Unable to write in log file ../../bases/logs/portalorg/logerror.txt Pesquisa | Portal Regional da BVS
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.016
Filtrar
1.
BMC Plant Biol ; 23(1): 234, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138221

RESUMO

In this study, the ecological conditions of the natural habitat of Lemna minuta Kunth in Morocco were investigated, and the impact of five synthetic growth media (Murashige-Skoog (MS), Schenk-Hildebrand (SH), Hoagland medium (HM), 10X Algal Assay Procedure (AAP), and Swedish Standard Institute medium (SIS)) on the morphophysiological and biochemical parameters was analysed. The morphophysiological parameters included root length, frond surface area, and fresh weight, while the biochemical parameters included photosynthetic pigments, carbohydrates, and protein content. The study was conducted in vitro in two phases: an uncontrolled aeration system (Phase I) and a controlled aeration system (Phase II).The results showed that the pH, conductivity, salinity, and ammonium levels in the natural habitat were within the optimal range for duckweed growth. The measured orthophosphate concentrations were higher compared to previous observations, while the recorded chemical oxygen demand values were low. The study also revealed a significant effect of the culture medium composition on the morphophysiological and biochemical parameters of the duckweed. The fresh weight biomass, relative growth rate in fronds, relative growth rate in surface area, root length, protein content, carbohydrates, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids, and the chlorophyll (a/b) ratio were all affected by the culture medium.The most accurate regression models described the growth index GI(F) based on time and in vitro culture conditions in both phases. In Phase I, the best models for MS, SIS, AAP, and SH media were linear, weighted quadratic, cubic, and weighted cubic, respectively. In Phase II, the best models for all growth media were linear. The time coefficients (in days) for Phase II were 0.321, 0.547, 1.232, 1.470, and 0.306 for AAP, HM, MS, SH, and SIS, respectively.Comparing the morphophysiological and biochemical parameters of fronds from different media and analysing the regression model results showed that the SH and MS media were the best among the tested media for the in vitro culture of L. minuta in controlled aeration conditions. However, further research is needed to develop new synthetic media that best promote the growth and maintenance of this duckweed in long-term culture.


Assuntos
Araceae , Ecossistema , Clorofila/metabolismo , Clorofila A/metabolismo , Carboidratos , Proteínas/metabolismo , Plantas/metabolismo , Proliferação de Células
2.
Huan Jing Ke Xue ; 44(5): 2592-2600, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177933

RESUMO

Global warming has aggravated the problem of lake eutrophication. As a typical large, eutrophic, shallow lake in China, the issue of cyanobacterial harmful algal blooms (cyanoHABs) was particularly prominent in Lake Taihu. We took Lake Taihu as the study area, using the meteorological (temperature, wind speed, rainfall, and sunshine hours), water quality (total nitrogen, total phosphorus, conductivity, pH, and chemical oxygen demand), and biological (chlorophyll-a in phytoplankton) monitoring data from 1992 to 2020. We built a simulation model of chlorophyll-a based on the Bayesian network model with continuous variables to study the chlorophyll-a level of Lake Taihu under different meteorological and water quality conditions. The 75th percentile of chlorophyll-a concentration was used as the threshold to judge the risk of cyanobacterial bloom. When the probability of chlorophyll-a concentration below this threshold was greater than 75%, it was regarded as "low risk" of cyanobacterial bloom outbreak. The results showed that the average level of "temperature wind ratio" (ratio of air temperature to wind speed) in spring was 6.67℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.130 mg·L-1. The average "temperature wind ratio" level in summer was 10.52℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.257 mg·L-1. The average level of total phosphorus concentration in autumn was 0.154 mg·L-1, and the probability of high chlorophyll-a was less than 75% when the "temperature wind ratio" was less than 6.30℃·s·m-1. Based on the above research, the chlorophyll-a model constructed by the Bayesian network model with continuous variables was further used to simulate the nutrient control objectives under different climate change backgrounds. In order to control chlorophyll-a in Lake Taihu at the:"low risk" level of cyanoHABs, the target concentration thresholds of total phosphorus needed to be controlled under the climate level background from 1992 to 2000, 2001 to 2010, and 2011 to 2020 were given. From 1992 to 2000, the threshold value of total phosphorus concentration was 0.135 mg·L-1 in spring, 0.174 mg·L-1 in summer, and 0.171 mg·L-1 in autumn. From 2001 to 2010, the threshold value of total phosphorus concentration was 0.115 mg·L-1 in spring, 0.164 mg·L-1 in summer, and 0.162 mg·L-1 in autumn. From 2011 to 2020, the threshold value of total phosphorus concentration was 0.059 mg·L-1 in spring, 0.145 mg·L-1 in summer, and 0.145 mg·L-1 in autumn. The results showed that the control of cyanoHABs in eutrophic lakes required more stringent nutrient control strategies with global warming. It provided a reference for preventing and controlling cyanoHABs and eutrophication in Lake Taihu. Previous studies have used multiple regression models, hydrodynamic numerical models, and other methods to predict chlorophyll-a concentrations or cyanobacterial blooms in lakes. However, there has been no study on the prediction of cyanoHABs in lakes based on the Bayesian network model with continuous variables and the "dynamic" evaluation of nutrient thresholds. Therefore, based on the seasonal meteorological, water quality, and biological monitoring data of Lake Taihu from 1992 to 2020, the chlorophyll-a model of Lake Taihu was constructed for the first time based on the Bayesian network model with continuous variables to simulate the chlorophyll-a concentration of Lake Taihu under different climate indicators and total phosphorus concentrations. The weight of its influencing factors was also analyzed, and the nutrient control objectives under different climate scenarios were "dynamically" evaluated.


Assuntos
Cianobactérias , Lagos , Clorofila A/análise , Lagos/microbiologia , Teorema de Bayes , Clorofila/análise , Eutrofização , Proliferação Nociva de Algas , Fósforo/análise , China , Monitoramento Ambiental
3.
Sci Rep ; 13(1): 8139, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208408

RESUMO

Mutations, the genetic variations in genomic sequences, play an important role in molecular biology and biotechnology. During DNA replication or meiosis, one of the mutations is transposons or jumping genes. An indigenous transposon nDart1-0 was successfully introduced into local indica cultivar Basmati-370 from transposon-tagged line viz., GR-7895 (japonica genotype) through conventional breeding technique, successive backcrossing. Plants from segregating populationsshowed variegated phenotypes were tagged as BM-37 mutants. Blast analysis of the sequence data revealed that the GTP-binding protein, located on the BAC clone OJ1781_H11 of chromosome 5, contained an insertion of DNA transposon nDart1-0. The nDart1-0 has "A" at position 254 bp, whereas nDart1 homologs have "G", which efficiently distinguishes nDart1-0 from its homologs. The histological analysis revealed that the chloroplast of mesophyll cells in BM-37 was disrupted with reduction in size of starch granules and higher number of osmophillic plastoglobuli, which resulted in decreased chlorophyll contents and carotenoids, gas exchange parameters (Pn, g, E, Ci), and reduced expression level of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development. Along with the rise of GTP protein, the salicylic acid (SA) and gibberellic acid (GA) and antioxidant contents(SOD) and MDA levels significantly enhanced, while, the cytokinins (CK), ascorbate peroxidase (APX), catalase (CAT), total flavanoid contents (TFC) and total phenolic contents (TPC) significantly reduced in BM-37 mutant plants as compared with WT plants. These results support the notion that GTP-binding proteins influence the process underlying chloroplast formation. Therefore, it is anticipated that to combat biotic or abiotic stress conditions, the nDart1-0 tagged mutant (BM-37) of Basmati-370 would be beneficial.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Elementos de DNA Transponíveis/genética , Genes de Plantas , Antioxidantes , Clorofila
4.
Environ Monit Assess ; 195(6): 698, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209292

