Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.216
Filtrar
1.
PLoS One ; 19(7): e0303436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985786

RESUMO

Maize (Zea mays L.) C-type cytoplasmic male sterility (CMS-C) is a highly used CMS system for maize commercial hybrid seed production. Rf4 is the major dominant restorer gene for CMS-C. Inbreds were recently discovered which contain the restoring Rf4 allele yet are unable to restore fertility due to the lack of an additional gene required for Rf4's restoration. To find this additional gene, QTL mapping and positional cloning were performed using an inbred that contained Rf4 but was incapable of restoring CMS-C. The QTL was mapped to a 738-kb interval on chromosome 2, which contains a Pentatricopeptide Repeat (PPR) gene cluster. Allele content comparisons of the inbreds identified three potential candidate genes responsible for fertility restoration in CMS-C. Complementation via transformation of these three candidate genes showed that PPR153 (Zm00001eb114660) is required for Rf4 to restore fertility to tassels. The PPR153 sequence is present in B73 genome, but it is not capable of restoring CMS-C without Rf4. Analysis using NAM lines revealed that Rf4 requires the presence of PPR153 to restore CMS-C in diverse germplasms. This research uncovers a major CMS-C genetic restoration pathway and can be used for identifying inbreds suitable for maize hybrid production with CMS-C cytoplasm.


Assuntos
Infertilidade das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Infertilidade das Plantas/genética , Citoplasma/metabolismo , Citoplasma/genética , Mapeamento Cromossômico , Genes de Plantas , Proteínas de Plantas/genética , Alelos
2.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950322

RESUMO

Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Feminino , Doenças Neuromusculares/genética , Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/patologia , Criança , Núcleo Celular/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Citoplasma/metabolismo , Citoplasma/enzimologia , Metalochaperonas
3.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38991843

RESUMO

Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Animais , Camundongos , Feminino , Blastocisto/metabolismo , Blastocisto/citologia , Citoplasma/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Tempo , Embrião de Mamíferos
4.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999987

RESUMO

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Assuntos
Citoesqueleto de Actina , Actinas , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Tropomiosina/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animais , Actinas/metabolismo , Actinas/química , Citoplasma/metabolismo , Humanos , Éxons , Ligação Proteica , Estabilidade Proteica
5.
J Exp Clin Cancer Res ; 43(1): 191, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987793

RESUMO

BACKGROUND: The potential involvement of circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification in the progression of Wilms tumor (WT) has not been fully elucidated. This study investigates the regulatory mechanisms and clinical significance of m6A-modified circMARK2 and its role in WT progression. METHODS: We identified dysregulated circRNAs through deep sequencing and validated their expression by qRT-PCR in WT tissues. The biological functions of circMARK2 were assessed using clone formation, transwell migration, and orthotopic animal models. To dissect the underlying mechanisms, we employed RNA immunoprecipitation, RNA pull-down, dual-luciferase reporter assays, Western blotting, and immunofluorescence and immunohistochemical staining. RESULTS: CircMARK2, upregulated in WT tissues, was found to be m6A-modified and promoted cytoplasmic export. It facilitated WT progression by stabilizing LIN28B mRNA through the circMARK2/IGF2BP2 interaction. In vitro and in vivo studies demonstrated that circMARK2 enhances the malignant behavior of WT cells. Clinically, higher circMARK2 levels in tumor tissues of WT patients were linked to increased tumor aggressiveness and reduced survival rates. CONCLUSIONS: Our study provides the first comprehensive evidence that m6A-modified circMARK2 contributes to WT progression by enhancing LIN28B mRNA stability, promoting cellular aggressiveness. CircMARK2 emerges as a potential biomarker for prognosis and a promising target for therapeutic intervention in WT, underscoring the clinical relevance of m6A modification in pediatric renal cancer.


