Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161.286
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502130

RESUMO

Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium/fisiologia , COVID-19/terapia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/química , Citocinas/metabolismo , Humanos , Sistema Imunitário , Óperon/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/isolamento & purificação
2.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502454

RESUMO

COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.


Assuntos
Biomarcadores/sangue , Carbono/metabolismo , Fígado/metabolismo , Metaboloma , Nitrogênio/metabolismo , Aminoácidos/metabolismo , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Citocinas/sangue , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas/genética , Metabolômica/métodos , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
3.
Artigo em Chinês | MEDLINE | ID: mdl-34488261

RESUMO

Objective: To explore the role of nuclear factor-κB (NF-κB) p65 and related cytokines in rats with liver function injury induced by dibutyl phthalate (DBP) and benzo (a) pyrene (BaP) , in order to provide support for enriching the mechanism of liver injury induced by DBP and BaP. Methods: In September to December of 2019, a total number of 160 specific pathogen free Sprague Dawley rats were numbered in order of sex and body weight, then using the statistical table of random numbers, they were randomly divided into eight groups and each group consists of twenty animals (10 male and 10 female rats) , including blank control group, vehicle control group (given corn oil) , DBP 50 mg/kg (DBP(50)) group, DBP 250 mg/kg (DBP(250)) group, BaP 1 mg/kg (BaP(1)) group, BaP 5 mg/kg (BaP(5)) group, DBP 50 mg/kg plus BaP 1 mg/kg (DBP(50)+BaP(1)) group and DBP 250 mg/kg plus BaP 5 mg/kg (DBP(250)+BaP(5)) group, then DBP and BaP were administered to rats as a homogenous mixture in corn oil by gavage. After exposure for 90 days, liver was separated to test the mRNA and protein expression levels of NF-κB p65 by Real-time fluorescence quantitative polymerase chain reaction and Western blotting. Then serum of rats was collected to detect the levels of CXCL-13, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) by Enzyme-Linked Immunosorbent Assay, and the levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , albumin (ALB) and total protein (TP) were detected by Reitman-Frankel assay. Results: The protein expression of NF-κB p65 in BaP(1) group was not statistically significant, but the mRNA and protein expression levels of NF-κB p65 in the liver tissues of rats in other exposure group were higher than those in the blank control group (P<0.05) , and the expression levels of NF-κB p65 increased more obvious in the DBP and BaP co-exposed groups than those in the low and high dose groups that single-exposed to DBP and BaP (P<0.05) . The serum levels of CXCL-13 and IL-6 of rats in other group were obviously higher than those of the blank control group except for the BaP(1) group, and the increase was more obvious in the high-dose group that co-exposed to DBP and BaP (P<0.05) . While the level of TNF-α in each exposure group was higher than those in the blank control group and the levels of TNF-α in the DBP and BaP co-exposed groups were strongly augmented compared to those in the low and high dose groups that single-exposed to DBP and BaP (P<0.05) . What's more, compared with the blank control group, the level of ALT in each exposure group was increased significantly. Except for the BaP(1) group, the levels of AST in other exposed groups were increased (P<0.05) , and the levels of ALT and AST in the DBP and BaP co-exposed groups were significantly elevated in comparison to the low and high dose groups that single-exposed to DBP and BaP (P<0.05) . On the contrary, the level of ALB in each exposure group was significantly lower than that in the blank control group, especially decreased significantly in the DBP and BaP co-exposed group (P<0.05) . The level of TP decreased only in the high-dose group that single and co-exposed to DBP and BaP, and the decrease was more significant in the DBP and BaP co-exposed group (P<0.05) . When DBP exposed alone, Pearson correlation analysis showed that NF-κB p65 protein expression level was positively correlated with IL-6, TNF-α and ALT (r=0.762, 0.951, and 0.924, P<0.05) . After BaP exposed alone, the NF-κB p65 protein expression level was positively correlated with TNF-α and ALT (r=0.911 and 0.910, P<0.05) . When DBP and BaP exposed together, NF-κB p65 protein expression level was positively correlated with CXCL-13, IL-6, TNF-α, ALT and AST (r=0.711, 0.764, 0.955, 0.903 and 0.827, P<0.05) . In addition, Pearson correlation analysis showed a positive correlation between TNF-α and ALT (r=0.833 and 0.894, P<0.05) when DBP or BaP exposed alone. Furthermore, when DBP and BaP exposed together, CXCL-13, IL-6 and TNF-α were positively correlated with ALT (r= 0.871, 0.925 and 0.942, P<0.05) , and also positively correlated with AST (r=0.910, 0.892 and 0.890, P<0.05) . Conclusion: Single and co-exposed to DBP and BaP may regulate the abnormal secretion of related cytokines by upregulating the expression level of NF-κB p65 in rat liver tissue, thus leading to hepatocyte injury in rats, and the damage effect may be enhanced when DBP and BaP are exposed together.


