Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.052
Filtrar
1.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589730

RESUMO

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Assuntos
Estudo de Associação Genômica Ampla , Soja , Soja/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fotossíntese/genética , Clorofila/metabolismo
2.
Methods Mol Biol ; 2795: 25-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594524

RESUMO

High ambient temperature affects various plant developmental and physiological processes, including senescence. Here, we present a protocol for assaying light-dependent high ambient temperature-induced senescence using whole seedlings. The protocol covers all steps, from inducing senescence by darkness at high ambient temperature to determining the degree of senescence, and includes experimental tips and notes. The onset of senescence is established by quantifying the increased expression of senescence marker genes by quantitative real-time PCR (RT-qPCR). The degree of senescence is determined by measuring the loss of chlorophyll and the increase of ion leakage. This protocol can be adapted to study light-dependent high ambient temperature-induced senescence in other plant species by adjusting the temperature and duration of darkness.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Plântula/metabolismo , Senescência Celular/genética , Temperatura , Escuridão , Clorofila/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Bioresour Technol ; 399: 130636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548032

RESUMO

Biofuel production from microalgae has been greatly restricted by low biomass productivity and long-term photosynthetic efficacy. Here, a novel strategy for selecting high-growing, stress-resistant algal strains with high photosynthetic capacity was proposed based on biocompatible extracellular polymeric substances (EPS) probes with aggregation-induced emission (AIE) properties. Specifically, AIE active EPS probes were synthesized for in-situ long-term monitoring of the EPS productivity at different algal growth stages. By coupling the AIE-based fluorescent techniques, algal cells were classified into four diverse populations based on their chlorophyll and EPS signals. Mechanistic studies on the sorted algal cells revealed their remarkable stress resistance and high expression of cell division, biopolymer production and photosynthesis-related genes. The sorted and subcultured algal cells consistently exhibited relatively higher growth rates and photosynthetic capacities, resulting in an increased (1.2 to 1.8-fold) algal biomass production, chlorophyll, and lipids. This study can potentially open new strategies to boost microalgal-based biofuel production.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biocombustíveis , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Bioprospecção , Clorofila/metabolismo , Microalgas/metabolismo
4.
Sci Rep ; 14(1): 6678, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509214

RESUMO

Failure in irrigation management of grapevines grown in the Brazilian semiarid region can affect bud fertility. Adequate irrigation, considering both the development of bunches in the current cycle and the formation of fertile buds for subsequent cycles, can bring significant advances to viticulture. Therefore, the objective of this research was to investigate the effect of different irrigation levels during flowering on the formation of buds and potential bunches of 'Arra 15' grapevine and its relationship with metabolic processes. A field experiment was carried out in a commercial vineyard in Petrolina, Pernambuco, Brazil, during the 2021 and 2022 seasons. The experiment was designed in randomized blocks with four replications and five irrigation levels (70; 85; 100; 115 and 130% of crop evapotranspiration - ETc) during three production cycles. The variables fertile bud, vegetative bud, dead bud, potential fertility of the basal, median, and apical regions of the branches, number of potential bunches, reducing sugar, total soluble sugar, net photosynthesis, stomatal conductance, transpiration, and relative chlorophyll index were evaluated. The 115% ETc irrigation level improved the number of fertile buds and number of potential bunches. Irrigation level above 115% ETc increased gas exchange and relative chlorophyll index, while 70% ETc increased leaf sugar content. The most appropriate irrigation strategy is the application of 115% ETc during the flowering stage, for the increase of fertile buds and potential bunches of the next cycle, without influencing the vine metabolism. Total soluble sugars are a promising indicator of water deficit during flowering and as an indicator of vegetative bud formation for the next cycle.


Assuntos
Vitis , Vitis/metabolismo , Brasil , Inflorescência/metabolismo , Água/metabolismo , Folhas de Planta/metabolismo , Carboidratos , Açúcares/metabolismo , Clorofila/metabolismo
5.
Photosynth Res ; 160(1): 45-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530505