Assuntos
Adenosina , Progressão da Doença , RNA Circular , Proteínas de Ligação a RNA , Tumor de Wilms , Tumor de Wilms/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/patologia , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , Animais , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Citoplasma/metabolismo , Linhagem Celular Tumoral , Prognóstico
6.
Nat Commun ; 15(1): 5890, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003262

RESUMO

Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.


Assuntos
Citoplasma , Proteínas de Escherichia coli , Escherichia coli , Nitrogênio , Proteólise , Escherichia coli/metabolismo , Escherichia coli/genética , Nitrogênio/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Citoplasma/metabolismo , Proteoma/metabolismo , Proteostase , Proteômica/métodos , Marcação por Isótopo , Proteases Dependentes de ATP/metabolismo , Proteases Dependentes de ATP/genética
7.
Nat Commun ; 15(1): 5782, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987269

RESUMO

Self-regenerating trigger waves can spread rapidly through the crowded cytoplasm without diminishing in amplitude or speed, providing consistent, reliable, long-range communication. The macromolecular concentration of the cytoplasm varies in response to physiological and environmental fluctuations, raising the question of how or if trigger waves can robustly operate in the face of such fluctuations. Using Xenopus extracts, we find that mitotic and apoptotic trigger wave speeds are remarkably invariant. We derive a model that accounts for this robustness and for the eventual slowing at extremely high and low cytoplasmic concentrations. The model implies that the positive and negative effects of cytoplasmic concentration (increased reactant concentration vs. increased viscosity) are nearly precisely balanced. Accordingly, artificially maintaining a constant cytoplasmic viscosity during dilution abrogates this robustness. The robustness in trigger wave speeds may contribute to the reliability of the extremely rapid embryonic cell cycle.


Assuntos
Citoplasma , Mitose , Xenopus laevis , Animais , Citoplasma/metabolismo , Apoptose , Viscosidade , Extratos Celulares/química , Modelos Biológicos , Xenopus , Ciclo Celular
8.
Nat Commun ; 15(1): 5843, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992049

RESUMO

Setd8 regulates transcription elongation, mitotic DNA condensation, DNA damage response and replication licensing. Here we show that, in mitogen-stimulated liver-specific Setd8-KO mice, most of the hepatocytes are eliminated by necrosis but a significant number of them survive via entering a stage exhibiting several senescence-related features. Setd8-deficient hepatocytes had enlarged nuclei, chromosomal hyperploidy and nuclear engulfments progressing to the formation of intranuclear vesicles surrounded by nuclear lamina. These vesicles contain glycogen, cytoplasmic proteins and even entire organelles. We term this process "endonucleosis". Intranuclear vesicles are absent in hepatocytes of Setd8/Atg5 knockout mice, suggesting that the process requires the function of the canonical autophagy machinery. Endonucleosis and hyperploidization are temporary, early events in the surviving Setd8-deficient cells. Larger vesicles break down into microvesicles over time and are eventually eliminated. The results reveal sequential events in cells with extensive DNA damage, which function as part of survival mechanisms to prevent necrotic death.


Assuntos
Núcleo Celular , Citoplasma , Hepatócitos , Camundongos Knockout , Animais , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Camundongos , Hepatócitos/metabolismo , Necrose , Dano ao DNA , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Camundongos Endogâmicos C57BL , Masculino
9.
Proc Natl Acad Sci U S A ; 121(30): e2405114121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012825

RESUMO

Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatiotemporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.


Assuntos
Citoplasma , Citoesqueleto , Animais , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos , Oócitos/metabolismo , Corrente Citoplasmática/fisiologia
10.
Nucleus ; 15(1): 2373052, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38940456

RESUMO

The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.