Assuntos
Dibutilftalato , NF-kappa B , Animais , Benzo(a)pireno/toxicidade , Citocinas , Dibutilftalato/toxicidade , Feminino , Fígado , Masculino , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502105

RESUMO

The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer's disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host's adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible.


Assuntos
Encéfalo/patologia , Viroses do Sistema Nervoso Central/imunologia , Regulação da Expressão Gênica/imunologia , MicroRNAs/metabolismo , Doenças Priônicas/imunologia , Apoptose/genética , Apoptose/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/virologia , Viroses do Sistema Nervoso Central/diagnóstico , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Fator H do Complemento/metabolismo , Citocinas/metabolismo , Humanos , MicroRNAs/análise , MicroRNAs/genética , NF-kappa B/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo
6.
Nihon Yakurigaku Zasshi ; 156(5): 288-291, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34470933

RESUMO

Interleukin-19 (IL-19) is a member of the IL-10 family and is an anti-inflammatory cytokine produced mainly by macrophages, epithelial cells, and vascular smooth muscle cells. In addition, receptors for IL-19, IL-20 receptor 1 and IL-20 receptor 2, are also expressed in the cells mentioned above. The last 10 years from the finding of IL-19, investigations underline the anti-inflammatory role of IL-19 in the human diseases such as psoriasis, asthma, arteriosclerosis, and inflammatory bowel disease. If it is a pro-inflammatory cytokine, therapeutic applications may include the use of neutralizing antibodies, however, because IL-19 exhibits anti-inflammatory effects, recombinant products may be useful in therapeutic applications. However, the therapeutic applications of IL-19 for human disease have not yet been developed. In this review, we present the new findings on the preventive and therapeutic effects of IL-19 on various mouse disease models. Increasing knowledge about mouse disease models will increase the feasibility of future human disease applications.


Assuntos
Doenças Inflamatórias Intestinais , Psoríase , Animais , Anti-Inflamatórios/farmacologia , Citocinas , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucinas , Camundongos
7.
Chin J Physiol ; 64(4): 194-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34472450

RESUMO

Chronic kidney disease is one of the major global health problems. Chronic renal failure is stimulated by many cytokines and chemokines. Adropin and spexin (SPX) are peptides hormones. These peptides could affect inflammatory conditions, but this is unclear. Due to the limited information, we planned to investigate the impact of adropin and SPX hormones on systemic inflammation in adenine induced chronic kidney failure rat model. Chronic kidney failure was induced by administering adenine hemisulfate. Renal functions were measured by an autoanalyzer. Granulocyte colony-stimulating factor (G-CSF), interferon-gamma (IFN-γ), interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17A, tumor necrosis factor-alpha, Eotaxin, growth-regulated oncogene-alpha, IP-10, monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1α, MIP-2, and RANTES levels were determined by Luminex. We observed an increase in 24-h urine volume and serum creatinine. Blood urea nitrogen (BUN) and urine protein levels were also significantly higher in the chronic kidney failure (CKF) group. Urine protein and 24-h urine volume were reduced with adropin and SPX treatments. Furthermore, G-CSF, IFN-γ, IL-4, IL-5, IL-10, IL-12, IL-17A, and GRO-α significantly increased by CKF induction; however, these cytokines and chemokines significantly decreased by adropin treatment in the CKF group. Furthermore, adropin increased IP-10, MCP-1, MIP-1α, and MIP-2 levels. In addition, SPX treatment had a more limited effect, decreasing only G-CSF, IFN-γ, and IL-5 levels. The combined adropin + SPX treatment significantly reduced G-CSF, IFN-γ, IL-4, IL-5, IL-12, and IL-17A. Furthermore, IP-10, MCP-1, MCP-3, and MIP-2 were significantly increased by these combined treatments. Our findings indicate that renal functions and inflammatory response were modulated by adropin and SPX peptides. These peptides may have protective effects on systemic inflammation and renal failure progression.


