Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.138
Filtrar
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2253-2256, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018456

RESUMO

Astrocytes are a non-homogeneous cell type, highly mobile which constantly extend and retract their cytoplasmic processes in what would seem random in direction. In this paper, we investigate how simple geometric microshapes can be used to control the outgrowth of human astrocytes cytoplasmic processes. We investigate the effect of how five regular microshapes: the circle, triangle, square, pentagon and hexagon control astrocyte cytoplasmic process outgrowth. For all the different microshape types, we observe that it is the corners of the shapes that that cause the astrocyte to produce spontaneous outgrowth except for the circle where the outgrowth occurs at a random radial position. This work suggests that the geometry of cell adhesive regions effects the outgrowth of hNT astrocytes.


Assuntos
Astrócitos , Estruturas da Membrana Celular , Citoplasma , Citosol , Humanos , Neuritos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2425-2428, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018496

RESUMO

One of the major challenges in analyzing large scale intracellular calcium spiking data obtained through fluorescent imaging is to identify various patterns present in time series data. Such an analysis identifying the distinct frequency and amplitude encoding during cell-drug interaction study is expected to provide new insights into the drug action patterns over a time course. Here, we present the HDBSCAN clustering algorithm to find a clustering pattern present in calcium spiking obtained by confocal imaging of single cells. Our methodology uncovers the specific templates present in dynamic responses obtained through treatment with multiple doses of the drug. First, we attempt to visualize the clustering pattern present in time-series data corresponding to various doses of the drug. Secondly, we show that the HDBSCAN can be used for the detection of specific signatures corresponding to low and high cell density regions selected from in vitro experiments. To the best of our knowledge, this is the first attempt to optimize the clustering of calcium dynamics using HDBSCAN. Finally, we emphasize that HDBSCAN offers a high-level grasp on systems biology data, including complex spiking pattern and can be used as a visual analytic tool for drug dose selection.


Assuntos
Algoritmos , Sinalização do Cálcio , Análise por Conglomerados , Citoplasma , Células HeLa , Humanos
3.
Med Hypotheses ; 143: 110197, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017906

RESUMO

Coronavirus disease 2019 (COVID-19) may have a metabolic origin given strong links with risk factors such as lipids and glucose and co-morbidities such as obesity and type 2 diabetes mellitus. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein mediates viral cellular entry via the ACE2 receptor. The cytoplasmic tail of this spike protein is heavily palmitoylated. Emerging studies suggest that SARS-CoV-2 alters lipid metabolism in the lung epithelial cells by modulating peroxisome proliferator-activated receptor alpha (PPARα), possibly contributing to lipotoxicity, inflammation and untoward respiratory effects. Disruption of this process may affect palmitoylation of SARS-CoV spike protein and thus infectivity and viral assembly. COVID-19 is also increasingly being recognized as a vascular disease, with several studies noting prominent systemic endothelial dysfunction. The pathogenesis of endothelial dysfunction may also be linked to COVID-19-mediated metabolic and inflammatory effects. Herein, exercise will be compared to fenofibrate as a possible therapeutic strategy to bolster resilience against (and help manage recovery from) COVID-19. This paper will explore the hypothesis that exercise may be a useful adjuvant in a setting of COVID-19 management/rehabilitation due to its effects on PPARα and vascular endothelial function.


Assuntos
Infecções por Coronavirus/terapia , Terapia por Exercício/métodos , PPAR alfa/metabolismo , Pneumonia Viral/terapia , Glicoproteína da Espícula de Coronavírus/metabolismo , Betacoronavirus , Comorbidade , Infecções por Coronavirus/tratamento farmacológico , Citoplasma/metabolismo , Diabetes Mellitus Tipo 2/complicações , Exercício Físico , Fenofibrato/química , Humanos , Inflamação , Metabolismo dos Lipídeos , Lipoilação , Pulmão/metabolismo , Obesidade/complicações , Pandemias
4.
Nat Commun ; 11(1): 4581, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917893

RESUMO

Yes-associated protein 1 (YAP) is a transcriptional regulator with critical roles in mechanotransduction, organ size control, and regeneration. Here, using advanced tools for real-time visualization of native YAP and target gene transcription dynamics, we show that a cycle of fast exodus of nuclear YAP to the cytoplasm followed by fast reentry to the nucleus ("localization-resets") activates YAP target genes. These "resets" are induced by calcium signaling, modulation of actomyosin contractility, or mitosis. Using nascent-transcription reporter knock-ins of YAP target genes, we show a strict association between these resets and downstream transcription. Oncogenically-transformed cell lines lack localization-resets and instead show dramatically elevated rates of nucleocytoplasmic shuttling of YAP, suggesting an escape from compartmentalization-based control. The single-cell localization and transcription traces suggest that YAP activity is not a simple linear function of nuclear enrichment and point to a model of transcriptional activation based on nucleocytoplasmic exchange properties of YAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Cálcio/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Mecanotransdução Celular/fisiologia , Oncogenes/genética , Fatores de Transcrição/genética
5.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1471-1483, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32924346

RESUMO

Autophagy is a highly conserved degradation process that targets cytoplasmic components, maintains metabolic stability in cells, and combates infection with various pathogenic bacteria. Autophagy can help body to eliminate invading pathogens; however, some bacteria have evolved multiple strategies to interfere with the autophagy signaling pathway or inhibit the fusion of autophagosomes with lysosomes to form autolysosomes to escape autophagic degradation, and even use autophagy to promote their growth and proliferation. This review discusses the newest progress in the relationship between pathogens and autophagy of host cell, and the role of autophagy in bacterial infection. We hope that this review provides useful knowledge for the research on autophagy caused by pathogenic infection.


Assuntos
Autofagia , Fenômenos Fisiológicos Bacterianos , Interações entre Hospedeiro e Microrganismos , Autofagia/fisiologia , Bactérias/metabolismo , Citoplasma , Interações entre Hospedeiro e Microrganismos/fisiologia , Transdução de Sinais
6.
PLoS Pathog ; 16(8): e1008845, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866210

RESUMO

Modified vaccinia virus Ankara (MVA) is an approved smallpox vaccine and a promising vaccine vector for other pathogens as well as for cancer therapeutics with more than 200 current or completed clinical trials. MVA was derived by passaging the parental Ankara vaccine virus hundreds of times in chick embryo fibroblasts during which it lost the ability to replicate in human and most other mammalian cells. Although this replication deficiency is an important safety feature, the genetic basis of the host restriction is not understood. Here, an unbiased human genome-wide RNAi screen in human A549 cells revealed that the zinc-finger antiviral protein (ZAP), previously shown to inhibit certain RNA viruses, is a host restriction factor for MVA, a DNA virus. Additional studies demonstrated enhanced MVA replication in several human cell lines following knockdown of ZAP. Furthermore, CRISPR-Cas9 knockout of ZAP in human A549 cells increased MVA replication and spread by more than one log but had no effect on a non-attenuated strain of vaccinia virus. The intact viral C16 protein, which had been disrupted in MVA, antagonized ZAP by binding and sequestering the protein in cytoplasmic punctate structures. Studies aimed at exploring the mechanism by which ZAP restricts MVA replication in the absence of C16 showed that knockout of ZAP had no discernible effect on viral DNA or individual mRNA or protein species as determined by droplet digital polymerase chain reaction, deep RNA sequencing and mass spectrometry, respectively. Instead, inactivation of ZAP reduced the number of aberrant, dense, spherical particles that typically form in MVA-infected human cells, suggesting that ZAP has a novel role in interfering with a late step in the assembly of infectious MVA virions in the absence of the C16 protein.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Vírus Vaccinia/fisiologia , Replicação Viral/fisiologia , Células A549 , Animais , Galinhas , Citoplasma/metabolismo , Citoplasma/virologia , DNA Viral/genética , DNA Viral/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Proteínas Repressoras/genética
7.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
8.
BMC Bioinformatics ; 21(1): 399, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907544