RESUMO

Outbreaks of planktonic algae seriously affect the water quality of rivers and are difficult to control. Based on the analysis of the temporal and spatial variation characteristics of environmental factors, this study uses a support vector machine regression (SVR) algorithm to establish a chlorophyll a (Chl-a) prediction model and conduct Chl-a sensitivity analysis. In 2018, the average Chl-a content was 126.25 ug/L. The maximum total nitrogen (TN) content was 16.68 mg/L and high year-round. The average NH4+-N and total phosphorous (TP) contents were only 0.78 and 0.18 mg/L. The content of NH4+-N was higher in spring and increased significantly along the water flow, while TP decreased slightly along the water flow. We used a radial basis function kernel SVR model and tenfold cross-validation method to optimize parameters. The penalty parameter c was 1.4142, the kernel function parameter g was 1, and the training and verification errors were only 0.032 and 0.067, respectively, indicating a good model fit. Based on a sensitivity analysis of the SVR prediction model, the maximum sensitivity coefficients of Chl-a to TP and WT were 0.571 and 0.394, respectively, and the contributions were 33% and 22%, respectively. The next highest sensitivity coefficients were those of DO (0.28, 16%) and pH (0.243, 14%). The sensitivity coefficients of TN and NH4+-N were the lowest. According to the current water environment pollution conditions, TP is the limiting factor of Chl-a in the Qingshui River, and it is also the main prevention and control factor of phytoplankton outbreak.


Assuntos
Clorofila , Máquina de Vetores de Suporte , Clorofila A , Clorofila/análise , Monitoramento Ambiental , Eutrofização , Rios/química , Nitrogênio/análise , Fósforo/análise , China , Lagos/química
5.
BMC Plant Biol ; 23(1): 258, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189053

RESUMO

BACKGROUND: Magnesium chelatase plays an important role in photosynthesis, but only a few subunits have been functionally characterized in cassava. RESULTS: Herein, MeChlD was successfully cloned and characterized. MeChlD encodes a magnesium chelatase subunit D, which has ATPase and vWA conservative domains. MeChlD was highly expressed in the leaves. Subcellular localization suggested that MeChlD:GFP was a chloroplast-localized protein. Furthermore, the yeast two-hybrid system and BiFC analysis indicated that MeChlD interacts with MeChlM and MePrxQ, respectively. VIGS-induce silencing of MeChlD resulted in significantly decreased chlorophyll content and reduction the expression of photosynthesis-related nuclear genes. Furthermore, the storage root numbers, fresh weight and the total starch content in cassava storage roots of VIGS-MeChlD plants was significantly reduced. CONCLUSION: Taken together, MeChlD located at the chloroplast is not only required for chlorophyll biosynthesis and photosynthesis, but also affecting the starch accumulation in cassava. This study expands our understanding of the biological functions of ChlD proteins.


Assuntos
Manihot , Amido , Amido/metabolismo , Manihot/genética , Manihot/metabolismo , Fotossíntese , Clorofila/metabolismo
6.
J Hazard Mater ; 454: 131468, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146338

RESUMO

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Assuntos
Melatonina , Metais Pesados , Melatonina/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Superóxido Dismutase/metabolismo , Cromo/metabolismo , Glutationa Redutase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Plântula/metabolismo
7.
J Plant Physiol ; 285: 154001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187152

RESUMO

Iron is involved in various metabolic pathways of plants. Stress from iron deficiency and toxicity in the soil adversely affects plant growth. Therefore, studying the mechanism of iron absorption and transport by plants is of important for resistance to iron stress and to increase crop yield. In this study, Malus xiaojinensis (a Fe-efficient Malus plant) was used as research material. A ferric reduction oxidase (FRO) family gene member was cloned and named MxFRO4. The MxFRO4 encoded a protein of 697 amino acid residues with a predicted molecular weight of 78.54 kDa and a theoretical isoelectric point of 4.90. A subcellular localization assay showed that the MxFRO4 protein was localized on the cell membrane. The expression of MxFRO4 was enriched in immature leaves and roots of M. xiaojinensis, and was strongly affected by low-iron, high-iron, and salt treatments. After introduction of MxFRO4 into Arabidopsis thaliana, the iron and salt stress tolerance of transgenic A. thaliana was greatly improved. Under exposure to low-iron and high-iron stresses, the primary root length, seedling fresh weight, contents of proline, chlorophyll, and iron, and iron(III) chelation activity of the transgenic lines were significantly increased compared with the wild type. The contents of chlorophyll and proline, and the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were significantly higher in transgenic A. thaliana overexpressing MxFRO4 under salt stress compared with the wild type, whereas the malondialdehyde content was decreased. These results suggest that MxFRO4 contributes to alleviating the effects of low-iron, high-iron, and salinity stresses in transgenic A. thaliana.


Assuntos
Antioxidantes , Arabidopsis , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Prolina/metabolismo , Clorofila/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
8.
Environ Monit Assess ; 195(6): 694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204492

RESUMO

Agricultural, industrial, and human activities in general threaten water quality, as well as the biotic integrity of aquatic ecosystems. The increased concentration of total nitrogen (TN) and phosphorus (TP) affects high concentrations of chlorophyll (Chl-a) in freshwater ecosystems, which causes the process of eutrophication of the waters of shallow lakes. Eutrophication, as an alarming threat to the global quality of surface waters, affects environmental degradation. This research assesses the risk of eutrophication caused by chemical oxygen demand (COD), TN, TP, Secchi disk (SD), and Chl-a using the trophic level index (TLI) in Palic and Ludas lakes. Both lakes have been nominated as potential Natura 2000 areas in 2021 because they belong to important bird areas, and Ludas Lake has the status of Ramsar site 3YU002. In the research period from 2011 to 2021, the results showed that the lake is in an extremely eutrophic state. Laboratory analyses indicate an increased concentration of Chl-a during autumn. In the paper, the normalized difference chlorophyll index (NDCI) was calculated using the Google Earth Engine platform, and the result indicates the loading of the lake throughout the year, with an emphasis on winter, summer, and autumn. By using satellite images and remote sensing, it is possible to determine the most degraded spots, which is a help to the researchers in choosing the places where the samples will be taken and thus act more efficiently on the most endangered parts, as well as reduce the costs of standard in situ methods.


Assuntos
Monitoramento Ambiental , Lagos , Humanos , Lagos/análise , Monitoramento Ambiental/métodos , Ecossistema , Clorofila/análise , Eutrofização , Fósforo/análise , Nitrogênio/análise , China
9.
Sci Rep ; 13(1): 7626, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165051

RESUMO

Although exogenous glycine betaine (GB) and cycloleucine (Cyc) have been reported to affect animal cell metabolism, their effects on plant growth and development have not been studied extensively. Different concentrations of exogenous glycine betaine (20, 40, and 60 mmol L-1) and cycloleucine (10, 20, and 40 mmol L-1), with 0 mmol L-1 as control, were used to investigate the effects of foliar spraying of betaine and cycloleucine on growth, photosynthesis, chlorophyll fluorescence, Calvin cycle pathway, abaxial leaf burr morphology, endogenous hormones, and amino acid content in eggplant. We found that 40 mmol L-1 glycine betaine had the best effect on plant growth and development; it increased the fresh and dry weight of plants, increased the density of abaxial leaf hairs, increased the net photosynthetic rate and Calvin cycle key enzyme activity of leaves, had an elevating effect on chlorophyll fluorescence parameters, increased endogenous indoleacetic acid (IAA) content and decreased abscisic acid (ABA) content, and increased glutamate, serine, aspartate, and phenylalanine contents. However, cycloleucine significantly inhibited plant growth; plant apical dominance disappeared, plant height and dry and fresh weights decreased significantly, the development of abaxial leaf hairs was hindered, the net photosynthetic rate and Calvin cycle key enzyme activities were inhibited, the endogenous hormones IAA and ABA content decreased, and the conversion and utilization of glutamate, arginine, threonine, and glycine were affected. Combined with the experimental results and plant growth phenotypes, 20 mmol L-1 cycloleucine significantly inhibited plant growth. In conclusion, 40 mmol L-1 glycine betaine and 20 mmol L-1 cycloleucine had different regulatory effects on plant growth and development.