Assuntos
Transporte Ativo do Núcleo Celular , Nucléolo Celular , Citoplasma , Poro Nuclear , Nucléolo Celular/metabolismo , Poro Nuclear/metabolismo , Citoplasma/metabolismo , Humanos , Animais , Ribossomos/metabolismo , Núcleo Celular/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
12.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
13.
Commun Biol ; 7(1): 772, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926609

RESUMO

In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Citoplasma , Regulação Bacteriana da Expressão Gênica , Fosfatos , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Fosfatos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Citoplasma/metabolismo , Transdução de Sinais , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética
14.
Elife ; 122024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896469

RESUMO

While inhomogeneous diffusivity has been identified as a ubiquitous feature of the cellular interior, its implications for particle mobility and concentration at different length scales remain largely unexplored. In this work, we use agent-based simulations of diffusion to investigate how heterogeneous diffusivity affects the movement and concentration of diffusing particles. We propose that a nonequilibrium mode of membrane-less compartmentalization arising from the convergence of diffusive trajectories into low-diffusive sinks, which we call 'diffusive lensing,' is relevant for living systems. Our work highlights the phenomenon of diffusive lensing as a potentially key driver of mesoscale dynamics in the cytoplasm, with possible far-reaching implications for biochemical processes.


Assuntos
Citoplasma , Difusão , Transporte Biológico , Citoplasma/metabolismo , Modelos Biológicos , Compartimento Celular , Simulação por Computador
15.
Redox Biol ; 73: 103212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838552

RESUMO

The dynamic regulation of mitochondria through fission and fusion is essential for maintaining cellular homeostasis. In this study, we discovered a role of coactivator-associated arginine methyltransferase 1 (CARM1) in mitochondrial dynamics. CARM1 methylates specific residues (R403 and R634) on dynamin-related protein 1 (DRP1). Methylated DRP1 interacts with mitochondrial fission factor (Mff) and forms self-assembly on the outer mitochondrial membrane, thereby triggering fission, reducing oxygen consumption, and increasing reactive oxygen species (ROS) production. This sets in motion a feedback loop that facilitates the translocation of CARM1 from the nucleus to the cytoplasm, enhancing DRP1 methylation and ROS production through mitochondrial fragmentation. Consequently, ROS reinforces the CARM1-DRP1-ROS axis, resulting in cellular senescence. Depletion of CARM1 or DRP1 impedes cellular senescence by reducing ROS accumulation. The uncovering of the above-described mechanism fills a missing piece in the vicious cycle of ROS-induced senescence and contributes to a better understanding of the aging process.


Assuntos
Senescência Celular , Citoplasma , Dinaminas , Dinâmica Mitocondrial , Proteína-Arginina N-Metiltransferases , Espécies Reativas de Oxigênio , Dinaminas/metabolismo , Dinaminas/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Metilação , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Membrana
16.
Nat Commun ; 15(1): 4986, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862544

RESUMO

Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.


Assuntos
Membrana Celular , Adesões Focais , Talina , Vinculina , Talina/metabolismo , Talina/química , Adesões Focais/metabolismo , Membrana Celular/metabolismo , Vinculina/metabolismo , Vinculina/química , Humanos , Animais , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Integrinas/metabolismo , Integrinas/química , Citoplasma/metabolismo , Ligação Proteica , Separação de Fases
17.
Microb Cell Fact ; 23(1): 170, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867249

RESUMO

BACKGROUND: The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS: In this study, the cytoplasmic and 120 kDa ß-galactosidase of Paenibacillus wynnii (ß-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the ß-gal-Pw gene led to an increase in extracellular ß-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular ß-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular ß-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION: For the first time, the ß-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.


Assuntos
Bacillus subtilis , Peso Molecular , Paenibacillus , beta-Galactosidase , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Citoplasma/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sinais Direcionadores de Proteínas
18.
Nature ; 631(8020): 432-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898279

RESUMO

When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Regulação Fúngica da Expressão Gênica , Transporte de RNA , RNA Antissenso , RNA de Cadeia Dupla , RNA Mensageiro , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Antissenso/metabolismo , RNA Antissenso/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Immunol ; 172: 56-67, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901180