Assuntos
Adenina , Falência Renal Crônica , Adenina/toxicidade , Animais , Citocinas , Hormônios , Inflamação , Ratos
8.
Croat Med J ; 62(4): 338-346, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34472736

RESUMO

AIM: To compare the effect of adjunctive lidocaine-based scalp block and laryngotracheal local anesthesia vs general anesthesia only on pro-inflammatory cytokine concentrations in patients with non-ruptured brain aneurysms undergoing elective open surgery. METHODS: This parallel, randomized, controlled, open-label trial was conducted at Clinical Hospital Center Zagreb between March 2019 and March 2020. At the beginning of anesthesia, lidocaine group received 40 mg of 2% lidocaine for laryngotracheal topical anesthesia and 4 mg/kg for the scalp block. Control group underwent general anesthesia only. Plasma concentrations of IL-6, TNF-α, and IL-1ß were measured before anesthesia (S0); at the incision (S1); at the end of surgery (S2); 24 hours postoperatively (S3). Cerebrospinal fluid (CSF) cytokine concentrations were measured at the incision (L1) and the end of surgery (L2). RESULTS: Forty patients (each group, 20) were randomized; 37 were left in the final analysis. IL-6 plasma concentrations increased significantly compared with baseline at S3 in lidocaine group, and at S2 and S3 in control group. In both groups, changes in TNF-α and IL-1ß were not significant. CSF cytokine concentrations in lidocaine group did not change significantly; in control group IL-6 and IL-1ß were significantly higher at L2 than at L1. CSF IL-6 in control group significantly increased at L2, but TNF-α and IL-1ß did not. No differences in clinical outcome and complication rates were observed. CONCLUSION: Adjunctive lidocaine-based scalp block and laryngotracheal local anesthesia might attenuate CSF IL-6 concentration increase in patients with brain aneurysm.


Assuntos
Aneurisma Intracraniano , Anestesia Geral , Anestesia Local , Anestésicos Locais , Citocinas , Humanos , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/cirurgia , Lidocaína , Couro Cabeludo
9.
J Agric Food Chem ; 69(36): 10506-10514, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478286

RESUMO

The present study investigated the effect of eugenol (EUG) on dextran sulfate sodium (DSS)-induced colitis and explored the underlying mechanisms. C57BL/6 mice were intragastrically administered normal saline or EUG (20 mg/kg body weight) for 17 days, and colitis was induced by using 3% DSS from day 7. The results showed that EUG increased the body weight and reduced the disease activity index score and colon pathological scores in DSS-treated mice (P < 0.05). Further, EUG preserved the proinflammatory cytokines (interleukin (IL)-6, -12, -21, and -23), lowered (P < 0.05) colonic malondialdehyde (MDA), uncoupling protein 2 (UCP2) expression and p65 phosphorylation, and activated (P < 0.05) colonic kelch-like ECH-associated protein 1 and nuclear factor (erythroid-derived 2)-like 2 expressions but did not affect the intestinal microbiota in DSS-treated mice. Furthermore, EUG ameliorated colitis in antibiotic-treated mice, while fecal microbiota transplantation from EUG preadministered mice failed to ameliorate colitis. In conclusion, EUG could alleviate colitis by attenuating colonic inflammation and oxidative stress independent of intestinal microbiota.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo , Citocinas/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Eugenol , Camundongos , Camundongos Endogâmicos C57BL
10.
11.
J Infect Dis ; 224(5): 777-782, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467988

RESUMO

We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.