Assuntos
Betaína , Solanum melongena , Betaína/farmacologia , Betaína/metabolismo , Solanum melongena/metabolismo , Cicloleucina/metabolismo , Cicloleucina/farmacologia , Aminoácidos/metabolismo , Fotossíntese , Ácido Abscísico/metabolismo , Clorofila/metabolismo , Hormônios/metabolismo , Folhas de Planta/metabolismo
10.
Sci Rep ; 13(1): 7212, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137877

RESUMO

Various plants, including sorghum (Sorghum bicolor L.), are exposed to waterlogging; however, little is known about the effects of waterlogging at different growth stages on sorghum. A pot experiment was conducted using two sorghum hybrids, Jinuoliang 01 (JN01) and Jinza 31 (JZ31), to investigate the effects of waterlogging at different growth stages on the photosynthesis enzyme activity, chlorophyll content, malondialdehyde (MDA) content, photosynthetic parameters, dry matter accumulation, and grain yield. The experiment was conducted using waterlogging treatments implemented at the five-leaf stage (T1), flowering stage (T2), and filling stage (T3), using standard management (no waterlogging) as a control (CK). The adverse effects of waterlogging on sorghum growth varied with the waterlogging timing, with the maximum impact at T1, followed by T2 and T3. JZ31 was more sensitive to waterlogging compared to JN01. Waterlogged conditions inhibited the photosynthetic enzyme activity and reduced the chlorophyll content and photosynthesis, ultimately lowering the biomass yield and grain yield. The maximum yield loss was observed with the T1 waterlogging treatment; the grain yield of JN01 and JZ31 decreased by 52.01-54.58% and 69.52-71.97%, respectively, compared with CK. Furthermore, the decline in grain yield in T1 was associated with reducing grain number per panicle. These findings indicate that sorghum is sensitive to waterlogging at the five-leaf stage and JZ31 is more sensitive to waterlogging than JN01, which may provide a basis for selecting genotypes and management measures to cope with waterlogging in sorghum.


Assuntos
Mudança Climática , Sorghum , Sorghum/crescimento & desenvolvimento , Folhas de Planta/química , Clorofila/análise , Ribulose-Bifosfato Carboxilase/análise , Fosfoenolpiruvato Carboxilase/análise , Fotossíntese , Biomassa , Agricultura/métodos
11.
Sci Rep ; 13(1): 7378, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149662

RESUMO

Salinity stress is the second most devastating abiotic factor limiting plant growth and yields. Climate changes have significantly increased salinity levels of soil. Besides improving the physiological responses under stress conditions, jasmonates modulate Mycorrhiza-Plant relationships. The present study aimed to evaluate the effects of methyl jasmonate (MeJ) and Funneliformis mosseae (Arbuscular mycorrhizal (AM) on morphology and improving antioxidant mechanisms in Crocus sativus L. under salinity stress. After inoculation with AM, pre-treated C. sativus corms with MeJ were grown under low, moderate, and severe salinity stress. Intense salinity levels damaged the corm, root, total leaf dry weight, and area. Salinities up to 50 mM increased Proline content and Polyphenol oxidase (PPO) activity, but MeJ increased this trend in proline. Generally, MeJ increased anthocyanins, total soluble sugars, and PPO. Total chlorophyll and superoxide dismutase (SOD) activity increased by salinity. The maximum catalase and SOD activities in + MeJ + AM were 50 and 125 mM, respectively, and the maximum total chlorophyll in -MeJ + AM treatment was 75 mM. Although 20 and 50 mM increased plant growth, using mycorrhiza and jasmonate enhanced this trend. Moreover, these treatments reduced the damage of 75 and 100 mM salinity stress. Using MeJ and AM can improve the growth of saffron under various ranges of salinity stress levels; however, in severe levels like 120 mM, this phytohormone and F. mosseae effects on saffron could be adverse.


Assuntos
Crocus , Micorrizas , Micorrizas/fisiologia , Antioxidantes/farmacologia , Raízes de Plantas/fisiologia , Salinidade , Antocianinas , Estresse Salino , Clorofila , Superóxido Dismutase , Prolina/farmacologia
12.
An Acad Bras Cienc ; 95(1): e20220095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222363

RESUMO

Secondary production is the formation of heterotrophic biomass across time, which integrates several important ecological processes that affect the life of organisms, populations, communities and ecosystems, but its study has poor developed in South America. The objectives of this work were to describe the diversity of benthic macroinvertebrate assemblages in terms of abundance and biomass, and to quantify their secondary production for the first time in Andean rivers. A quantitative sampling scheme was implemented, using a Surber sampler, in three forested streams. Physical-chemical variables, nutrients, organic matter and chlorophyll were measured also. The macroinvertebrates were separated and identified mostly at the species level. Each taxon was assigned to a functional feeding group. Secondary production was estimated for 38 taxa, mostly Diptera, Trichoptera, Coleoptera, and Ephemeroptera. The annual production varied from 3769 to 13916 mg dry mass m-2 y-1. Most abundant taxa were also those with higher production, dominated by Ephemeroptera (Baetidae), Trichoptera (Hydropsychidae) and Diptera (Chironomidae and Simuliidae). Density, biomass, and production of collectors and predators were much higher than the other feeding groups. We expect that our results will be useful to evaluate the effects on stream functioning produced by global warming and other anthropogenic disturbances in our region.


Assuntos
Besouros , Ephemeroptera , Holometábolos , Animais , Biomassa , Ecossistema , Rios , Clorofila
13.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176103

RESUMO

In autumn and spring, citrus leaves with a Ponkan (Citrus reticulata Blanco cv. Ponkan) genetic background (Harumi, Daya, etc.) are prone to abnormal physiological chlorosis. The effects of different degrees of chlorosis (normal, mild, moderate and severe) on photosynthesis and the chlorophyll metabolism of leaves of Citrus cultivar (Harumi) were studied via field experiment. Compared with severe chlorotic leaves, the results showed that chlorosis could break leaf metabolism balance, including reduced chlorophyll content, photosynthetic parameters, antioxidant enzyme activity and enzyme activity related to chlorophyll synthesis, increased catalase and decreased enzyme activity. In addition, the content of chlorophyll synthesis precursors showed an overall downward trend expected for uroporphyrinogen III. Furthermore, the relative expression of genes for chlorophyll synthesis (HEMA1, HEME2, HEMG1 and CHLH) was down-regulated to some extent and chlorophyll degradation (CAO, CLH, PPH, PAO and SGR) showed the opposite trend with increased chlorosis. Changes in degradation were more significant. In general, the chlorosis of Harumi leaves might be related to the blocked transformation of uroporphyrinogen III (Urogen III) to coproporphyrinogen III (Coprogen III), the weakening of antioxidant enzyme system activity, the weakening of chlorophyll synthesis and the enhancement in degradation.


Assuntos
Citrus , Antioxidantes/farmacologia , Clorofila/metabolismo , Citrus/genética , Citrus/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Uroporfirinogênios/metabolismo , Uroporfirinogênios/farmacologia , Necrose e Clorose das Plantas
14.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175191

RESUMO

To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.


Assuntos
Neoplasias , Fotoquimioterapia , Masculino , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Clorofila A , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Clorofila/farmacologia , Linhagem Celular Tumoral
15.
Sci Rep ; 13(1): 8457, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231167

RESUMO

Considering the potential use of nanomaterials, particularly carbon-based nanostructures, in agriculture, we conducted a study to investigate the effect of graphene oxide (GO) on strawberry plants under salinity and alkalinity stress conditions. We used GO concentrations of 0, 2.5, 5, 10, and 50 mg/L, and applied stress treatments at three levels: without stress, salinity (80 mM NaCl), and alkalinity (40 mM NaHCO3). Our results indicate that both salinity and alkalinity stress negatively impacted the gas exchange parameters of the strawberry plants. However, the application of GO significantly improved these parameters. Specifically, GO increased PI, Fv, Fm, and RE0/RC parameters, as well as chlorophyll and carotenoid contents in the plants. Moreover, the use of GO significantly increased the early yield and dry weight of leaves and roots. Therefore, it can be concluded that the application of GO can enhance the photosynthetic performance of strawberry plants, and improve their resistance to stress conditions.