RESUMO

The Class I MHC molecule (MHC-I) HLA-E presents peptides that are derived from the signal sequences, either those of other MHC-I products, or of viral type I membrane glycoproteins. Monoclonal antibodies with proven specificity for HLA-E, and with no cross-reactions with other MHC-I products, have yet to be described. To obtain anti-HLA-E-specific antibodies suitable for a range of applications, we generated monoclonal antibodies against a unique feature of HLA-E: its cytoplasmic tail. We created an immunogen by performing an enzymatically catalyzed transpeptidation reaction to obtain a fusion of the cytoplasmic tail of HLA-E with a nanobody that recognizes murine Class II MHC (MHC-II) products. We obtained a mouse monoclonal antibody that recognizes a 13-residue stretch in the HLA-E cytoplasmic tail. We cloned the genes that encode this antibody in expression vectors to place an LPETG sortase recognition motif at the C-terminus of the heavy and light chains. This arrangement allows the site-specific installation of fluorophores or biotin at these C-termini. The resulting immunoglobulin preparations, labeled with 4 equivalents of a fluorescent or biotinylated payload of choice, can then be used for direct immunofluorescence or detection of the tag by fluorescence or by streptavidin-based methods. We also show that the 13-residue sequence can serve as an epitope tag, independent of the site of its placement within a protein's sequence. The antibody can be used diagnostically to stain for HLA-E on patient tumor samples, it can be used as an antibody-epitope tag for extracellular proteins, and it enables research into the unique role of the cytoplasmic tail of HLA-E.


Assuntos
Anticorpos Monoclonais , Epitopos , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Humanos , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Camundongos , Sequência de Aminoácidos , Citoplasma/imunologia , Citoplasma/metabolismo
20.
J Exp Clin Cancer Res ; 43(1): 176, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909249

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor outcomes, especially in older AML patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer drug because it selectively induces the extrinsic apoptosis of tumor cells without affecting normal cells. However, clinical trials have shown that the responses of patients to TRAIL are significantly heterogeneous. It is necessary to explore predictable biomarkers for the preselection of AML patients with better responsiveness to TRAIL. Here, we investigated the critical role of tumor protein p53 inducible nuclear protein 2 (TP53INP2) in the AML cell response to TRAIL treatment. METHODS: First, the relationship between TP53INP2 and the sensitivity of AML cells to TRAIL was determined by bioinformatics analysis of Cancer Cell Line Encyclopedia datasets, Cell Counting Kit-8 assays, flow cytometry (FCM) and cell line-derived xenograft (CDX) mouse models. Second, the mechanisms by which TP53INP2 participates in the response to TRAIL were analyzed by Western blot, ubiquitination, coimmunoprecipitation and immunofluorescence assays. Finally, the effect of TRAIL alone or in combination with the BCL-2 inhibitor venetoclax (VEN) on cell survival was explored using colony formation and FCM assays, and the effect on leukemogenesis was further investigated in a patient-derived xenograft (PDX) mouse model. RESULTS: AML cells with high TP53INP2 expression were more sensitive to TRAIL in vitro and in vivo. Gain- and loss-of-function studies demonstrated that TP53INP2 significantly enhanced TRAIL-induced apoptosis, especially in AML cells with nucleophosmin 1 (NPM1) mutations. Mechanistically, cytoplasmic TP53INP2 maintained by mutant NPM1 functions as a scaffold bridging the ubiquitin ligase TRAF6 to caspase-8 (CASP 8), thereby promoting the ubiquitination and activation of the CASP 8 pathway. More importantly, simultaneously stimulating extrinsic and intrinsic apoptosis signaling pathways with TRAIL and VEN showed strong synergistic antileukemic activity in AML cells with high levels of TP53INP2. CONCLUSION: Our findings revealed that TP53INP2 is a predictor of responsiveness to TRAIL treatment and supported a potentially individualized therapeutic strategy for TP53INP2-positive AML patients.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Sulfonamidas , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Animais , Camundongos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Linhagem Celular Tumoral , Nucleofosmina , Ensaios Antitumorais Modelo de Xenoenxerto , Citoplasma/metabolismo , Feminino , Proteínas Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA