. Endogenous high KRAS expression was assessed at transcriptional (qPCR) and translational levels (WB) in a panel of primary and long-term glioblastoma cultures. Firstly, we measured immediate cellular adjustment through direct regulation of protein concentration of K-Ras4B in response to cisplatin treatment. We found increased endogenous protein abundance and involvement of the effector pathway RAF/MEK/ERK mitogen-activated protein kinase (MAPK) cascade. Moreover, as many MEK inhibitors are currently being clinically evaluated for the treatment of high-grade glioma, so we concomitantly tested the effect of the potent and selective non-ATP-competitive MEK1/2 inhibitor (PD98059) on cisplatin-induced chemosensitivity in these cells. Cell-cycle phase distribution was examined using flow cytometry showing a significant cell-cycle arrest in both cultures at different percentage, which is modulated by MEK inhibition. Cisplatin-induced cytotoxicity increased sub-G1 percentage and modulates G2/M checkpoint regulators cyclins D1 and A. Moreover, ectopic expression of a constitutively active KRASG12V rescued CDDP-induced apoptosis and different HVR point mutations (particularly Ala 185) reverted this phenotype. CONCLUSION: These findings warrant further studies of clinical applications of MEK1/2 inhibitors and KRAS as 'actionable target' of cisplatin-based chemotherapy for glioblastoma.


Assuntos
Antineoplásicos , Glioblastoma , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Platina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
20.
Aging (Albany NY) ; 16(2): 1336-1351, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38231481

RESUMO

The gut microbiota is closely associated with tumor progression and treatment in a variety of cancers. However, the alteration of the gut microbiota during the progression and chemotherapy of osteosarcoma remains poorly understood. This study aimed to explore the relationship between dysbiosis in the gut microbiota during osteosarcoma growth and chemotherapy treatment. We used BALB/c nude mice to establish osteosarcoma xenograft tumor models and administered cisplatin (CDDP) or doxorubicin (DOX) intraperitonially once every 2 days for a total of 5 times to establish effective chemotherapy models. Fecal samples were collected and processed for 16S rRNA sequencing to analyze the composition of the gut microbiota. We observed that the abundances of Colidextribacter, Lachnospiraceae_NK4A136_group, Lachnospiraceae_UCG-010, Lachnospiraceae_UCG-006, and Lachnoclostridium decreased, and the abundances of Alloprevotella and Enterorhabdus increased in the osteosarcoma mouse model group compared to those in the control group. In addition, genera, such as Lachnoclostridium and Faecalibacterium were more abundant in chemotherapy-treated mice than those in saline-treated mice. Additionally, we observed that alterations in some genera, including Lachnoclostridium and Colidextribacter in the osteosarcoma animal model group returned to normal after CDDP or DOX treatment. Furthermore, the function of the gut microbiota was inferred through PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), which indicated that metabolism-related microbiota was highly enriched and significantly different in each group. These results indicate correlations between dysbiosis of the gut microbiota and osteosarcoma growth and chemotherapy treatment with CDDP or DOX and may provide novel avenues for the development of potential adjuvant therapies.


Assuntos
Neoplasias Ósseas , Microbioma Gastrointestinal , Osteossarcoma , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Microbioma Gastrointestinal/genética , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Camundongos Nus , Filogenia , Doxorrubicina/uso terapêutico , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...