Assuntos
COVID-19/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Interferons/imunologia , COVID-19/sangue , Quimiocinas/sangue , Citocinas/sangue , Humanos , Interferon Tipo I/sangue , Interferon Tipo I/genética , Interferon gama/sangue , Interferon gama/genética , Interferons/sangue , Leucócitos Mononucleares/imunologia , SARS-CoV-2/isolamento & purificação
12.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34479991

RESUMO

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Assuntos
Coronavirus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/virologia , Macrófagos/metabolismo , Animais , COVID-19/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais
13.
Front Immunol ; 12: 681516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489933

RESUMO

Coronavirus disease 2019 (COVID-19) broke out and then became a global epidemic at the end of 2019. With the increasing number of deaths, early identification of disease severity and interpretation of pathogenesis are very important. Aiming to identify biomarkers for disease severity and progression of COVID-19, 75 COVID-19 patients, 34 healthy controls and 23 patients with pandemic influenza A(H1N1) were recruited in this study. Using liquid chip technology, 48 cytokines and chemokines were examined, among which 33 were significantly elevated in COVID-19 patients compared with healthy controls. HGF and IL-1ß were strongly associated with APACHE II score in the first week after disease onset. IP-10, HGF and IL-10 were correlated positively with virus titers. Cytokines were significantly correlated with creatinine, troponin I, international normalized ratio and procalcitonin within two weeks after disease onset. Univariate analyses were carried out, and 6 cytokines including G-CSF, HGF, IL-10, IL-18, M-CSF and SCGF-ß were found to be associated with the severity of COVID-19. 11 kinds of cytokines could predict the severity of COVID-19, among which IP-10 and M-CSF were excellent predictors for disease severity. In conclusion, the levels of cytokines in COVID-19 were significantly correlated with the severity of the disease in the early stage, and serum cytokines could be used as warning indicators of the severity and progression of COVID-19. Early stratification of disease and intervention to reduce hypercytokinaemia may improve the prognosis of COVID-19 patients.


Assuntos
COVID-19/imunologia , Citocinas/genética , Citocinas/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Transcriptoma/imunologia , Adulto , Idoso , Biomarcadores/sangue , Quimiocinas/sangue , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/sangue , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Influenza Humana/sangue , Influenza Humana/imunologia , Masculino , Pessoa de Meia-Idade
14.
Front Immunol ; 12: 723585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489974

RESUMO

Objectives: Our objective was to determine the antibody and cytokine profiles in different COVID-19 patients. Methods: COVID-19 patients with different clinical classifications were enrolled in this study. The level of IgG antibodies, IgA, IgM, IgE, and IgG subclasses targeting N and S proteins were tested using ELISA. Neutralizing antibody titers were determined by using a toxin neutralization assay (TNA) with live SARS-CoV-2. The concentrations of 8 cytokines, including IL-2, IL-4, IL-6, IL-10, CCL2, CXCL10, IFN-γ, and TNF-α, were measured using the Protein Sample Ella-Simple ELISA system. The differences in antibodies and cytokines between severe and moderate patients were compared by t-tests or Mann-Whitney tests. Results: A total of 79 COVID-19 patients, including 49 moderate patients and 30 severe patients, were enrolled. Compared with those in moderate patients, neutralizing antibody and IgG-S antibody titers in severe patients were significantly higher. The concentration of IgG-N antibody was significantly higher than that of IgG-S antibody in COVID-19 patients. There was a significant difference in the distribution of IgG subclass antibodies between moderate patients and severe patients. The positive ratio of anti-S protein IgG3 is significantly more than anti-N protein IgG3, while the anti-S protein IgG4 positive rate is significantly less than the anti-N protein IgG4 positive rate. IL-2 was lower in COVID-19 patients than in healthy individuals, while IL-4, IL-6, CCL2, IFN-γ, and TNF-α were higher in COVID-19 patients than in healthy individuals. IL-6 was significantly higher in severe patients than in moderate patients. The antibody level of anti-S protein was positively correlated with the titer of neutralizing antibody, but there was no relationship between cytokines and neutralizing antibody. Conclusions: Our findings show the severe COVID-19 patients' antibody levels were stronger than those of moderate patients, and a cytokine storm is associated with COVID-19 severity. There was a difference in immunoglobulin type between anti-S protein antibodies and anti-N protein antibodies in COVID-19 patients. And clarified the value of the profile in critical prevention.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Citocinas/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , COVID-19/classificação , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Virulence ; 12(1): 2214-2227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34494942

RESUMO

An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.


Assuntos
Antivirais/farmacologia , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Basigina/metabolismo , Citocinas/metabolismo , Células Epiteliais , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Inflamação , Interferons/metabolismo , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
16.
Nanoscale ; 13(30): 13072-13084, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477791

RESUMO

Graphdiyne oxide (GDYO) is a carbon-based nanomaterial possessing sp2 and sp-hybridized carbon atoms with many promising applications. However, its biocompatibility and potential biodegradability remain poorly understood. Using human primary monocyte-derived macrophages as a model we show here that GDYO elicited little or no cytotoxicity toward classically activated (M1) and alternatively activated (M2) macrophages. Moreover, GDYO reprogrammed M2 macrophages towards M1 macrophages, as evidenced by the elevation of specific cell surface markers and cytokines and the induction of NOS2 expression. We could also show inducible nitric oxide synthase (iNOS)-dependent biodegradation of GDYO in M1 macrophages, and this was corroborated in an acellular system using the peroxynitrite donor, SIN-1. Furthermore, GDYO elicited the production of pro-inflammatory cytokines in a biodegradation-dependent manner. Our findings shed new light on the reciprocal interactions between GDYO and human macrophages. This is relevant for biomedical applications of GDYO such as the re-education of tumor-associated macrophages or TAMs.


Assuntos
Grafite , Óxidos , Citocinas , Humanos , Macrófagos , Óxido Nítrico Sintase Tipo II/genética
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 828-834, 2021 Aug 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34511173

RESUMO

OBJECTIVES: To study the expression of adipokines in children with primary nephrotic syndrome (PNS) before and after treatment and its correlation with blood lipids, as well as the role of adipokines in PNS children with hyperlipidemia. METHODS: A total of 90 children who were diagnosed with incipient PNS or recurrence of PNS after corticosteroid withdrawal for more than 6 months were enrolled as subjects. Thirty children who underwent physical examination were enrolled as the control group. Venous blood samples were collected from the children in the control group and the children with PNS before corticosteroid therapy (active stage) and after urinary protein clearance following 4 weeks of corticosteroid therapy (remission stage). ELISA was used to measure the levels of adipokines. An automatic biochemical analyzer was used to measure blood lipid levels. RESULTS: Compared with the control group, the children with PNS had a significantly lower level of omentin-1 in both active and remission stages, and their level of omentin-1 in the active stage was significantly lower than that in the remission stage (P<0.001). For the children with PNS, the level of chemerin in the active stage was significantly higher than that in the remission stage, and the children with PNS in the active stage had a significantly higher level of chemerin than the control group (P<0.001). For the children with PNS, atherogenic index of plasma, atherogenic coefficient (AC), castelli risk index-1 (CRI-1), castelli risk index-2 (CRI-2), and non-high-density lipoprotein in the active stage were significantly higher than those in the remission stage (P<0.001), and these indices in the children with PNS in the active stage were significantly higher than those in the control group (P<0.001). The children with PNS in the remission stage had significantly higher atherogenic index of plasma, AC, CRI-1, and non-high-density lipoprotein than the control group (P<0.001). Compared with the control group, the children with PNS in the remission stage had significantly higher serum levels of total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, apolipoprotein B, and apolipoprotein A (P<0.01). In the children with PNS, the ratio of omentin-1 before and after corticosteroid therapy was positively correlated with that of high-density lipoprotein, 24-hour urinary protein excretion, and high-density lipoprotein/apolipoprotein A before and after treatment, and it was negatively correlated with the ratio of AC and CRI-1 before and after treatment (P<0.05). The PNS children with low omentin-1 levels in the active stage had significantly higher levels of CRI-1, CRI-2, AC, and apolipoprotein B/apolipoprotein A ratio than those with high omentin-1 levels (P<0.05). CONCLUSIONS: Omentin-1 may be associated with disease activity, dyslipidemia, and proteinuria in children with PNS. Blood lipid ratios may be more effective than traditional blood lipid parameters in monitoring early cardiovascular risk in children with PNS.


Assuntos
Citocinas/metabolismo , Hiperlipidemias , Lectinas/metabolismo , Síndrome Nefrótica , Adipocinas , Quimiocinas , Criança , Citocinas/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Lectinas/genética , Lipídeos , Síndrome Nefrótica/tratamento farmacológico , Proteinúria
18.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486798

RESUMO

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Assuntos
Antivirais/farmacologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Animais , Azetidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Janus Quinase 1/metabolismo , Lipopolissacarídeos/toxicidade , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/virologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Células RAW 264.7 , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sulfonamidas/farmacologia
19.
Viruses ; 13(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34372568

RESUMO

Influenza viruses are still a serious threat to human health. Cytokines are essential for cell-to-cell communication and viral clearance in the immune system, but excessive cytokines can cause serious immune pathology. Deaths caused by severe influenza are usually related to cytokine storms. The recent literature has described the mechanism behind the cytokine-storm network and how it can exacerbate host pathological damage. Biological factors such as sex, age, and obesity may cause biological differences between different individuals, which affects cytokine storms induced by the influenza virus. In this review, we summarize the mechanism behind influenza virus cytokine storms and the differences in cytokine storms of different ages and sexes, and in obesity.


Assuntos
Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/fisiopatologia , Influenza Humana/imunologia , Fatores Etários , Citocinas/imunologia , Humanos , Imunidade Inata/imunologia , Influenza Humana/fisiopatologia , Influenza Humana/virologia , Obesidade/virologia , Orthomyxoviridae/imunologia , Orthomyxoviridae/patogenicidade , Fatores Sexuais
20.
Nutrients ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34444736

RESUMO

Pomegranate juice (Punica granatum) has been used since ancient times in traditional medicine (Unani Medicine, Ayurveda); its main compounds are anthocyanins and ellagic acid, which have anti-inflammatory, antioxidant, hepatoprotective, and cardiovascular health effects. The objective was to evaluate the effect of pomegranate juice on inflammation, blood pressure, and vascular and physiological markers associated with obesity induced by a high-fat diet in a murine model. The results show that pomegranate juice reduces the concentration of low-density lipoprotein cholesterol (cLDL) 39% and increases the concentration of high-density lipoprotein cholesterol (cHDL) by 27%, leading to a 12%-18% decrease in the risk of cardiovascular diseases (CVD). In addition to reducing blood pressure by 24%, it also had an antiatherogenic effect by decreasing sE-selectin levels by 42%. On the other hand, the juice significantly increased adiponectin levels in adipose tissue, decreased levels of inflammation markers (tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor-1 (PAI-1), interleukin-17A (IL-17A), interleukin-6 (IL-6), interleukin-1ß (IL-1ß)), and inhibited the monocyte chemoattractant protein-1 (MCP-1). Pomegranate juice requires clinical studies to prove its immunoregulatory and therapeutic effects on cardiovascular and atherogenic risks.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/prevenção & controle , Sucos de Frutas e Vegetais , Fatores de Risco de Doenças Cardíacas , Inflamação , Obesidade/fisiopatologia , Romã (Fruta) , Adiponectina/metabolismo , Tecido Adiposo/imunologia , Animais , Biomarcadores/análise , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Quimiocina CCL2/antagonistas & inibidores , Citocinas/metabolismo , Dieta Hiperlipídica , Ingestão de Energia , Sucos de Frutas e Vegetais/análise , Lipídeos/sangue , Masculino , Obesidade/complicações , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...