Assuntos
Fragaria , Nanopartículas , Cloreto de Sódio/farmacologia , Tolerância ao Sal , Clorofila/química , Cloreto de Sódio na Dieta/farmacologia , Salinidade , Folhas de Planta
16.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233470

RESUMO

A separation process was established to sequentially fractionate and recover three anti-inflammatory components derived from sugars, phycobiliprotein, and chlorophyll from the hot-air-dried thalli of the red alga dulse (Palmaria palmata). The developed process consisted of three steps, without the use of organic solvents. In Step I, the sugars were separated by disrupting the cell wall of the dried thalli with a polysaccharide-degrading enzyme, and a sugar-rich extract (E1) was obtained by precipitating the other components, which were simultaneously eluted by acid precipitation. In Step II, the residue suspension from Step I was digested with thermolysin to obtain phycobiliprotein-derived peptides (PPs), and a PP-rich extract (E2) was obtained by separating the other extracts using acid precipitation. In Step III, solubilized chlorophyll was obtained by heating the residue, which was acid-precipitated, neutralized, and re-dissolved to concentrate the chlorophyll-related components (Chls)-rich extract (E3). These three extracts suppressed inflammatory-cytokine secretion by lipopolysaccharide (LPS)-stimulated macrophages, confirming that the sequential procedure had no negative effects on the activities of any of the extracts. The E1, E2, and E3 were rich in sugars, PPs, and Chls, respectively, indicating that the anti-inflammatory components were effectively fractionated and recovered through the separation protocol.


Assuntos
Rodófitas , Rodófitas/química , Anti-Inflamatórios/farmacologia , Ficobiliproteínas , Clorofila , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Genes (Basel) ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239370

RESUMO

Chlorophyll is an essential component that captures light energy to drive photosynthesis. Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate genes of chlorophyll content will help increase maize production. Here, we performed a genome-wide association study (GWAS) on chlorophyll content and its dynamic changes in 378 maize inbred lines with extensive natural variation. Our phenotypic assessment showed that chlorophyll content and its dynamic changes were natural variations with a moderate genetic level of 0.66/0.67. A total of 19 single-nucleotide polymorphisms (SNPs) were found associated with 76 candidate genes, of which one SNP, 2376873-7-G, co-localized in chlorophyll content and area under the chlorophyll content curve (AUCCC). Zm00001d026568 and Zm00001d026569 were highly associated with SNP 2376873-7-G and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-acyl carrier protein thioesterase, respectively. As expected, higher expression levels of these two genes are associated with higher chlorophyll contents. These results provide a certain experimental basis for discovering the candidate genes of chlorophyll content and finally provide new insights for cultivating high-yield and excellent maize suitable for planting environment.


Assuntos
Clorofila , Zea mays , Clorofila/genética , Clorofila/metabolismo , Zea mays/genética , Zea mays/metabolismo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Fotossíntese
18.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239857

RESUMO

Species of the Magnoliaceae family are valued for their ornamental qualities and are widely used in landscaping worldwide. However, many of these species are endangered in their natural environments, often due to being overshadowed by overstory canopies. The molecular mechanisms of Magnolia's sensitivity to shade have remained hitherto obscure. Our study sheds light on this conundrum by identifying critical genes involved in governing the plant's response to a light deficiency (LD) environment. In response to LD stress, Magnolia sinostellata leaves were endowed with a drastic dwindling in chlorophyll content, which was concomitant to the downregulation of the chlorophyll biosynthesis pathway and upregulation in the chlorophyll degradation pathway. The STAY-GREEN (MsSGR) gene was one of the most up-regulated genes, which was specifically localized in chloroplasts, and its overexpression in Arabidopsis and tobacco accelerated chlorophyll degradation. Sequence analysis of the MsSGR promoter revealed that it contains multiple phytohormone-responsive and light-responsive cis-acting elements and was activated by LD stress. A yeast two-hybrid analysis resulted in the identification of 24 proteins that putatively interact with MsSGR, among which eight were chloroplast-localized proteins that were significantly responsive to LD. Our findings demonstrate that light deficiency increases the expression of MsSGR, which in turn regulates chlorophyll degradation and interacts with multiple proteins to form a molecular cascade. Overall, our work has uncovered the mechanism by which MsSGR mediates chlorophyll degradation under LD stress conditions, providing insight into the molecular interactions network of MsSGR and contributing to a theoretical framework for understanding the endangerment of wild Magnoliaceae species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnolia , Clorofila/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
19.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240058

RESUMO

The dinoflagellate algae, Symbiodiniaceae, are significant symbiotic partners of corals due to their photosynthetic capacity. The photosynthetic processes of the microalgae consist of linear electron transport, which provides the energetic balance of ATP and NADPH production for CO2 fixation, and alternative electron transport pathways, including cyclic electron flow, which ensures the elevated ATP requirements under stress conditions. Flash-induced chlorophyll fluorescence relaxation is a non-invasive tool to assess the various electron transport pathways. A special case of fluorescence relaxation, the so-called wave phenomenon, was found to be associated with the activity of NAD(P)H dehydrogenase (NDH) in microalgae. We showed previously that the wave phenomenon existed in Symbiodiniaceae under acute heat stress and microaerobic conditions, however, the electron transport processes related to the wave phenomenon remained unknown. In this work, using various inhibitors, we show that (i) the linear electron transport has a crucial role in the formation of the wave, (ii) the inhibition of the donor side of Photosystem II did not induce the wave, whereas inhibition of the Calvin-Benson cycle accelerated it, (iii) the wave phenomenon was related to the operation of type II NDH (NDH-2). We therefore propose that the wave phenomenon is an important marker of the regulation of electron transport in Symbiodiniaceae.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Dinoflagelados/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila/metabolismo
20.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240228

RESUMO

Tobacco mosaic virus (TMV) is a systemic virus that poses a serious threat to crops worldwide. In the present study, a series of novel 1-phenyl-4-(1,3,4-thiadiazole-5-thioether)-1H-pyrazole-5-amine derivatives was designed and synthesized. In vivo antiviral bioassay results indicated that some of these compounds exhibited excellent protective activity against TMV. Among the compounds, E2 (EC50 = 203.5 µg/mL) was superior to the commercial agent ningnanmycin (EC50 = 261.4 µg/mL). Observation of tobacco leaves infected with TMV-GFP revealed that E2 could effectively inhibit the spread of TMV in the host. Further plant tissue morphological observation indicated that E2 could induce the tight arrangement and alignment of the spongy mesophyll and palisade cells while causing stomatal closure to form a defensive barrier to prevent viral infection in the leaves. In addition, the chlorophyll content of tobacco leaves was significantly increased after treatment with E2, and the net photosynthesis (Pn) value was also increased, which demonstrated that the active compound could improve the photosynthetic efficiency of TMV-infected tobacco leaves by maintaining stable chlorophyll content in the leaves, thereby protecting host plants from viral infection. The results of MDA and H2O2 content determination revealed that E2 could effectively reduce the content of peroxides in the infected plants, reducing the damage to the plants caused by oxidation. This work provides an important support for the research and development of antiviral agents in crop protection.


Assuntos
Vírus do Mosaico do Tabaco , Viroses , Vírus do Mosaico do Tabaco/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Tabaco/metabolismo , Peróxido de Hidrogênio/metabolismo , Clorofila/metabolismo , Fotossíntese , Relação Estrutura-Atividade , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...