RESUMO

In the metabolic pathway of chlorophylls (Chls), an enzyme called STAY-GREEN or SGR catalyzes the removal of the central magnesium ion of Chls and their derivatives to their corresponding free bases, including pheophytins. The substrate specificity of SGR has been investigated through in vitro reactions using Chl-related molecules. However, information about the biochemical properties and reaction mechanisms of SGR and its substrate specificity remains elusive. In this study, we synthesized various Chl derivatives and investigated their in vitro dechelations using an SGR enzyme. Chl-a derivatives with the C3-vinyl group on the A-ring, which is commonly found as a substituent in natural substrates, and their analogs with ethyl, hydroxymethyl, formyl, and styryl groups at the C3-position were prepared as substrates. In vitro dechelatase reactions of these substrates were performed using an SGR enzyme derived from an Anaerolineae bacterium, allowing us to investigate their specificity. Reactivity was reduced for substrates with an electron-withdrawing formyl or sterically demanding styryl group at the C3-position. Furthermore, the Chl derivative with the C8-styryl group on the B-ring was less reactive for SGR dechelation than the C3-styryl substrate. These results indicate that the SGR enzyme recognizes substituents on the B-ring of substrates more than those on the A-ring.


Assuntos
Chloroflexi , Clorofila , Enzimas , Clorofila/metabolismo , Magnésio/química , Chloroflexi/metabolismo , Feofitinas
6.
Plant Cell Rep ; 43(4): 106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532109

RESUMO

KEY MESSAGE: Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.


Assuntos
Antioxidantes , Capsicum , Compostos Heterocíclicos com 3 Anéis , Lactonas , Antioxidantes/metabolismo , Capsicum/metabolismo , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Clorofila/metabolismo , Plântula/metabolismo , Secas
7.
Plant Signal Behav ; 19(1): 2332018, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38511566

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most important economic crops in China. However, its quality and yield are susceptible to the adverse effects of low temperatures. In our study, two tomato cultivars, showing different tolerance to low temperatures, namely the cold-sensitive tomato cultivar (S708) and cold-tolerant tomato cultivar (T722), were grown at optimal (25/18°C) and sub-optimal (15/10°C) temperature conditions for 5 days. Our study aimed to explore the effect of sub-optimal temperature on fresh weight, chlorophyll content and chlorophyll fluorescence, soluble sugars and proline content of two tomato cultivars. Moreover, we employed RNA-Seq to analyze the transcriptomic response of tomato roots to sub-optimal temperature. The results revealed that S708 showed a more significant reduction in fresh weight, chlorophyll content, photochemical efficiency of PSII (YII), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qP) and electron transport rate (ETR) compared to T722 under the sub-optimal temperature condition. Notably, T722 maintained higher level of soluble sugars and proline in comparison to S708 uner sub-optimal temperature. RNA-seq data showed that up-regulated DEGs in both tomato cultivars were involved in "plant-pathogen interaction", "MAPK signaling pathway", "plant hormone signal transduction", and "phosphatidylinositol signaling system". Furthermore, "Amino sugar and nucleotide sugar metabolism" pathway was enriched only in T722. Moreover, under sub-optimal temperature, transcription factor genes and osmoregulation genes showed varying degrees of response in both tomato cultivars. Conclusion: In summary, our results offer detailed insights into the response characteristics of tomato to sub-optimal temperature, providing valuable references for the practical management of tomato crops under sub-optimal temperature condition.


Assuntos
Solanum lycopersicum , Temperatura , Solanum lycopersicum/genética , Clorofila/metabolismo , Prolina/metabolismo , Perfilação da Expressão Gênica , Açúcares , Estresse Fisiológico/genética , Fotossíntese
8.
Plant Physiol Biochem ; 208: 108494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513520

RESUMO

The role of halopriming in alleviating the detrimental effects of salinity and combined salinity-submergence was evaluated using two rice genotypes, "IR06F148" (anaerobic germination + submergence tolerant [Sub1]) and "Salt-star" (salt tolerant) with contrasting levels of tolerance. Nonprimed seeds and those primed with 1% calcium chloride (CaCl2) were germinated, and the seedlings were exposed to salinity (50 or 100 mM sodium chloride [NaCl]) and submergence (nonsaline or saline water). Salinity substantially inhibited plant height, shoot/root dry mass, and leaf area. Priming improved the resilience to 50 mM NaCl by increasing the chlorophyll content and lowering hydrogen peroxide (H2O2) production; and to 100 mM NaCl by increasing the total soluble sugars. However, apparent differences in the responses of primed "Salt-star", such as an increase in the Na+, K+, and Ca2+ levels, indicated that halopriming differentially affected the response to salt based on the salinity tolerance of the variety. Submergence reduced the shoot biomass, chlorophyll, and photosynthetic efficiency to a greater extent in "Salt-star" than in "IR06F148". Priming, especially in "Salt-star", caused a lesser reduction in the chlorophyll (Chl) and maximum quantum yield of photosystem II (Fv/Fm) but increased the total soluble sugars post-submergence, indicating a boost in the photosynthetic efficiency. The responses of the two varieties to submergence depended on their tolerance, and halopriming affected each variety differently. The metabolic and molecular changes induced by halopriming in submergence-tolerant rice may be explored further to understand the underlying mechanisms of improved resilience.


Assuntos
Oryza , Resiliência Psicológica , Plântula/metabolismo , Oryza/metabolismo , Salinidade , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Clorofila/metabolismo , Açúcares/metabolismo
9.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479316

RESUMO

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Assuntos
Brassica , Plântula , Clorofila/metabolismo , Carbono/metabolismo , Fluorescência , Fotossíntese , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo
10.
BMC Plant Biol ; 24(1): 214, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532311

RESUMO

BACKGROUND: Barley (H. vulgare L.) is an important cereal crop cultivated across various climates globally. Barley and its ancestor (H. vulgare subsp. spontaneum) are an economically valuable model for genetic research and improvement. Drought, among various abiotic stresses, is a substantial threat to agriculture due to its unpredictable nature and significant impact on crop yield. RESULTS: This study was conducted in both greenhouse and laboratory settings. Prior to the study, wild barley accessions were pre-selected based on their sensitivity or tolerance to drought as determined from fieldwork in the 2020-2021 and 2021-2022 cropping seasons. The effects of three levels of drought stress were evaluated (control, 90-95% field capacity [FC]; mild stress, 50-55% FC; and severe stress, 25-30% FC). Several parameters were assessed, including seedling and root growth, enzymatic activity (CAT, SOD, POD), soluble protein levels, chlorophyll content, carotenoids, abaxial and adaxial stomatal density and dimensions, and relative gene expression of Dhn1, SOD, POD, and CAT. Drought stress significantly increased enzyme activities, especially at 25-30% FC, and more in the tolerant genotype. On the other hand, sensitive genotypes showed a notable increase in stomatal density. Under drought stress, there was a general decline in seedling and root growth, protein content, chlorophyll and carotenoids, and stomatal dimensions. Importantly, gene expression analysis revealed that Dhn1, SOD, POD, and CAT were upregulated under drought, with the highest expression levels observed in the drought-tolerant genotype under severe stress conditions (25-30% FC). CONCLUSIONS: Our investigation highlights the distinct morphological, physiological, biochemical, and gene-expression profiles of drought-resistant and drought-sensitive wild barley genotypes under varying degrees of drought.


Assuntos
Hordeum , Hordeum/genética , Secas , Genótipo , Clorofila/metabolismo , Carotenoides/metabolismo , Expressão Gênica , Superóxido Dismutase/metabolismo , Estresse Fisiológico/genética
11.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428157

RESUMO

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Assuntos
Carboxiliases , Pyrus , Pyrus/genética , Pyrus/metabolismo , Sacarose/metabolismo , Ácido Glutâmico/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Parede Celular , Pectinas/metabolismo , Carboxiliases/metabolismo , Ácido gama-Aminobutírico/farmacologia , Poliaminas/metabolismo
12.
Plant Physiol Biochem ; 208: 108480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437751

RESUMO

It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.


Assuntos
Brassica , Brassica/genética , Citocromos f/metabolismo , Manose/metabolismo , Manose/farmacologia , Tabaco/genética , Apoptose , Clorofila/metabolismo
13.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
14.
Plant Physiol Biochem ; 208: 108527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484682

RESUMO

Sewage sludge (SS) disposal poses environmental concerns, yet its organic matter, macro- and micronutrients, make it potentially beneficial for enhancing soil quality and crop yield. This study focuses on three types of SS: "R10" (SS1), which is commonly used in agricultural practices, and two environmentally friendlier options (SS2 and SS3), as alternatives to mineral fertilizer (urea) for rice cultivation. A pot experiment was conducted to investigate the ecophysiological, biochemical, and molecular responses of rice at three different growth stages. SS application led to a significant increase in biomass production (particularly SS3), along with increased nitrogen (N) levels. Enhanced chlorophyll content was observed in SS-treated plants, especially during inflorescence emergence (with the highest content in SS3 plants). At the ecophysiological and biochemical levels, SS treatments did not adversely affect plant health, as evidenced by unchanged values of maximal PSII photochemical efficiency and malondialdehyde by-products. At biochemical and gene expression levels, antioxidant enzyme activities showed transient variations, likely related to physiological adjustments rather than oxidative stress. Ascorbic acid and glutathione did not significantly vary. This study concludes that the use of SS in soil can be a viable alternative fertilizer for rice plants, with positive effects on biomass, chlorophyll content, and no adverse effects on plant health. Among the tested SSs, SS3 showed the most positive effect, even compared to commercial fertilizer. These results suggest that SS application could improve rice yield while addressing environmental concerns surrounding SS disposal.


Assuntos
Oryza , Poluentes do Solo , Oryza/metabolismo , Esgotos/química , Fertilizantes/análise , Solo/química , Clorofila/metabolismo , Poluentes do Solo/metabolismo , Minerais/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 35(2): 424-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523100

RESUMO

Canopy spectral composition significantly affects growth and functional traits of understory plants. In this study, we explored the optimal light condition suitable for enhancing Scutellaria baicalensis's yield and quality, aiming to provide scientific reference for the exploitation and utilization of medicinal plant resources in the understory of forests. We measured the responses of growth, morphology, biomass allocation, physiological traits, and secon-dary metabolites of S. baicalensis to different light qualities. S. baicalensis was cultured under five LED-light treatments including full spectrum light (control), ultraviolet-A (UV-A) radiation, blue, green, and red light. Results showed that UV-A significantly reduced plant height, base diameter, leaf thickness, leaf area ratio, and biomass of each organ. Red light significantly reduced base diameter, biomass, effective quantum yield of photosystem Ⅱ (ФPSⅡ), and total flavonoid concentration. Under blue light, root length and total biomass of S. baicalensis significantly increased by 48.0% and 10.8%, respectively, while leaf number and chlorophyll content significantly decreased by 20.0% and 31.6%, respectively. The other physiological and biochemical traits were consistent with their responses in control. Our results suggested that blue light promoted photosynthesis, biomass accumulation, and secondary metabolite synthesis of S. baicalensis, while red light and UV-A radiation negatively affected physiological and biochemical metabolic processes. Therefore, the ratio of blue light could be appropriately increased to improve the yield and quality of S. baicalensis.


Assuntos
Plantas Medicinais , Scutellaria baicalensis , Scutellaria baicalensis/química , Scutellaria baicalensis/metabolismo , Fotossíntese , Flavonoides , Clorofila/metabolismo
16.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473924

RESUMO

The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Elétrons , Elétrons , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Oxirredução , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
17.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473996

RESUMO

With the continuous development of space station construction, space ecosystem research has attracted increasing attention. However, the complicated responses of different candidate plants and algae to radiation stress remain unclear. The present study, using integrated physiologic and proteomic analyses, was carried out to reveal the molecular mechanism of Navicula sp. in response to ultraviolet (UV) irradiation stress. Under 12~24 h of high-dose UV irradiation conditions, the contents of chlorophyll and soluble proteins in Navicula sp. cells were significantly higher than those in the control and 4~8 h of low-dose UV irradiation groups. The activity of catalase (CAT) increased with the extension of irradiation time, and the activity of superoxide dismutase (SOD) decreased first and then increased. Furthermore, differential volcano plot analysis of the proteomic data of Navicula sp. samples found only one protein with a significant difference. Differential protein GO analysis unveiled that UV irradiation can activate the antioxidant system of Navicula sp. and further impact photosynthesis by affecting the photoreaction and chlorophyll synthesis of Navicula sp. The most significant differences in KEGG pathway analysis were also associated with photosynthesis. The above results indicate that Navicula sp. has good UV radiation resistance ability by regulating its photosynthetic pigment content, photosynthetic activity, and antioxidant system, making it a potential candidate for the future development of space ecosystems.


Assuntos
Antioxidantes , Raios Ultravioleta , Antioxidantes/metabolismo , Ecossistema , Proteômica , Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo
18.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486149

RESUMO

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Assuntos
Clorofila , 60439 , Clorofila/metabolismo , Transcriptoma , Fotossíntese , Açúcares , Carbono
19.
Plant Physiol Biochem ; 209: 108540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518398

RESUMO

Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene ß-cyclase 2 (CrLCYb2), and ß-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457651

RESUMO

Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Cálcio/metabolismo , Transdução de Sinais , Clorofila/metabolismo , Contagem de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...