RESUMO

BACKGROUND: Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods. Cryo-electron tomogram simulation is an effective solution to test and optimize the performance of the above image processing methods. The simulated images could be regarded as the labeled data which covers a wide range of macromolecular complexes and ultrastructure. To approximate the crowded cellular environment, it is very important to pack these heterogeneous structures as tightly as possible. Besides, simulating non-deformable and deformable components under a unified framework also need to be achieved. RESULT: In this paper, we proposed a unified framework for simulating crowded cryo-electron tomogram images including non-deformable macromolecular complexes and deformable ultrastructures. A macromolecule was approximated using multiple balls with fixed relative positions to reduce the vacuum volume. A ultrastructure, such as membrane and filament, was approximated using multiple balls with flexible relative positions so that this structure could deform under force field. In the experiment, 400 macromolecules of 20 representative types were packed into simulated cytoplasm by our framework, and numerical verification proved that our method has a smaller volume and higher compression ratio than the baseline single-ball model. We also packed filaments, membranes and macromolecules together, to obtain a simulated cryo-electron tomogram image with deformable structures. The simulated results are closer to the real Cryo-ET, making the analysis more difficult. The DOG particle picking method and the image segmentation method are tested on our simulation data, and the experimental results show that these methods still have much room for improvement. CONCLUSION: The proposed multi-ball model can achieve more crowded packaging results and contains richer elements with different properties to obtain more realistic cryo-electron tomogram simulation. This enables users to simulate cryo-electron tomogram images with non-deformable macromolecular complexes and deformable ultrastructures under a unified framework. To illustrate the advantages of our framework in improving the compression ratio, we calculated the volume of simulated macromolecular under our multi-ball method and traditional single-ball method. We also performed the packing experiment of filaments and membranes to demonstrate the simulation ability of deformable structures. Our method can be used to do a benchmark by generating large labeled cryo-ET dataset and evaluating existing image processing methods. Since the content of the simulated cryo-ET is more complex and crowded compared with previous ones, it will pose a greater challenge to existing image processing methods.


Assuntos
Citoplasma/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Simulação de Dinâmica Molecular , Algoritmos , Análise por Conglomerados , Microscopia Crioeletrônica , Citoplasma/metabolismo , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Razão Sinal-Ruído
9.
Virology ; 548: 136-151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838935

RESUMO

Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, 467YTSL470 and 563YTVV566, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.


Assuntos
Doenças dos Bovinos/virologia , Citoplasma/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Bovinos , Endocitose , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Proteínas Virais/genética , Rede trans-Golgi/virologia
10.
Gene ; 760: 145017, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755655

RESUMO

Cytoplasmic vacuolization usually occurs in cells treated with different agents and substances. We found that LZ-106, an analog of enoxacin, is a potent lysosomotropic agent, contributing to the formation of cytoplasmic vacuoles in cells. Studies of LZ-106-induced vacuolization in H460 cells showed acid environment inside these vacuoles. Further study demonstrated that markers in the late endosomes and lysosomes, like LAMP1 and RAB7, on the surface of the vacuoles, implying that these vacuoles might derive from endosomes and/or lysosomes. By studying the fluorescence intensity of LZ-106, we discovered that LZ-106 tended to locate in acid organelles, and Bafilomycin A1, a V-ATPase inhibitor, was able to suppress its acid organelles localization. Also, we noticed that LZ-106 could induce lysosome stress, involving pH increment and lysosomal membrane damage. Moreover, the expression levels of some lysosome-related proteins, like LAMP1, EEA1, and Cathepsin B, were also altered upon LZ-106 treatment. At last, we confirmed LZ-106 can activate TFEB, a key regulator of lysosomes. Knockdown of TFEB could also reverse LZ-106's effect on vacuolization in H460 cells. Taken together, due to LZ-106's lysosomotropic properties, it is able to accumulate in the acid organelles and induce lysosomal dysfunction in H460 cells, leading to TFEB activation and the following cytoplasmic vacuolization.


Assuntos
Enoxacino/análogos & derivados , Enoxacino/farmacologia , Vacúolos/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/química , Macrolídeos/farmacologia
11.
PLoS Pathog ; 16(8): e1008794, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813725

RESUMO

Wolbachia are the world's most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA's N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA's putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Citoplasma/metabolismo , Drosophila melanogaster/microbiologia , Infecções por Bactérias Gram-Negativas/metabolismo , Mutação , Wolbachia/fisiologia , Animais , Animais Geneticamente Modificados/microbiologia , Animais Geneticamente Modificados/fisiologia , Proteínas de Bactérias/genética , Citoplasma/microbiologia , Drosophila melanogaster/fisiologia , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Masculino
12.
Nat Commun ; 11(1): 4305, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855391

RESUMO

Oligomeric assemblies of tau and the RNA-binding proteins (RBPs) Musashi (MSI) are reported in Alzheimer's disease (AD). However, the role of MSI and tau interaction in their aggregation process and its effects are nor clearly known in neurodegenerative diseases. Here, we investigated the expression and cellular localization of MSI1 and MSI2 in the brains tissues of Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as well as in the wild-type mice and tau knock-out and P301L tau mouse models. We observed that formation of pathologically relevant protein inclusions was driven by the aberrant interactions between MSI and tau in the nuclei associated with age-dependent extracellular depositions of tau/MSI complexes. Furthermore, tau and MSI interactions induced impairment of nuclear/cytoplasm transport, chromatin remodeling and nuclear lamina formation. Our findings provide mechanistic insight for pathological accumulation of MSI/tau aggregates providing a potential basis for therapeutic interventions in neurodegenerative proteinopathies.


Assuntos
Núcleo Celular/patologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas tau/metabolismo , Transporte Ativo do Núcleo Celular , Idoso , Idoso de 80 Anos ou mais , Animais , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Lobo Frontal/citologia , Lobo Frontal/patologia , Células HEK293 , Humanos , Corpos de Inclusão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Agregados Proteicos , Ligação Proteica , Proteínas tau/genética
13.
Tumour Biol ; 42(8): 1010428320951057, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32829673

RESUMO

The exchange of metabolites between mitochondria and cytosol occurs through pores formed by voltage-dependent anion channel proteins. Voltage-dependent anion channels appear to be master regulators of mitochondrial bioenergetics and the intracellular flow of energy. Deregulation of voltage-dependent anion channels expression is thought to be related to mitochondrial dysfunction in cancer. The aim of this study was to investigate the mRNA and protein expression levels of VDAC1, VDAC2, and VDAC3 in relation to clinicopathological characteristics of endometrial cancer as well as the prognostic significance of voltage-dependent anion channels expression for overall survival. VDAC1 and VDAC3 expressions were significantly higher in cancer compared to normal tissues. Kaplan-Meier analysis indicated that high expression of all VDAC genes or high VDAC2 protein level predicted poor overall survival. Multivariate analysis identified the VDAC1 and VDAC2 mRNA levels as well as VDAC2 protein level as independent prognostic factors. Our results suggest that increased expression of voltage-dependent anion channels correlates with tumor progression and may serve as a potential prognostic biomarker in endometrial cancer.


Assuntos
Neoplasias do Endométrio/patologia , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/genética , Sequência de Aminoácidos , Biomarcadores Tumorais/genética , Citoplasma/metabolismo , Neoplasias do Endométrio/mortalidade , Feminino , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Prognóstico , RNA Mensageiro/genética , Canal de Ânion 1 Dependente de Voltagem/biossíntese , Canal de Ânion 2 Dependente de Voltagem/biossíntese , Canais de Ânion Dependentes de Voltagem/biossíntese
14.
Nat Commun ; 11(1): 3825, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732874

RESUMO

The malaria parasite interfaces with its host erythrocyte (RBC) using a unique organelle, the parasitophorous vacuole (PV). The mechanism(s) are obscure by which its limiting membrane, the parasitophorous vacuolar membrane (PVM), collaborates with the parasite plasma membrane (PPM) to support the transport of proteins, lipids, nutrients, and metabolites between the cytoplasm of the parasite and the cytoplasm of the RBC. Here, we demonstrate that the PV has structure characterized by micrometer-sized regions of especially close apposition between the PVM and the PPM. To determine if these contact sites are involved in any sort of transport, we localize the PVM nutrient-permeable and protein export channel EXP2, as well as the PPM lipid transporter PfNCR1. We find that EXP2 is excluded from, but PfNCR1 is included within these regions of close apposition. We conclude that the host-parasite interface is structured to segregate those transporters of hydrophilic and hydrophobic substrates.


Assuntos
Lipídeos , Malária Falciparum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/parasitologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Transporte Proteico , Vacúolos/metabolismo , Vacúolos/parasitologia
15.
Sheng Wu Gong Cheng Xue Bao ; 36(7): 1261-1268, 2020 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-32748583

RESUMO

The phenomenon of phase separation of intracellular biological macromolecules is an emerging research field that has received great attention in recent years. As an aggregation and compartment mechanism of cell biochemical reactions, it widely exists in nature and participates in important physiological processes such as gene transcription and regulation, as well as influences organism's response to external stimuli. Disequilibrium of phase separation may lead to the occurrence of some major diseases. Researchers in cross-cutting fields are trying to examine dementia and other related diseases from a new perspective of phase separation, exploring its molecular mechanism and the potential possibility of intervention and treatment. This review intends to introduce the latest research progress in this field, summarize the major research directions, biochemical basis, its relationship with disease occurrence, and giving a future perspective of key problems to focus on.


Assuntos
Citoplasma , Substâncias Macromoleculares , Pesquisa , Animais , Técnicas de Química Analítica/tendências , Citoplasma/química , Citoplasma/metabolismo , Humanos , Substâncias Macromoleculares/isolamento & purificação , Pesquisa/tendências
16.
Nat Commun ; 11(1): 4337, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859897

RESUMO

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 µM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure.


Assuntos
Reprogramação Celular/fisiologia , Citoplasma/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Sódio/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Introdução de Genes , Coração , Hipertrofia , Preparação de Coração Isolado , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Sódio/sangue , Trocador de Sódio e Cálcio/efeitos dos fármacos , Tiazepinas/farmacologia
17.
PLoS One ; 15(8): e0237448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790800

RESUMO

We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endocitose/efeitos dos fármacos , Limoninas/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico/efeitos dos fármacos , Sinaptotagmina I/metabolismo
18.
Phys Rev Lett ; 125(5): 058101, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794890

RESUMO

Diffusion of tracer particles in the cytoplasm of mammalian cells is often anomalous with a marked heterogeneity even within individual particle trajectories. Despite considerable efforts, the mechanisms behind these observations have remained largely elusive. To tackle this problem, we performed extensive single-particle tracking experiments on quantum dots in the cytoplasm of living mammalian cells at varying conditions. Analyses of the trajectories reveal a strong, microtubule-dependent subdiffusion with antipersistent increments and a substantial heterogeneity. Furthermore, particles stochastically switch between different mobility states, most likely due to transient associations with the cytoskeleton-shaken endoplasmic reticulum network. Comparison to simulations highlight that all experimental observations can be fully described by an intermittent fractional Brownian motion, alternating between two states of different mobility.


Assuntos
Citoplasma/metabolismo , Modelos Biológicos , Citoesqueleto de Actina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Simulação por Computador , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Difusão , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Pontos Quânticos , Processos Estocásticos , Tiazolidinas/farmacologia
19.
Nucleic Acids Res ; 48(15): 8782-8795, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633758

RESUMO

The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the ß-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/genética , MicroRNAs/genética , Nucleotidiltransferases/genética , Polinucleotídeo Adenililtransferase/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Xenopus/genética , Animais , Caenorhabditis elegans/genética , Citoplasma/genética , Células Germinativas/crescimento & desenvolvimento , Mamíferos , Poli A/genética , Interferência de RNA
20.
Biochim Biophys Acta Bioenerg ; 1861(10): 148257, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621805

RESUMO

Export of reducing power from chloroplasts to cytoplasm serves to balance the NADPH/ATP ratio that is optimal for CO2 assimilation. Rapid cytoplasmic streaming in characean algae conveys the exported metabolites downstream towards the shaded plastids where envelope transporters may operate for the import of reducing power in accordance with the direction of concentration gradients. Import of reducing equivalents by chloroplasts in the analyzed area transiently enhances the pulse-modulated chlorophyll fluorescence F' controlled by the redox state of photosystem II acceptor QA. When the microfluidic pathway was transferred to darkness while the analyzed cell area remained in dim background light, the amplitude of cyclosis-mediated F' changes dropped sharply and then recovered within 5-10 min. The suppression of long-distance signaling indicates temporal depletion of transmitted metabolites in the streaming cytoplasm. The return to overall background illumination induced an exceptionally large F' response to the first local light pulse admitted to a remote cell region. This indicates the appearance of excess reductants in the streaming cytoplasm at a certain stage of photosynthetic induction. The results suggest highly dynamic exchange of metabolites between stationary chloroplasts lining the microfluidic pathway and the streaming cytoplasm upon light-dark and dark-light transitions. Evidence is obtained that slow stages of chlorophyll fluorescence induction in algae with rapid cytoplasmic streaming directly depend on cyclosis-mediated long-distance delivery of metabolites produced far beyond the analyzed cell area.


Assuntos
Chara/citologia , Citoplasma/metabolismo , Transporte Biológico/efeitos da radiação , Chara/metabolismo , Chara/efeitos da radiação , Escuridão , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA